Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı!

5 dakika
22,303
Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı! Slide Player
Carl Friedrich Gauss
Evrim Ağacı Akademi: Elektromanyetizma Yazı Dizisi

Bu yazı, Elektromanyetizma yazı dizisinin 12 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Elektromanyetik Spektrum (Tayf) Nedir?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Carl Friedrich Gauss, namı diğer "matematiğin prensi", matematiğin neredeyse bütün alanlarına katkı sağladığı gibi, fizikte de çok önemli keşiflere imza atmıştır. Bu katkılardan belki de en önemlisi Gauss yasasıdır. Maxwell denklemlerinden biri olan bu yasanın anlattığı şey, sadece elektromanyetik teoride değil, mekanikte de kullanılır; ancak bu teorinin arka planı da çok güçlü bir matematik içerir. Muhtemelen böylesi önemli bir yasa için sayfalar sürecek bir kanıt bekliyorsunuz; ancak kanıtı kısa, yalın, güçlü ve şıktır.

Öncelikle Maxwell denklemlerini ilk defa görecek veya tekrar hatırlamak isteyecek olabilirsiniz diye biz hatırlatalım.

Maxwell Denklemleri

Elektromanyetik teorinin dört temel denklemidir, temellerinde elektrik alanın manyetik alana dönüşebileceğini anlatırlar, özelinde ise manyetik alanın varlığının bir elektrik akımı oluşması için yeterli olacağını söyler. Diferansiyel ve integral formu olan denklemleri şöyledir:

Tüm Reklamları Kapat

İntegral Formu

Σ\Sigma, 3 boyutlu Öklidyen uzayda kapalı bir yüzeyi temsil etsin, bu yüzeylerde elektrik alan E→\overrightarrow{E} ve manyetik alan B→\overrightarrow{B}, akım yoğunluğu J→\overrightarrow{J}, yük yoğunluğu ρ\rho, ortamın dielektrik katsayısı ϵ0\epsilon_0, geçirgenlik katsayısı μ0\mu_0 olsun; yani yüzey, dünya üzerinde, normal hava ortamında olsun.

1. Gauss Yasası (Elektrik Alan)

∮∂Σ⟨E→,dΣ→⟩=1ϵ0∭ΣρdV\LARGE{\oint_{\partial \Sigma}\langle \overrightarrow{E} , \overrightarrow{d\Sigma} \rangle= \dfrac{1}{\epsilon_0}\iiint_{\Sigma}\rho dV}

2. Gauss Yasası (Manyetik Alan)

Tüm Reklamları Kapat

∮∂Σ⟨B→,dΣ→⟩=0\LARGE{\oint_{\partial \Sigma}\langle \overrightarrow{B} ,\overrightarrow{ d \Sigma} \rangle=0}

3. Faraday indüksiyon yasası

∮∂Σ⟨E→,dl→⟩=−ddt∬Σ⟨B→,dΣ→⟩\LARGE{\oint_{\partial\Sigma}\langle \overrightarrow{E},\overrightarrow{dl} \rangle=-\dfrac{d}{dt}\iint_\Sigma \langle \overrightarrow{B},\overrightarrow{d \Sigma} \rangle}

4. Ampere yasası (Maxwell'in ekleme yaptığı hali)

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 50₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

∮∂Σ⟨B→,dl→⟩=μ0(∬Σ⟨J→,dΣ→⟩+ϵ0ddt∬Σ⟨E→,dΣ→⟩)\LARGE{\oint_{\partial \Sigma} \langle \overrightarrow{B},\overrightarrow{dl} \rangle=\mu_0(\iint_{\Sigma} \langle \overrightarrow{J},\overrightarrow{d \Sigma}\rangle+\epsilon_0\dfrac{d}{dt}\iint_{\Sigma}\langle \overrightarrow{E}, \overrightarrow{d \Sigma} \rangle)}

Bu denklemlerden kısaca bahsedeceğiz, ancak bir de bu denklemlerin diferansiyel formlarına bakmamız gerekiyor.

Diferansiyel Form

Üstteki denklemler, sırasıyla Stokes ve Diverjans teoremleri yardımıyla aşağıdaki denklemlere dönüştürülebilir:

1. Gauss Yasası (Elektrik Alan)

⟨∇,E→⟩=ρϵ0\LARGE{\langle \nabla, \overrightarrow{E} \rangle = \dfrac{\rho}{\epsilon_0}}

2. Gauss Yasası (Manyetik Alan)

Tüm Reklamları Kapat

⟨∇,B→⟩=0\LARGE{\langle \nabla, \overrightarrow{B} \rangle= 0}

3. Faraday indüksiyon yasası

rot(E)=−∂B→∂t\LARGE{rot(E)=-\dfrac{\partial \overrightarrow{B}}{\partial t}}

Tüm Reklamları Kapat

4. Ampere yasası

rot(B)=μ0J→+μ0ϵ0∂E→∂t\LARGE{rot(B)=\mu_0\overrightarrow{J}+\mu_0\epsilon_0\dfrac{\partial \overrightarrow{E}}{\partial t}}

Bu iki formun hiçbir farkı yoktur; aynı şeyi anlatırlar. Sadece probleme göre ikisinden biri kullanılır. Anlattıkları şey ise şu: Elektrik ile manyetizma aynı şeydir ve bir elektromanyetik dalga, bu iki alana da dik yönde ışık hızında ilerler.

Ampere yasasında, parantez içinde Maxwell'in bir ekleme yaptığı konusu dikkatinizi çekmiş olabilir. Maxwell'in eklediği şey, aslında bütün bu dört denklemin anlamlı olmasını sağlayanμ0ϵ0ddt∬Σ⟨E→,dΣ→⟩)\mu_0\epsilon_0\dfrac{d}{dt}\iint_{\Sigma}\langle \overrightarrow{E}, \overrightarrow{d \Sigma} \rangle) bölümüdür. Bu kısmın anlattığı şey ise, elektriksel akının zamanla değişimi ile de bir akım oluştuğudur. Bu sayede elektriğin manyetizmaya dönüşmesinin bir anlamı olur.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Erdemler Serisi: Çocuklar İçin 9 Bilim Kitabı

Ülkemizde ve yurt dışında modern bilimin en önemli isimlerin hayatlarını Serhat Filiz’in harika çizimleriyle öğrenmeye ne dersiniz? Edineceğiniz kitapların detaylarını aşağıda bulabilirsiniz.

Benim Adım Aziz Sancar
İdealist Olmanın Önemi
İdealistti Aziz Sancar. Yaşamını bunun üzerine kurmuştu. Çalışmış, başarmış, ideallerini gerçekleştirmişti. Bütün dünya onu tanıyor ve başarılarını alkışlıyordu. Onu, bugünlere getirenleri hiç unutmadı Aziz Sancar.

Benim Adım Albert Einstein
Azimli Olmanın Önemi
Ben bir bilim insanıyım. Ben de herkes gibi bu dünyada yaşadım ve zamanı gelince ayrıldım. Ama eserlerim, buluşlarım, getirdiğim yenilikler asla unutulmayacak. Yeryüzündeki şartların düzelmesi, savaşların bitmesi, her şeyin güzel olması sadece bilimsel buluşlarla değil, ahlaklı ve doğru bir yaşamla sağlanır. Bunu asla unutmayın!

Benim Adım Graham Bell
Yardımlaşmanın Önemi
Ben Graham Bell. Bir bilim insanıyım. Hayatım boyunca insanların hayatını kolaylaştırmak için çalıştım. Bunun için icatlar yaptım, yeni aletler keşfettim. Tüm bunları yardımlaşmak için, insanlara faydalı olmak için yaptım. Çalışmalarımda, başka bilim dallarında çalışan arkadaşlarımdan yardım aldım. Çünkü insan her konuda anlamıyla bilgi sahibi olamaz. Bilmediğimiz konuları bir başkasına sormak, başkalarının fikirlerini almak bir eksik değil, büyük bir erdemdir.

Benim Adım Louis Pasteur
Disiplinli Olmanın Önemi
Ben bir bilim insanıyım, bir doktorum. Bilim ve barışın, cehaleti yeneceğinden eminim. Milletlerin, yıkmak ve yok etmek için değil, barışı ve yaşamayı yüceltmek için bir gün birleşeceğine inanıyorum. Geleceğimizi, bu yolda uğraş verenlere, bu yolu ışıklandıranlara
borçluyuz.

Benim Adım Marie Curie
Sözünü Tutmanın Önemi
Marie Curie, Nobel Ödülü’nü alan ilk kadın bilim insanıdır. Onun yaşadığı dönemde kadınlar günümüzdeki gibi özgür değillerdi. Bu nedenle bilimsel çalışmalarını yaparken birçok zorlukla karşılaştı. Buna karşın eşi Pierre Curie’ye pes etmemeye dair söz vermişti. Eşinin ölümünden
sonra sözünü tutarak insanlık adına çok faydalı buluşlara imza attı. Nobel Ödülü’nü iki kez alan bilim insanı olarak da tarihe geçti.

Benim Adım Nikola Tesla
Hayal Kurmanın Önemi
Hayal kuran insanları başarıya götüren şey, hayallerinden vazgeçmemeleri ve kararlı olmalarıdır. Bugün düşünüp üzerinde çalışmaya başladığınız bir fikir eğer vazgeçmezseniz ileride insanlığın kaderini değiştiren faydalı bir buluş olabilir. Başarının en büyük sırrı asla pes etmemek, sabırlı olmak ve çok çalışmaktır.

Benim Adım Galileo
Paylaşmanın Önemi
Bir insanın diğer insanların yanında kıymeti, bildiklerini paylaştığı zaman çoğalır. Bu sayede keşfettiğimiz ya da öğrendiğimiz bazı bilgiler diğer insanlara da yol gösterici olur. Sadece bilgiyi değil, elimizdekileri de diğer insanlarla ya da hayvanlarla paylaşmak
hepimizin eşit şartlara ulaşmasında ve birbirimizi sevmede etkilidir. Dünyanın daha güzel bir yer olması kardeşçe yaşamakla mümkün olur.

Benim Elon Musk
Kararlı Olmanın Önemi
Yapmak istediğimiz bir şeyde kararlı olmak o işi başarmakta çok etkilidir. Hayallerimizden, isteklerimizden vazgeçmediğimiz ve onları gerçekleştirmek için çalıştığımız sürece üstesinden gelemeyeceğimiz zorluk yoktur. Yeter ki kendimize inanalım ve güvenelim.

Benim Thomas Edison
Yaratıcı Olmanın Önemi
Hayatın en büyük hataları, başarıya ne kadar yaklaştıklarını bilmeyen insanların, vazgeçmelerinden dolayı olur. Yaratıcılığımızdan ve hayallerinden vazgeçmeyin. Başarıya ancak bu şekilde ulaşılır.

Set İçindeki Ürünler:

  •  Benim Adım Aziz Sancar
  •  Benim Adım Albert Einstein
  •  Benim Adım Graham Bell
  •  Benim Adım Louis Pasteur
  •  Benim Adım Marie Curie
  •  Benim Adım Nikola Tesla
  •  Benim Adım Galileo
  •  Benim Elon Musk
  •  Benim Thomas Edison

Bilgiler ve Uyarılar:

  1. Bu ürün sipariş alındıktan 1-3 gün içinde postalanacaktır.
  2. Bu eserler, okuma-yazma bilen 5-8 yaş grubuna uygundur.
  3. Lütfen sipariş vermeden önce iade ve ürün değişikliği ile ilgili bilgilendirmemizi okuyunuz.
  4. Bu kampanya, Panama Yayıncılık tarafından Evrim Ağacı okurlarına sunulan fırsatlardan birisidir.
Devamını Göster
₺600.00
Erdemler Serisi: Çocuklar İçin 9 Bilim Kitabı

Bir matematikçi gözüyle incelersek, bu denklemler deneysel gözlemlerin ve Stokes teoremlerinin bir sonucudur. Gauss yasası genelde Maxwell denklemlerinde ilk sırada yazılır çünkü kendisinin anlattığı şey, diğerlerine göre bir nebze daha sık öne çıkar, çünkü uygulaması elektromanyetik teorinin de dışına çıkar.

Gauss yasasının anlatmaya çalıştığı şey, bir kapalı yüzeyde elektriksel akının sabit kaldığı ve sadece yüke bağlı olduğudur. Yani siz 5C'luk (Coulomb, yük birimidir ve C ile gösterilir) bir yükü, dünyanın merkezine de koysanız, bir araba tekerleğinin içine de koysanız, yüzeyin üstünde elektrik akısı aynı miktarda olacaktır. Bu miktar, dielektrik katsayısı ile ters orantılıdır. Havanın dielektrik katsayısı ϵ0\epsilon_0 ile gösterilir. Bu katsayının değeri 1,5.10−101,5.10^{-10}, göreli belirsizlikle birlikte 8,85418781762039.10−12Faradmetre8,85418781762039.10^{-12} \dfrac{Farad}{metre}'dir. Deneysel ölçümlerle başka ortamların dielektrik katsayıları da hesaplanabilir.

Böylesine güçlü bir yasayı kanıtlamadan önce elbette biraz uygulamalarına bakalım. Elektromanyetik teorideki bir uygulamasına bakacak olursak eğri büğrü bir cisim düşünelim. Bu cismin içindeki bir (x,y,z)(x,y,z) noktası için ρ=−e−(x2+y2)\rho=-e^{-(x^2+y^2)}nCm3\dfrac{nC}{m^3} bir yük yoğunluğu olsun. Bu cismin yüzeyindeki elektrik akısını hesaplamasını okuyucudan istiyoruz. İpucu olarak, toplam yükü bulmak için silindirik koordinatlarda bir integrasyon yapmanız gerektiğini belirtmekte fayda var. Daha sonra, cismin içine gireceğini kabul ettiğimiz bir r0r_0 yarıçaplı bir küre üzerinde Gauss yasasını uygulayabilirsiniz.

Elektromanyetizmadan başka bir uygulama olarak Newton'un kütleçekim kanununda da Gauss yasası kullanılabilir. Kapalı yüzeylerdeki gravitasyonel akı, kütleyle orantılıdır ve ∮∂Σ⟨g→,dΣ→⟩=−4GπM\oint_{\partial\Sigma}\langle \overrightarrow{g},\overrightarrow{d\Sigma}\rangle=-4G\pi M olarak ifade edilebilir. Burada MM kütle, G G gravitasyonel sabittir (6.67408×10−11m3kg−1s−26.67408 × 10-11 m^3 kg^{-1} s^{-2} ) .

Mekanik dersi alan okuyucular, bu hesap yönteminin Newton'un yöntemine kıyasla ne kadar kolay olduğunu anlamışlardır. Gauss yasası, işin içinde akı ve bir kapalı yüzey olduğu herhangi bir sistem için uygulanabilir olduğu için, diğer Maxwell denklemlerinden ayrılır. Şimdi gelelim şık Gauss yasasının şık bir kanıtına.

Gauss Yasasının Kanıtı

Aşağıdaki şekilde, Gauss yasasının geometrisi görülmektedir. Bu şeklin keyfi bir şekil olduğunu varsayalım, çünkü kanıtımızın her kapalı şekile uyması gerekiyor.

Gauss yasasının bir geometrisi
Gauss yasasının bir geometrisi
Doubnut

Bu kapalı şekilde bir r→\overrightarrow{r} noktasında elektrik alan Coulomb kanunu neticesinde şöyle hesaplanır:

E(r→)=14πϵ0∭Σρr→−ζ→∣∣r→−ζ→∣∣3dζ→\LARGE{E(\overrightarrow{r})=\dfrac{1}{4\pi \epsilon_0}\iiint_{\Sigma}\rho\dfrac{\overrightarrow{r}-\overrightarrow{\zeta}}{||\overrightarrow{r}-\overrightarrow{\zeta}||^3}d\overrightarrow{\zeta}}

Diverjans teoremi kullanılırsa:

div(E→)=1ϵ0∭Σρδ(r→−ζ→)dζ→\LARGE{div(\overrightarrow{E})=\dfrac{1}{ \epsilon_0}\iiint_{\Sigma}\rho \delta(\overrightarrow{r}-\overrightarrow{\zeta})d\overrightarrow{\zeta}}

Tüm Reklamları Kapat

Burada δ\delta, Dirac delta fonksiyonudur. Dirac delta fonksiyoniyonun özelliklerinden yararlanırsak ,div(E→)=ρϵ0div(\overrightarrow{E})= \dfrac{\rho}{\epsilon_0} sonucuna varırız ve bir kez daha diverjans teoremi kullanılırsa, Gauss yasasının integral formu elde edilir.

Burada kanıtı şık yapan husus, işin içine Dirac delta fonksiyonunun girmesidir. Nasıl girdiğini ise şöyle gösterelim: α→\overrightarrow{\alpha}'nın normunu α\alpha olarak alalım. Bu durumda:

div(α→α2)=1α2∂∂r(1)=0\LARGE{div(\dfrac{\overrightarrow{\alpha}}{\alpha^2})=\dfrac{1}{\alpha^2}\dfrac{\partial}{\partial r} (1)=0}

ve diverjansın integrali:

Tüm Reklamları Kapat

∬Σdiv(α→α2)dV=∮∂Σ⟨α→α2,dΣ→⟩\LARGE{\iint_{\Sigma} div(\dfrac{\overrightarrow{\alpha}}{\alpha^2}) dV=\oint_{\partial \Sigma}\langle \dfrac{\overrightarrow{\alpha}}{\alpha^2},\overrightarrow{d\Sigma}\rangle}

Burada integrali yarıçapı RR olan küre üzerinde düşünebiliriz. İntegralin sonucu 1 gelecektir. Bu da Dirac deltanın tanımıdır.

Gauss yasasının kanıtında diverjans ve Stokes teoremleri birkaç defa kullanılır. Aralarındaki bu muhteşem ilişki de, bu müthiş yasayı oluşturur. İleri okumalar kısmında Stokes ve diverjans teoremi ve elektromanyetik teori ile ilgili kaynaklar bulabilirsiniz.

Evrim Ağacı, sizlerin sayesinde bağımsız bir bilim iletişim platformu olmaya devam edecek!

Evrim Ağacı'nda tek bir hedefimiz var: Bilimsel gerçekleri en doğru, tarafsız ve kolay anlaşılır şekilde Türkiye'ye ulaştırmak. Ancak tahmin edebileceğiniz gibi Türkiye'de bilim anlatmak hiç kolay bir iş değil; hele ki bir yandan ekonomik bir hayatta kalma mücadelesi verirken...

O nedenle sizin desteklerinize ihtiyacımız var. Eğer yazılarımızı okuyanların %1'i bize bütçesinin elverdiği kadar destek olmayı seçseydi, bir daha tek bir reklam göstermeden Evrim Ağacı'nın bütün bilim iletişimi faaliyetlerini sürdürebilirdik. Bir düşünün: sadece %1'i...

O %1'i inşa etmemize yardım eder misiniz? Evrim Ağacı Premium üyesi olarak, ekibimizin size ve Türkiye'ye bilimi daha etkili ve profesyonel bir şekilde ulaştırmamızı mümkün kılmış olacaksınız. Ayrıca size olan minnetimizin bir ifadesi olarak, çok sayıda ayrıcalığa erişim sağlayacaksınız.

Avantajlarımız
"Maddi Destekçi" Rozeti
Reklamsız Deneyim
%10 Daha Fazla UP Kazanımı
Özel İçeriklere Erişim
+5 Quiz Oluşturma Hakkı
Özel Profil Görünümü
+1 İçerik Boostlama Hakkı
ve Daha Fazlası İçin...
Aylık
Tek Sefer
Destek Ol
₺50/Aylık
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Özetini Oku
51
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

Makalelerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu makalemizle ilgili merak ettiğin bir şey mi var? Buraya tıklayarak sorabilirsin.

Soru & Cevap Platformuna Git
Bu Makale Sana Ne Hissettirdi?
  • Bilim Budur! 19
  • Mmm... Çok sapyoseksüel! 15
  • Tebrikler! 7
  • İnanılmaz 6
  • Merak Uyandırıcı! 5
  • Üzücü! 4
  • Grrr... *@$# 4
  • Muhteşem! 3
  • Güldürdü 3
  • Umut Verici! 3
  • Korkutucu! 3
  • İğrenç! 1
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 09/07/2025 10:10:59 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8798

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Size Özel
Makaleler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. Taşdemir, et al. Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı!. (30 Mayıs 2020). Alındığı Tarih: 9 Temmuz 2025. Alındığı Yer: https://evrimagaci.org/s/8798
Taşdemir, M., Bakırcı, Ç. M. (2020, May 30). Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı!. Evrim Ağacı. Retrieved July 09, 2025. from https://evrimagaci.org/s/8798
M. Taşdemir, et al. “Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı!.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 30 May. 2020, https://evrimagaci.org/s/8798.
Taşdemir, Mert. Bakırcı, Çağrı Mert. “Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı!.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, May 30, 2020. https://evrimagaci.org/s/8798.

Bize Ulaşın

ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close