Hawking Radyasyonu Nedir? Kara Delikler Zamanla Buharlaşıp Yok Oluyor Olabilir mi?

-
Türev
Türev Nedir?
Bu türev bir içeriktir. Yani bu yazının omurgası, Science Alert isimli kaynaktan çevrilerek dilimize uyarlanmıştır; ancak "çeviri" içeriklerimizden farklı olarak, bu içerikte orijinal metin birebir korunmamıştır. Anlatım ve konu akışı gibi detaylar Evrim Ağacı yazar(lar)ı ve/veya editörler tarafından güncellenmiş, değiştirilmiş ve/veya geliştirilmiştir. Yazar, kaynaktan alınan metin omurgası üzerine kendi örneklerini, bilgilerini, detaylarını eklemiş; içeriği ve anlatımı zenginleştirmiş ve/veya çeşitlendirmiş olabilir. Bu ek kısımlarla ilgili kaynaklar da, yazının sonunda gösterilmiştir. Metnin omurgasını oluşturan kaynağı, orijinal dilinde okumak için lütfen yukarıdaki bağlantıya tıklayınız. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.
- Termodinamik
- Kuantum Mekaniği
Hawking radyasyonu, bir kara deliğin sınırında oluşan hipotetik parçacıkları tarif eder. Bu radyasyon, kara deliklerin sıcaklıklarının kütleleriyle ters orantılı olduğunu söyler. Başka şekilde ifade edecek olursak, bir kara delik ne kadar küçükse, o kadar sıcak parlayacaktır.
Bugüne kadar hiç direkt olarak gözlemlenmemiş olmasına rağmen Hawking radyasyonu, Genel Görelilik Teorisi ve kuantum mekaniğinin birleşik modelleri tarafından desteklenen bir tahmindir. Bu radyasyona "Hawking Radyasyonu" denme nedeni, 1974'te büyük fizikçi Stephen Hawking’in "Black hole explosions?" ("Kara Delik Patlamaları?") başlıklı makalesinde, bu tür bir radyasyonun var olup olamayacağını sorgulayan ilk isim olmasıdır.[1]
Stephen Hawking, aslında çok temel bir soru soruyordu: Kara deliklerden ışık bile kurtulamıyor; ancak kara delikler, ısı yayıyor olabilir mi? Bu sorunun cevabı muazzam büyük öneme sahip; çünkü eğer Hawking radyasyonunun gerçek olduğu kanıtlanırsa, kara deliklerin doğasına ve ömürlerine yönelik bilgilerimiz kökten değişecek: Eğer kara delikler, eskiden sanılanın aksine gerçekten de ışıma yapıyorlarsa, zaman içerisinde küçülüyorlar demektir. Halihazırda aşırı yoğun cisimler olan kara deliklerin bu ışıma yoluyla daha da küçülmesi sonucunda, en küçük kara delikler en ufak bir ısı temasında şiddetle patlayacaktır; daha büyük olanlarsa trilyonlarca yıl boyunca yavaş yavaş buharlaşacak ve yok olacaktır.
Kara Delikler Neden Parlamalı?
Bir madde kara deliğe girdiğinde, artık Evren'in geri kalanından tamamen izole olmuş demektir. Hawking'den önce bilim insanları, kara deliğe düşen cisimlerin bir daha asla kurtulamadığını, dolayısıyla kara deliklerin tek yönlü bir yol olduğunu düşünüyorlardı. Onlara göre kara delikler, etrafa hiçbir madde, enerji veya bilgi saçmıyorlardı. Ancak bu durum, fizikçilerin entropi adını verdiği düzensizlik ölçüsünün de ortadan kalkması anlamına gelmektedir. Kara delikler içinde maddelerin yok olabilmesi, Evren'i daha az düzensiz (veya daha düzenli) halde getirdiği için, kara deliklerin bu özelliğinin termodinamiğin ikinci yasasını çiğnediği düşünülüyordu.
Hawking, bu görüşe katılmıyordu. Hawking'e göre kara delikler, termodinamiğin ikinci yasasına uyuyorlardı ve entropileri zamanla artmak zorundaydı. Bu kritik bir kabul; çünkü entropisi olan her şeyin bir sıcaklığı olmak zorundadır![2] Bir diğer deyişle entropi, her zaman radyasyon yayan ısı enerjisini tarif etmenin başka bir yolundan ibarettir. Eğer olay ufku entropiye sahip olsaydı, bir şekilde parlamalıydı. Yani kara delikler, bu kadar da siyah olamazdı.
Ancak Hawking, kara delik problemini çözmeye çalışan tek fizikçi de değildi. O zamanlar Princeton Üniversitesi'nde bir fizik öğrencisi olan Jacob Bekenstein, bir madde bir kara deliğe düştüğünde, kara deliğin inanılmaz kütleçekiminden en çok etkilenen bölge olan olay ufkunun yüzey alanının bir miktar büyümesi gerektiğini gösterdi. Bu yüzey alanındaki değişimin, aksi takdirde kaybolacak entropiyle eşdeğer olduğunu gösterdi ve bu öneri, paradoksu çözebilirdi.
Ne var ki Hawking, bu açıklamadan da çok emin değildi. Bu nedenle Hawking, yaptığı hesaplamalar ile kara deliklerin sıcaklığını belirlemeye çalıştı. Bunu yapmak için, Einstein'ın büyük ölçeklerde kütleçekiminin nasıl çalıştığını izah eden Genel Görelilik Teorisi ile, Evren'in en küçük ölçekte nasıl çalıştığını tarif eden kuantum mekaniğinin öngörülerini birleştirdi. Bu iki teori, günümüzde halen birleştirilebilmiş değildir ve fizikçilerin en büyük hayallerinden birisi, Evren'i en küçükten en büyüğe kadar tek seferde açıklayabilecek olan Her Şeyin Teorisi'ne ulaşmaktır. Hawking, bu iki teoriden de yararlanmak zorunda kaldı; çünkü her iki teori de kara deliklerin olay ufkunda olan bitenlerin nasıl çalıştığını izah etmemizi sağlamaktadır.
Bekenstein'ın görünüşte absürt önerisini çürütmeye yönelik çabalarında Hawking, bu konuyu diğer fizikçilerle tartıştı ve mümkün olmadığını göstermek için matematiksel modeller kullanmayı denedi. Fakat Hawking, Bekenstein'ı çürütmek bir yana dursun, kara deliklerin gerçekten de bir çeşit soğuk ışıkla parladığını buldu. Hatta bunu, şu ölümsüz cümlelerle kitlelere ulaştırdı:
Kara delikler, bir zamanlar sandığımız gibi sonsuz hapishaneler değildir. Kara deliklerin içinden bir şeyler kaçabilmektedir; hem dışarıya, hem de belki diğer evrenlere... Dolayısıyla eğer kendinizi bir kara deliğin içinde gibi hissediyorsanız, vazgeçmeyin. Bir çıkış yolu var!
Kara Delikler Hawking Radyasyonunu Nasıl Üretiyor?
Bir kara deliğin civarındaki olay ufkundan parçacıkların dışarıya yayılmasının ardındaki fiziksel süreç oldukça karmaşıktır ve kuantum alan teorisinin matematiksel altyapısının sağlam bir şekilde anlaşılmasını gerektirir.
Ancak basite indirgeyerek anlatmaya çalışacak olursak, öncelikle şunu anlamanız gerekir: Kuantum mekaniği teorisine göre, parçacıklar ve antiparçacıklar durmaksızın var olup yok olmaktadırlar. Normalde bu ikili var olmaya başladığında, pek uzun süre varlıklarını koruyamazlar ve ikili, birbirlerini kısa sürede yok ederler. Zaten Büyük Patlama'dan kısa bir süre sonra, bilinmeyen bir nedenle antimaddeden daha çok miktarda madde üretildiği için, Evren'de bir şeyler var olabilmiştir. Bu dengesizlik hali olmasaydı, Evren kısa sürede kendi kendini yok edecekti.
Kara deliklerin sınırındaysa işler normalde olduğu gibi işlemez. Bu noktada yaratılan parçacık çiftlerinden bir tanesi kara deliğin içine düşerken, diğeri kara deliğin dışında kalabilir. Kara deliğin içine düşenin, efektif olarak negatif enerjiye sahbip olduğu söylenir. Kara delikten kaçan ise pozitif enerjiye sahiptir. İşte kara delikten kaçmayı başaran parçacık, Hawking Radyasyonu dediğimiz şeyin sebebidir. Kara deliğe düşen parçacık çiftinin enerjisi de efektif olarak negatif olduğu için, bir yerde kara delikten enerji kaçıyor demektir; bir diğer deyişle, kara deliğin enerjisi (ve dolayısıyla kütlesi) giderek azalmaktadır.
Yani Hawking Radyasyonu, birbirine zıt olan ve normal zamanlarda uzay-zaman dokusunun içinde yoktan var olup vardan yok olan parçacık-antiparçacık çiftlerinden birinin kara deliğe düşmesi, diğerinin kara delikten kaçması yoluyla oluşur. Bu parçacıklar devasa bir kütleçekim farkıyla birbirinden ayrıldıkları için, birbirlerini yok edemezler ve böylece kara deliğin kütlesi üzerine etki etmiş olurlar.[3] Hawking de kendi teorisini, oldukça popüler olan kitabında, aşırı miktarda kütleçekiminden etkilenen sanal parçacıkların, bu güçlü kütleçekiminden dolayı negatif enerji kazanan parçacık çiftlerinden bir tanesinin karadelikten kaçarak kütle yitimine neden olduğu şeklinde açıklar.[4]
Kara Delik Buharlaşması
Söylediğimiz gibi, eğer kara delikler Evren'in geri kalanına ışıma yapıyorsa, bir noktadan sonra "buharlaşmaları" ve yok olmaları kaçınılmaz olacaktır. Kara delikten saçılan bu spektrumu, kara deliğin termal denge halini ve olay ufkuna çok yakın yerlerde meydana gelen aşırı kırmızıya kayma olaylarını inceleyerek tespit etmek mümkündür (burada, kuantum dolanıklık olgusunu da hesaba katmak gerekmektedir).
Kara deliğe çok yakın bir yerde kuantum etkileri altında meydana gelen sanal parçacıklar, neredeyse her zaman bir foton çifti olarak var olurlar. Bu fotonlardan birisi olay ufkunu geçemez ve kara delik içine hapsolur; diğeriyse kara delikten kaçarak Evren'in geri kalanına doğru yola çıkar.
Bu olaya biraz daha yakından bakarsak, gördüğümüz şudur:[5] Kara deliğin olay ufkunda oluşan fotonda abartılı bir kırmızıya kayma olayı yaşanır. Bu sırada kara delikten kaçan foton, neredeyse "parçalanacaktır". İlginç bir şekilde, kara delikten kaçan bu fotonun şiddeti birazcık artar. Bu şiddet artışı, negatif enerji taşıyan partner dalga adı verilen bir parçacığın oluşmasına neden olur ve bu parçacık, kara deliğin güçlü kütleçekimine kapılıp, kara deliğin içine düşer. Kara delikten kaçan foton, Evren'in geri kalanına pozitif enerji ekler; ancak dikkat ederseniz, kara deliğin içinden madde dışarı çıkmamıştır. Öte yandan, kara deliğin içine düşen partner dalga, korunum yasalarına tabidir ve bu nedenle kaçan foton ile birebir aynı kara cisim ışımasına tabidir. Dolayısıyla bu dalganın ışıması, kara deliğin iç koşulları hakkında hiçbir bilgi taşımaz.
Hawking Işıması yapan kara deliklerin kütlesi ve dönüş enerjisi (rotasyonel enerjisi) zamanla azalır ve kara delik buharlaşması denen bir olayla yok olurlar. Dolayısıyla dışarıdan kütle almayan kara delikler, bir süre sonra yok olmak zorundadır. Çok küçük kara delikler haricindeki tüm kara delikler için bu buharlaşma olayı, inanılmaz yavaş yaşanmaktadır.
Bunu, matematiksel olarak da görebiliriz: Hawking'in hesaplarına göre, MM kütlesine sahip bir kara deliğin siyah cisim ışıması miktarının 6×10−8MKelvin\frac{6\times{10^{-8}}}{M}\text{Kelvin} olmalıdır. Görebileceğiniz gibi, sadece en küçük kara delikler (yani MM değeri en küçük olan cisimler), en yüksek ışıma sıcaklıklarına sahip olacaktır.
Üstelik kara delikler, küçüldükçe daha çok ışıma yaparlar ve bu nedenle zaman içerisinde yok olma hızları artar. Nihayetindeyse tıpkı bir hidrojen bombası gibi patlayarak yok olurlar! Hawking'in hesaplarına göre, kütlesi MM olan bir kara deliğin ömrü, 1071M310^{71}M^3 saniye olacaktır. Örneğin Güneş büyüklüğündeki bir kara delik için bu süre, Evren'in yaşından daha uzun ve 14 milyar yıl kadar olacaktır. Dolayısıyla bir kara deliğin yok olduğu anları kolay kolay gözlemek pek mümkün değildir. Böyle bir sona denk gelmek, muazzam bir tesadüf olacaktır.
Her ne kadar Hawking radyasyonu bugüne kadar hiç gözlenememiş olsa da, Hawking'in matematiksel ispatı öylesine ikna edicidir ki, fizikçilerin neredeyse tamamı kara deliklerin bir çeşit ışıma yaptığı konusunda hemfikirdir. Yine de bu etkileşimi tam olarak haritalandırmak için, kuantum mekaniğinde kütleçekiminin rolüyle ilgili tamamlanmış bir teoriye ihtiyacımız var; ancak Hawking’in çıkarımları, böyle bir birleşik teorinin mümkün olabileceği konusunda umut vaadediyor. Çünkü eğer Hawking'in teorisi doğruysa, görelilik ile kuantum mekaniği en azından kara deliklerin etrafındaki fiziği açıklamak üzere bir araya gelebiliyor demektir. Ve eğer bu iki büyük teori kara deliklerin etrafında bir araya gelerek bize bir açıklama sunabiliyorsa, Evren'in başka nerelerinde bir araya gelerek, ne tür açıklamalar sunabilir dersiniz?
Teoriyle İlgili Problemler
Bu teoriyle ilgili bir sorun şudur: Hiçbir fizikçi, bugüne kadar bu olayın yaşandığını gözlemeyi başaramamıştır. Bunun en büyük sebeplerinden birisi, daha ufak olan kara deliklerin daha fazla ışıma yapacak olması, dolayısıyla bu ışımanın küçük kara deliklerde daha kolay gözlenecek olması, ancak küçük kara delikleri bulmanın ve gözlemenin de çok daha zor olmasıdır.
Boyut: 23,5 X 31
Sayfa Sayısı: 483
Basım: 2
ISBN No: 9786053553373

Tüm bu ikna ediciliğine rağmen bazı fizikçiler, bu parçacıkların hayali bir çizgi üzerinde parçalandığına dayanan "yerelleştirilmiş" tanımın hatalı olduğunu savunmaktadırlar.[4]Eleştirmenlerine göre sanal parçacıkların var olup yok olmaları, bilgisayar modelleriyle ve elimizdeki hesaplamalarla uyumlu değildir.
Bogoliubov Transformasyonları ve Parçacık-Antiparçacık Çiftleri
Hawking, ulaştığı sonuçlara ulaşabilmek için Bogoliubov transformasyonları denen bir yönteme başvurmaktadır. Buradaki fikir, örneğin elektromanyetik alanı kuantize etmeye çalıştığınızda, Maxwell'in klasik denklemlerinin çözümlerini alıp, onları pozitif-frekans ve negatif-frekanslı çiftler halinde yazmaktır. Yüzeysel olarak yorumlandığında bunlardan ilki size parçacıkları, ikincisi ise antiparçacıkları verecektir. Daha dikkatli bakıldığındaysa bu ayrışma, teorinin kuantum versiyonundaki vakumun örtük bir tanımından ibarettir. Bir diğer deyişle, ayrışmayı bir şekilde veya öteki şekilde yapmak, bunlardan hangisinin vakum durumu olduğuna dair bakış açımızı değiştirmektedir.
Ancak bu, şaşırtıcı bir sonuçtur; çünkü vakum dediğimiz şey, en nihayetinde, en düşük enerji hali olarak yorumlanabilir. Eğer farklı bir koordinat sistemi kullanıyorsak, farklı zaman kavramlarımız ve farklı enerji kavramlarımız var demektir; en nihayetinde kuantum teorisinde enerji, HH adı verilen bir operatör iler tanımlanır ve bu operatörün zamana bağlı değişimi e−itHe^{-itH} olarak verilir. Dolayısıyla bir yandan ww parametresinin işaretine bağlı olarak "pozitif" veya "negatif" olarak isimlendirilen frekansları tanımlayan klasik alan teorisindeki çözümleri kullanıyoruz - ki bu işaret, tt zamanının koordinatlarına yönelik seçimlerimize dayanıyor. Diğer yandansa en düşük enerjili durumla ilgili farklı tanımlara sahip olacağımız oldukça aşikardır.
Eğer tüm bunları aşina olduğumuz Minkowski uzayında yaparsak, yani Özel Görelilik Teorisi'ni kullanırsak, Lorentz transformasyonlarıyla tanımlanan bir dizi "eylemsiz çerçeve" tanımlayabiliriz. Bunlar farklı koordinatlar verirler; ancak bu koordinat düzlemlerinin hiçbiri, Maxwell'in denklemlerinin çözümlerini farklı şekilde verecek kadar farklı değildir. Benzer şekilde, bu koordinat sistemlerini kullananlar, en düşük enerji durumuyla ilgili olarak hiçbir zaman anlaşmazlığa düşmeyeceklerdir. Dolayısıyla tüm eylemsiz gözlemciler, neyin parçacık neyin antiparçacık neyin vakum olduğunda hemfikir olacaktır.
Öte yandan eğri bir uzay-zaman düzleminde "en iyi koordinat düzlemi" diye bir düzlem yoktur; sadece eylemsiz olanlar vardır. Dolayısıyla en makul koordinat tercihleri bile, parçacıklar ve antiparçacıklar konusunda veya neyin vakum olduğu konusunda anlaşmazlıklar yaratacaktır. Bu anlaşmazlıklar, "her şeyin göreli" olduğu anlamına gelmez; çünkü bu farklı koordinat sistemlerinin tanımları arasında geçiş yapmamızı sağlayan iyi tanımlanmış denklemler vardır. İşte bunlara, Bogoliubov transformasyonları demekteyiz.
Bogoliubov transformasyonları sırasında gerçekten de parçacık ve antiparçacık çiftleri oluşturulabilir; fakat eleştirmenlere göre, bunların matematiksel altyapısı ile fiziksel gerçekliği arasındaki köprü oldukça muğlaktır.
Bilgi Paradoksu
Hawking Radyasyonu'nun sebep olduğu en tuhaf sonuçlardan birisi, kara deliğe giren bilgiyi tamamen siliyor olmasıdır. Bunu şöyle düşünün: Eğer bir karadeliğe 1 ton demir fırlatacak olsanız, diğer bir karadeliğeyse 1 ton pamuk fırlatacak olsanız, her iki kara deliğin de saçacağı radyasyon birebir aynı olacaktır. Ancak bu, Evren'in bildiğimiz kurallarını ihlâl etmektedir.
Kuantum mekaniğine göre, bir parçacığın Evren içerisinde kat ettiği yolun tamamını tespit edebilmemiz gerekmektedir. Dolayısıyla kara deliğin için 1 ton demir attığınızda, o demirin tam olarak nasıl parçalandığını tamı tamına takip edebilmeniz gerekir. Örneğin demirin dış katmanlarını kaplayan tekil atomların nasıl dağıldığını hesaplayabilmelisiniz. Kuantum mekaniği, Evren'deki tüm parçacıkların hesaplanabilir olduğunu ve dolayısıyla hiçbir zaman bilginin kaybolamayacağını öngörür.
Ancak bir kara deliğin içinde, bilgi kaybolabilir. Hawking Radyasyonu, kara deliklerin kütle kaybettiğini söylemektedir. Ama bu kütle kaybı ile kara deliğe fırlattığımız 1 ton demir arasındaki ilişki muğlaktır. Bu muğlaklık giderilmediği sürece, Evren'deki fiziğe yönelik algılarımızı tam olarak çerçevelendirmemiz mümkün olmayacaktır. Kara deliklerde bilgi paradoksuyla ilgili daha fazla bilgiyi buradaki yazımızdan alabilirsiniz.
Sonuç
Sonuç olarak Hawking'in teorisi, kara delikler etrafında bükülen kıvrımlı uzay-zaman dokusunun, olay ufkuna yakın alanlardaki kuantum özelliklerinin karışımını nasıl bozabileceğini gösteriyor. Öyle ki, kara delikler, bazı özellikleri etrafa saçarken, bazılarını bozulmadan koruyabiliyor. İşte bu özellikler, radyasyon adını verdiğimiz ışımanın spesifik sıcaklıklarına benzemektedir ve kara deliklerin zaman içerisinde küçülmesine neden olmaktadır.
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
İlginizi Çekebilecek Sorular
- Karadelikler kaç boyutludur? Arkasını veya yan taraflarını gözlemleme şansımız var mıdır?
- Statik sürtünme kuvveti neden kinetik sürtünme kuvvetinden daha büyüktür?
- Türkiye ilk 10 ekonomi arasına girebilir mi?
- 16
- 8
- 8
- 8
- 5
- 5
- 2
- 1
- 0
- 0
- 0
- 0
- Türev İçerik Kaynağı: Science Alert | Arşiv Bağlantısı
- ^ S. W. Hawking. (1974). Black Hole Explosions?. Nature, sf: 30-31. doi: 10.1038/248030a0. | Arşiv Bağlantısı
- ^ S. Clark. A Brief History Of Stephen Hawking: A Legacy Of Paradox. (14 Mart 2018). Alındığı Tarih: 28 Mart 2021. Alındığı Yer: New Scientist | Arşiv Bağlantısı
- ^ B. Resnick. Stephen Hawking’s Most Mind-Blowing Discovery: Black Holes Can Shrink. (14 Mart 2018). Alındığı Tarih: 28 Mart 2021. Alındığı Yer: Vox | Arşiv Bağlantısı
- ^ a b S. Hawking. (1998). A Brief History Of Time. ISBN: 9780553380163. Yayınevi: Bantam Books.
- ^ R. Parentani, et al. (2011). Hawking Radiation. Scholarpedia, sf: 6958. doi: 10.4249/scholarpedia.6958. | Arşiv Bağlantısı
- J. Baez. Hawking Radiation. (1 Ocak 1994). Alındığı Tarih: 28 Mart 2021. Alındığı Yer: University of California at Riverside | Arşiv Bağlantısı
- S. W. Hawking. (1975). Particle Creation By Black Holes. Communications in Mathematical Physics, sf: 199-220. doi: 10.1007/BF02345020. | Arşiv Bağlantısı
- R. Parentani. (2010). From Vacuum Fluctuations Across An Event Horizon To Long Distance Correlations. Physical Review D, sf: 025008. doi: 10.1103/PhysRevD.82.025008. | Arşiv Bağlantısı
- R. Brout, et al. (1995). A Primer For Black Hole Quantum Physics. Physics Reports, sf: 329-446. doi: 10.1016/0370-1573(95)00008-5. | Arşiv Bağlantısı
- W. G. Unruh. (1981). Experimental Black-Hole Evaporation?. Physical Review Letters, sf: 1351. doi: 10.1103/PhysRevLett.46.1351. | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/05/2022 02:24:35 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/10305
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.