Elektromanyetik Teori ve Maxwell Denklemleri'nin Matematiği: Gauss Yasasının Kanıtı!
Carl Friedrich Gauss, namı diğer "matematiğin prensi", matematiğin neredeyse bütün alanlarına katkı sağladığı gibi, fizikte de çok önemli keşiflere imza atmıştır. Bu katkılardan belki de en önemlisi Gauss yasasıdır. Maxwell denklemlerinden biri olan bu yasanın anlattığı şey, sadece elektromanyetik teoride değil, mekanikte de kullanılır; ancak bu teorinin arka planı da çok güçlü bir matematik içerir. Muhtemelen böylesi önemli bir yasa için sayfalar sürecek bir kanıt bekliyorsunuz; ancak kanıtı kısa, yalın, güçlü ve şıktır.
Öncelikle Maxwell denklemlerini ilk defa görecek veya tekrar hatırlamak isteyecek olabilirsiniz diye biz hatırlatalım.
Maxwell Denklemleri
Elektromanyetik teorinin dört temel denklemidir, temellerinde elektrik alanın manyetik alana dönüşebileceğini anlatırlar, özelinde ise manyetik alanın varlığının bir elektrik akımı oluşması için yeterli olacağını söyler. Diferansiyel ve integral formu olan denklemleri şöyledir:
İntegral Formu
Σ\Sigma, 3 boyutlu Öklidyen uzayda kapalı bir yüzeyi temsil etsin, bu yüzeylerde elektrik alan E→\overrightarrow{E} ve manyetik alan B→\overrightarrow{B}, akım yoğunluğu J→\overrightarrow{J}, yük yoğunluğu ρ\rho, ortamın dielektrik katsayısı ϵ0\epsilon_0, geçirgenlik katsayısı μ0\mu_0 olsun; yani yüzey, dünya üzerinde, normal hava ortamında olsun.
1. Gauss Yasası (Elektrik Alan)
∮∂Σ⟨E→,dΣ→⟩=1ϵ0∭ΣρdV\LARGE{\oint_{\partial \Sigma}\langle \overrightarrow{E} , \overrightarrow{d\Sigma} \rangle= \dfrac{1}{\epsilon_0}\iiint_{\Sigma}\rho dV}
2. Gauss Yasası (Manyetik Alan)
∮∂Σ⟨B→,dΣ→⟩=0\LARGE{\oint_{\partial \Sigma}\langle \overrightarrow{B} ,\overrightarrow{ d \Sigma} \rangle=0}
3. Faraday indüksiyon yasası
∮∂Σ⟨E→,dl→⟩=−ddt∬Σ⟨B→,dΣ→⟩\LARGE{\oint_{\partial\Sigma}\langle \overrightarrow{E},\overrightarrow{dl} \rangle=-\dfrac{d}{dt}\iint_\Sigma \langle \overrightarrow{B},\overrightarrow{d \Sigma} \rangle}
4. Ampere yasası (Maxwell'in ekleme yaptığı hali)
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
∮∂Σ⟨B→,dl→⟩=μ0(∬Σ⟨J→,dΣ→⟩+ϵ0ddt∬Σ⟨E→,dΣ→⟩)\LARGE{\oint_{\partial \Sigma} \langle \overrightarrow{B},\overrightarrow{dl} \rangle=\mu_0(\iint_{\Sigma} \langle \overrightarrow{J},\overrightarrow{d \Sigma}\rangle+\epsilon_0\dfrac{d}{dt}\iint_{\Sigma}\langle \overrightarrow{E}, \overrightarrow{d \Sigma} \rangle)}
Bu denklemlerden kısaca bahsedeceğiz, ancak bir de bu denklemlerin diferansiyel formlarına bakmamız gerekiyor.
Diferansiyel Form
Üstteki denklemler, sırasıyla Stokes ve Diverjans teoremleri yardımıyla aşağıdaki denklemlere dönüştürülebilir:
1. Gauss Yasası (Elektrik Alan)
⟨∇,E→⟩=ρϵ0\LARGE{\langle \nabla, \overrightarrow{E} \rangle = \dfrac{\rho}{\epsilon_0}}
2. Gauss Yasası (Manyetik Alan)
⟨∇,B→⟩=0\LARGE{\langle \nabla, \overrightarrow{B} \rangle= 0}
3. Faraday indüksiyon yasası
rot(E)=−∂B→∂t\LARGE{rot(E)=-\dfrac{\partial \overrightarrow{B}}{\partial t}}
4. Ampere yasası
rot(B)=μ0J→+μ0ϵ0∂E→∂t\LARGE{rot(B)=\mu_0\overrightarrow{J}+\mu_0\epsilon_0\dfrac{\partial \overrightarrow{E}}{\partial t}}
Bu iki formun hiçbir farkı yoktur; aynı şeyi anlatırlar. Sadece probleme göre ikisinden biri kullanılır. Anlattıkları şey ise şu: Elektrik ile manyetizma aynı şeydir ve bir elektromanyetik dalga, bu iki alana da dik yönde ışık hızında ilerler.
Ampere yasasında, parantez içinde Maxwell'in bir ekleme yaptığı konusu dikkatinizi çekmiş olabilir. Maxwell'in eklediği şey, aslında bütün bu dört denklemin anlamlı olmasını sağlayanμ0ϵ0ddt∬Σ⟨E→,dΣ→⟩)\mu_0\epsilon_0\dfrac{d}{dt}\iint_{\Sigma}\langle \overrightarrow{E}, \overrightarrow{d \Sigma} \rangle) bölümüdür. Bu kısmın anlattığı şey ise, elektriksel akının zamanla değişimi ile de bir akım oluştuğudur. Bu sayede elektriğin manyetizmaya dönüşmesinin bir anlamı olur.
Bir matematikçi gözüyle incelersek, bu denklemler deneysel gözlemlerin ve Stokes teoremlerinin bir sonucudur. Gauss yasası genelde Maxwell denklemlerinde ilk sırada yazılır çünkü kendisinin anlattığı şey, diğerlerine göre bir nebze daha sık öne çıkar, çünkü uygulaması elektromanyetik teorinin de dışına çıkar.
Gauss yasasının anlatmaya çalıştığı şey, bir kapalı yüzeyde elektriksel akının sabit kaldığı ve sadece yüke bağlı olduğudur. Yani siz 5C'luk (Coulomb, yük birimidir ve C ile gösterilir) bir yükü, dünyanın merkezine de koysanız, bir araba tekerleğinin içine de koysanız, yüzeyin üstünde elektrik akısı aynı miktarda olacaktır. Bu miktar, dielektrik katsayısı ile ters orantılıdır. Havanın dielektrik katsayısı ϵ0\epsilon_0 ile gösterilir. Bu katsayının değeri 1,5.10−101,5.10^{-10}, göreli belirsizlikle birlikte 8,85418781762039.10−12Faradmetre8,85418781762039.10^{-12} \dfrac{Farad}{metre}'dir. Deneysel ölçümlerle başka ortamların dielektrik katsayıları da hesaplanabilir.
Böylesine güçlü bir yasayı kanıtlamadan önce elbette biraz uygulamalarına bakalım. Elektromanyetik teorideki bir uygulamasına bakacak olursak eğri büğrü bir cisim düşünelim. Bu cismin içindeki bir (x,y,z)(x,y,z) noktası için ρ=−e−(x2+y2)\rho=-e^{-(x^2+y^2)}nCm3\dfrac{nC}{m^3} bir yük yoğunluğu olsun. Bu cismin yüzeyindeki elektrik akısını hesaplamasını okuyucudan istiyoruz. İpucu olarak, toplam yükü bulmak için silindirik koordinatlarda bir integrasyon yapmanız gerektiğini belirtmekte fayda var. Daha sonra, cismin içine gireceğini kabul ettiğimiz bir r0r_0 yarıçaplı bir küre üzerinde Gauss yasasını uygulayabilirsiniz.
Elektromanyetizmadan başka bir uygulama olarak Newton'un kütleçekim kanununda da Gauss yasası kullanılabilir. Kapalı yüzeylerdeki gravitasyonel akı, kütleyle orantılıdır ve ∮∂Σ⟨g→,dΣ→⟩=−4GπM\oint_{\partial\Sigma}\langle \overrightarrow{g},\overrightarrow{d\Sigma}\rangle=-4G\pi M olarak ifade edilebilir. Burada MM kütle, G G gravitasyonel sabittir (6.67408×10−11m3kg−1s−26.67408 × 10-11 m^3 kg^{-1} s^{-2} ) .
Mekanik dersi alan okuyucular, bu hesap yönteminin Newton'un yöntemine kıyasla ne kadar kolay olduğunu anlamışlardır. Gauss yasası, işin içinde akı ve bir kapalı yüzey olduğu herhangi bir sistem için uygulanabilir olduğu için, diğer Maxwell denklemlerinden ayrılır. Şimdi gelelim şık Gauss yasasının şık bir kanıtına.
Gauss Yasasının Kanıtı
Aşağıdaki şekilde, Gauss yasasının geometrisi görülmektedir. Bu şeklin keyfi bir şekil olduğunu varsayalım, çünkü kanıtımızın her kapalı şekile uyması gerekiyor.
Bu kapalı şekilde bir r→\overrightarrow{r} noktasında elektrik alan Coulomb kanunu neticesinde şöyle hesaplanır:
E(r→)=14πϵ0∭Σρr→−ζ→∣∣r→−ζ→∣∣3dζ→\LARGE{E(\overrightarrow{r})=\dfrac{1}{4\pi \epsilon_0}\iiint_{\Sigma}\rho\dfrac{\overrightarrow{r}-\overrightarrow{\zeta}}{||\overrightarrow{r}-\overrightarrow{\zeta}||^3}d\overrightarrow{\zeta}}
Diverjans teoremi kullanılırsa:
div(E→)=1ϵ0∭Σρδ(r→−ζ→)dζ→\LARGE{div(\overrightarrow{E})=\dfrac{1}{ \epsilon_0}\iiint_{\Sigma}\rho \delta(\overrightarrow{r}-\overrightarrow{\zeta})d\overrightarrow{\zeta}}
Burada δ\delta, Dirac delta fonksiyonudur. Dirac delta fonksiyoniyonun özelliklerinden yararlanırsak ,div(E→)=ρϵ0div(\overrightarrow{E})= \dfrac{\rho}{\epsilon_0} sonucuna varırız ve bir kez daha diverjans teoremi kullanılırsa, Gauss yasasının integral formu elde edilir.
Burada kanıtı şık yapan husus, işin içine Dirac delta fonksiyonunun girmesidir. Nasıl girdiğini ise şöyle gösterelim: α→\overrightarrow{\alpha}'nın normunu α\alpha olarak alalım. Bu durumda:
div(α→α2)=1α2∂∂r(1)=0\LARGE{div(\dfrac{\overrightarrow{\alpha}}{\alpha^2})=\dfrac{1}{\alpha^2}\dfrac{\partial}{\partial r} (1)=0}
ve diverjansın integrali:
∬Σdiv(α→α2)dV=∮∂Σ⟨α→α2,dΣ→⟩\LARGE{\iint_{\Sigma} div(\dfrac{\overrightarrow{\alpha}}{\alpha^2}) dV=\oint_{\partial \Sigma}\langle \dfrac{\overrightarrow{\alpha}}{\alpha^2},\overrightarrow{d\Sigma}\rangle}
Burada integrali yarıçapı RR olan küre üzerinde düşünebiliriz. İntegralin sonucu 1 gelecektir. Bu da Dirac deltanın tanımıdır.
Gauss yasasının kanıtında diverjans ve Stokes teoremleri birkaç defa kullanılır. Aralarındaki bu muhteşem ilişki de, bu müthiş yasayı oluşturur. İleri okumalar kısmında Stokes ve diverjans teoremi ve elektromanyetik teori ile ilgili kaynaklar bulabilirsiniz.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 19
- 15
- 7
- 6
- 5
- 4
- 4
- 3
- 3
- 3
- 3
- 1
- B.Thide. Electromagnetic Field Theory. (27 Mayıs 2020). Alındığı Tarih: 27 Mayıs 2020. Alındığı Yer: docente | Arşiv Bağlantısı
- South Carolina University. The Theorems Of Green, Stokes, And Gauss. (27 Mayıs 2020). Alındığı Tarih: 27 Mayıs 2020. Alındığı Yer: South Carolina University | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/12/2024 17:19:07 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8798
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.