Evrim Ağacı

Bir Eksi Neyi Değiştirir ki? Lorentz-Minkowski Uzayı ile Öklid Uzayı Arasındaki Fark Nedir?

Bir Eksi Neyi Değiştirir ki? Lorentz-Minkowski Uzayı ile Öklid Uzayı Arasındaki Fark Nedir? Phys.org
Tavsiye Makale

Daha önce çoğumuz matematik sınavında eksi (-) hatası yapmıştır, ancak bu dünyayı değiştirmemiştir. Belki de eksiyi yanlış yere koyuyorduk fakat Lorentz ve Minkowski eksiyi doğru yere koyunca matematik ve fizik tarihi değişti.

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Lise düzeyinde eğitim görmüş herkes Öklid uzayına aşinadır; çünkü lise geometrisi Öklid'in kurduğu uzaya dayanır. Günümüzde ise geometri çok farklı bir hal almıştır; çok farklı tipte geometriler vardır (küre üzerinde, hiperbol üzerinde, rasyonel boyutlarda vs.).

Bu yazıda bu geometriler arasında rölativiteye (Einstein'ın Görelilik Teorisine) ilham vermiş Lorentz-Minkowski uzayından bahsedeceğiz. Öklid'in kurduğu uzaydan çok farklı olmayıp ikisi de R3={(x,y,z)∣x,y,z∈R}ℝ^3=\text{\textbraceleft}(x,y,z)| x,y,z∈ℝ\text{\textbraceright} kümesi üzerine kurulmuş geometrilerdir, ikisi de Hilbert uzayıdır.

Ancak üzerine cilt cilt kitaplar yazılan ve günümüz fiziğini baştan sona değiştiren Lorentz-Minkowski uzayının; geride kalmış, artık çoğu alan tarafından terk edilmiş Öklid uzayından tek farkı, bir eksi işaretine sahip oluşudur.

Norm Nedir?

Norm uzunluk kavramının genelleştirilmiş halidir, aslında bir fonksiyondur. Örneğin 3'ün uzunluğunu, 3 sayısının 0'a olan uzaklığı olarak tanımlanır. Bu kavramı genele yaymak için norm kavramı kullanılır.

Tanım (Norm):

XX boş olmayan bir küme ve x,y,z∈X,α∈Rx,y,z ∈X, \alpha∈ℝ olsun. ∥.∥:\Vert . \Vert : XX x X→R+∪{0}X→ℝ^+\cup\text{\textbraceleft}0\text{\textbraceright} fonksiyonu:

  1. 0 ">∥x∥>0\Vert x \Vert >0 ve x=0x=0 ise ∥x∥=0\Vert x\Vert = 0
  2. ∥αx∥=∣α∣∥x∥\Vert \alpha x \Vert =|\alpha|\Vert x \Vert
  3. ∥y+x∥≤∥y∥+∥x∥\Vert y+x \Vert ≤ \Vert y\Vert+\Vert x \Vert (üçgen eşitsizliği)

koşulları sağlanıyorsa bu fonksiyona "norm" adı verilir. (X,∥.∥)(X, \Vert . \Vert) uzayına da normlu uzay denir.

Metrik Nedir?

Metrik kelime anlamıyla ölçü demektir. Matematikteki metrik tanımı da, ölçmenin ta kendisidir. Lise matematiğinde ölçme mutlak değer fonksiyonu ile yapılır, metrik ise bir küme üzerinde herhangi bir ölçü tanımlar ve böylece ölçmek kavramını genişletir.

Tanım (Metrik):

XX boş olmayan bir küme ve x,y,z∈Xx,y,z∈X olsun ve d:Xd:XxX→R+∪{0}X→ℝ^+\cup\text{\textbraceleft}0\text{\textbraceright} fonksiyonu

  1. d(x,y)≥0d(x,y)≥0 eşitliğin sağlanması için y=xy=x olmalı.
  2. d(x,y)=d(y,x)d(x,y)=d(y,x)
  3. d(x,y)≤d(x,z)+d(y,z)d(x,y)≤d(x,z)+d(y,z) (üçgen eşitsizliği)

koşullarını sağlıyorsa bu fonksiyona XX üzerine "metrik" denir. (X,d)(X,d) uzayına ise metrik uzay adı verilir.

Biraz irdelenecek olursa, metrik fonksiyonunun bir kümenin iki elemanı arasındaki mesafe kavramını açıkladığı görülebilir. Bu bölümü irdelemek isteyen okuyucular ileri okumalar kısmında metrik uzay ve ölçü teorisi üzerine kaynak bulabilir.

Lorentz uzayı da Öklid uzayı da bir metrik uzaydır. Dahası, ikisi de Hilbert uzayıdır, yani üzerlerinde iç çarpımdan doğan bir metrik vardır. Şimdi de iç çarpım kavramını tanımlayalım. Daha sonra norm, metrik ve iç çarpım üzerine bir kanıtsav vereceğiz.

İç Çarpım

İç çarpım, çarpma işleminin genellemesidir diyebiliriz; ama aslında tam olarak öyle değil.

İç çarpım çarpma işleminin genellemesidir diyebiliriz ama aslında tam olarak öyle değil.
İç çarpım çarpma işleminin genellemesidir diyebiliriz ama aslında tam olarak öyle değil.
İmgur

İç çarpım, bir kümenin kartezyen çarpımının bir fonksiyonudur, neyi tanımladığı onu ne olarak tanımladığınıza göre değişir. Ancak bir fonksiyona iç çarpım diyebilmemiz için aşağıdaki özellikleri sağlamalıdır:

Tanım (İç Çarpım):

XX boş olmayan bir küme x,y,z∈X,α∈Rx,y,z∈X ,\alpha ∈ℝ olsun. :X"><.,.>:X<.,.>:X x X→RX→ ℝ olsun. Bu fonksiyon

  1. ="><x,y>=<y,x><x,y>=<y,x>
  2. = \alpha "><αx,y>=α<x,y><\alpha x,y> = \alpha <x,y>
  3. =+"><x,y+z>=<x,y>+<x,z><x,y+z>=<x,y>+<x,z>

şartlarını sağlıyorsa iç çarpım fonksiyonu adını alır. )">(X,<.,.>)(X,<.,.>) uzayı da iç çarpım uzayı diye adlandırılır.

Önemli not: Yazımızdaki iki uzay da gerçek sayılar üzerine olduğu için burada  kümesini üç boyutlu gerçek uzayın bir alt kümesi olarak alıyoruz. Yukarıdaki üç tanımın da kompleks sayılara genelleştirilmiş versiyonlarını okumak isterseniz İleri Okumalar bölümünden kaynak bulabilirsiniz.

Bu üç tanımı birbirine karıştıracağız ve iç çarpımdan norm, normdan metrik üretebileceğimizi göstereceğiz.

Kanıtsav: )">(X,<.,.>)(X,<.,.>) iç çarpım uzayı ve xx,yy bu uzayın elamanları olsun. }">∥x∥=<x,x>\Vert x\Vert = \sqrt{<x,x>} ile tanımlanan fonksiyon normdur. Ayrıca d(x,y)=∥x−y∥d(x,y)=\Vert x-y \Vert fonksiyonu da bir metriktir.

Kanıt: Yukarıdaki tanımlardan biraz cebirsel manipülasyonlarla görülebilir.

Artık iç çarpımdan bir norm bir normdan da bir metrik uzay doğduğu bilgisine sahibiz. 19. yüzyılın sonlarında Hendrik Lorentz ve Hermann Minkowski bu ilginçliğin farkına vardı ve yeni bir metrik tanımladı: Lorentz-Minkowski metriği. Tabii bu metriği tanımadan önce Öklid metriğini tanımamız gerekiyor.

Üç Boyutlu Öklid Uzayı

Geometrinin babası Öklid, geometrik kavramları inşa ederken ilk olarak uzaklık kavramını tanımlamıştır. Öylesine güçlü bir tanımdır ki hala kullanırız. En ilkel versiyonu ise mutlak değerdir.

Tanım (Öklid Uzayı):

x,y∈R3x,y∈ℝ^3 olsun ve (R3,d)(ℝ^3,d) metrik uzayındaki metrik d(x,y)2:=(∑i=13(xi−yi)2)d(x,y)^2:=(\sum_{i=1}^{3}(x_i-y_i)^2) ile verilsin. Burada x=(x1,x2,x3),y=(y1,y2,y3)x=(x_1,x_2,x_3), y=(y_1,y_2,y_3) olarak tanımlanır. İşte bu metrik uzayı Öklid uzayının ta kendisidir. Yukarıda tanımlanan fonksiyonun metrik olup olmadığına dair ikna olalım. Bir iç çarpım tanımlayalım, aslında bu tanımlayacağımız iç çarpımı, vektör cebrinden biliriz: nokta çarpımı.

Tanım (Nokta Çarpımı):

x=(x1,x2,x3),y=(y1,y2,y3)∈R3x=(x_1,x_2,x_3),y=(y_1,y_2,y_3)∈ℝ^3 olsun , =\sum_{i=1}^{3}x_iy_i">x.y:=<x,y>=∑i=13xiyix . y:=<x,y>=\sum_{i=1}^{3}x_iy_i fonksiyonu bir iç çarpımdır. Yukarıda tanımlanan metriğin bu iç çarpımdan doğduğu da açıktır, dolayısıyla gerçekten bir metrik tanımlamış olduk.

Artık Öklid metriği hakkında bilgilerimiz de var. Lorentz-Minkowski uzayını tanımamamız için hiçbir neden yok.

Lorentz-Minkowski Uzayı

Lorentz ve Minkowski üç boyutlu uzaydaki elemanları uzaysal, zamansal, ışıksal olmak üzere üç kategoriye ayırabileceklerini düşünmüşler ve buna uygun bir metrik tanımlamışlardır. Bu metrik uzayı R−13ℝ_{-1}^3 olarak göstereceğiz, alttaki -1'in anlamı metrik tanımından sonra açık hale gelecek.

Bir metrik doğurmak için önce bir iç çarpım tanımlayalım. x=(x1,x2,x3),y=(y1,y2,y3)∈R−13x=(x_1,x_2,x_3),y=(y_1,y_2,y_3)∈ℝ_{-1}^3 verilsin. Bu uzayda iç çarpımı =x_1y_1+x_2y_2-x_3y_3"><x,y>=x1y1+x2y2−x3y3<x,y>=x_1y_1+x_2y_2-x_3y_3 olarak tanımlayalım. Tabii bunun iç çarpım olduğunu göstermeyi okuyucuya ödev olarak bırakıyoruz. Normu da |">∥x∥2=∣<x,x>∣\Vert x \Vert^2 = |<x,x>| ve metriği de d(x,y)=∥x−y∥d(x,y)=\Vert x-y \Vert olarak tanımlıyoruz. Burada mutlak değerleri koymamızın sebebi artık pozitif tanımlı bir iç çarpımımız yok (bir elemanın normunun negatif olmasını beklemediğimizden dolayı). Pozitif tanımlı bir iç çarpıma sahip olmaması bu uzayı esneten bir etken. Elemanlarının kendileriyle iç çarpımları negatif hatta sıfır olabiliyor hem de elemanın kendisi sıfır olmadan. Bu kavram karmaşasından dolayı yeni yeni eleman tipi tanımları yapılabiliyor.

Uzaysal, Zamansal ve Işıksal Kavramları

Lorentz-Minkowski uzayında tanımlanan iç çarpımdan dolayı Öklid uzayındaki gibi tek tip bir eleman yok. Uzaysal, zamansal ve ışıksal olmak üzere 3 farklı tip var.

  1. >0"><x,x>>0<x,x> >0 ise xx elemanı uzaysaldır.
  2. <0"><x,x><0<x,x> <0 ise xx elemanı zamansaldır.
  3. x≠0x\neq0 iken =0"><x,x>=0<x,x>=0 ise x elemanı ışıksaldır.
Lorentz-Minkowski uzayı
Lorentz-Minkowski uzayı
Research Gate

Bu üç tip eleman sınıfı bizim Lorentz-Minkowski uzayını üç bağımsız bölgeye ayırmamızı sağlar, tıpkı Öklid uzayındaki gibi; ancak bir farkla, bu üç bölgede de uygulanan geometri birbirinden tamamen farklıdır. Örneğin ışıksal elemanlar arasında açı kavramı bulunamazken zamansal ve uzaysal bölgelerde elemanlar arasındaki açı hiperbolik fonksiyonlar ile belirlenir. Bir mega evren içerisinde birbirinden 3 farklı paralel evren düşünelim. Lorentz-Minkowski uzayı böyle çalışır.

Einstein bu uzayı kullanarak içinde yaşadığımız bu uzayda da 3 tip eleman olduğunu (ışıksal, zamansal, uzaysal) düşünerek ve zaman boyutunu da ekleyerek 3 uzaysal boyut+1 zamansal boyut kavramını ortaya atmıştır; bunu 3 boyutlu değil 4 boyutlu Lorentz-Minkowski uzayından esinlenerek yapmıştır (burada değişen bir şey yoktur ve tanımlar aynıdır). Işığı da ne zamansal ne uzaysal bir boyut olarak düşünmüştür. (Işıksal boyut gizemi hala tam olarak çözülememiş bir eleman olarak çözülmeyi beklemektedir.)

Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 1
  • Tebrikler! 3
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 4
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 1
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 01/06/2020 02:47:55 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8731

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Evrim Ağacı %100 okur destekli bir bilim platformudur. Maddi destekte bulunarak Türkiye'de modern bilimin gelişmesine güç katmak ister misiniz?
Destek Ol
Gizle
Güncel
Deri
Balıklar
Lgbt
İlaç
Mit
Maymun
Ay Ve Dünya
Ara Geçiş Türleri
Böcekler
Ölüm
Oyun Teorisi
Yaşlılık
Farmakoloji
Genel Görelilik
Bilim Tarihi
Sağlık Personeli
Jinekoloji
Balıkçılık
Yapay Seçilim
Sağlık Bilimleri
Etimoloji
Önlem
Doğa Yasaları
Kozmik Mikrodalga Arkaplan Işıması (Cmb)
Zehirli Mantar
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Herkes yeteneklidir. İnsanlarda eksik olan, yeteneklerinin götürdüğü karanlık yere gitme cesaretidir.”
Erica Jong
Geri Bildirim Gönder