Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Kara delikler, uzayda yol alan hiçbir madde veya radyasyonun kaçamayacağı kadar büyük kütleçekim alanlarıdır. Aslında kara delikler, ölü yıldızlardır; çünkü büyük kütleli bir yıldızın yakıtı bittiğinde, kendi üzerine çöker ve bir kara delik oluşturur.

Kara Delik Nasıl Oluşur?

Bir yıldızı, devasa bir termonükleer reaktör olarak düşünebilirsiniz. Bu reaktörün yakıtı, yıldızın çekirdeğinde süregelen füzyon tepkimeleridir. Bu tip tepkimede, hidrojen gibi daha küçük atom numarasına sahip elementler, birbirine kaynayarak helyum gibi daha büyük atom numaralı elementlere dönüşürler. Bu kaynaşma sırasında etrafa bol miktarda enerji saçılır. Bu enerji, yıldızın içindeki atomları dışarıya doğru iter.

Ancak atomların etrafa saçılarak yıldızın dağılmamasına neden olan bir diğer kuvvet vardır: kütleçekimi. Atomlar arası içe doğru olan çekim kuvveti, bu füzyon tepkimesinin dışa doğru olan kuvvetini dengeler. Böylece yıldız, hidrostatik denge adı verilen bir denge halinde kalır.

Her ne kadar kütleçekimi (bildiğimiz kadarıyla) tükenebilen bir olgu değilse de, füzyon tepkimesi sonsuz değildir. Yıldızlar, kendilerinden önce gelen gaz ve toz bulutu içinde (nebulalarda) oluşurlar. Nebulalar ise daha önceden ömürlerini tamamlamış yıldızların etrafa saçtıkları gaz ve toz bulutlarıdır. Bu gaz ve toz bulutu içinde belli miktarda hidrojen atomu bulunur; bu atomların sayısı sonsuz değildir. Dolayısıyla bir nebula içinde oluşan yıldızın tüketebileceği hidrojen miktarı da sınırlıdır. İşte bir süre sonra yıldız, hidrojen yakıtlarını tüketir. Böylece füzyon tepkimesi giderek yavaşlar; ancak kütleçekiminin etkisi değişmez. Kütleçekimi ağır bastıkça, hidrostatik denge bozulmaya başlar ve yıldız kendi içine doğru çökmeye başlar.

Bir süpernova
Bir süpernova
YouTube

Yıldızın gövdesini oluşturan ağır elementler içeri doğru çökmeye başladıkça, atomların etrafındaki elektronlar birbirlerine fazlasıyla yaklaşır ve diğer temel fiziksel kuvvetlerin etkisi ortaya çıkar: Bu atomlar birbirlerini itmeye başlarlar. Bu itiş kuvveti bir noktada kütleçekimine fazlasıyla üstün gelir ve yıldız muhteşem bir güçle patlar! Bu olaya süpernova, hatta daha büyüklerine hipernova adı verilir. Bu sırada etrafa bol miktarda enerji ve atom saçılır. İşte bu atomlar uzaya dağıldıkça yeni nebulalar oluşur. Bu nebulalar, yepyeni yıldızların kütleçekimi etkisiyle doğmasını sağlayan doğumevleri gibidir.

Fakat patlayan yıldızdan geriye çekirdek içinde sıkışmış şekilde madde kalır. Bunlar kimi zaman daha farklı sınıfta yıldızlar oluşturur. Ancak kendi üzerine çöken yıldızın kütlesi belirli bir sınırın üzerindeyse, kara delikler gibi akıl almaz yoğunlukta gök cisimleri oluşur. İşte bu büyük kütleli cisimler, Evren'i oluşturan uzay-zaman dokusunu normal kütleli cisimlerden çok daha fazla bükerler. Bunu, gergin bir çarşaf üzerine 500 kilogramlık bir bilye bıraktığınızda ne olacağını hayal ederek görselleştirebilirsiniz. Çarşaf müthiş miktarda bükülecektir!

Kara Deliklerin Yoğunluğu

Bir kara deliğin yoğunluğunu şöyle düşünün: Güneş'ten onlarca, yüzlerce, binlerce, hatta kimi zaman milyonlarca ve milyarlarca kat büyük bir kütleyi hayal edin. Bu kütlenin hepsini, İstanbul'un bir ucundan diğer ucuna kadar olan mesafede bir hacme sıkıştırdığınızı düşünün.

Ortaokul veya lise bilgilerinizden hatırlarsınız: Yoğunluk, kütlenin hacme bölümüyle elde edilir. Dolayısıyla kütle ile yoğunluk doğru orantılıdır; hacim ile yoğunluk ise ters orantılıdır. Kara delikler gibi devasa gök cisimlerinin kütlesi aşırı büyük, hacimleri aşırı küçüktür. Bu, muazzam bir yoğunluk demektir.

Bir kara deliğin olay ufku
Bir kara deliğin olay ufku
CNet

Bu kadar yoğun bir kütlenin uzay-zaman dokusundaki etkisi, akıl almaz boyutta bir bükülmedir. Buna kütleçekim kuyusu denir. Bu kuyu öylesine hızlı derinleşir ki, ışığın hızı bile bu derinleşmeyi alt edemez. Bu nedenle o meşhur söz ortaya çıkar: Kara delikler öylesine güçlü bir çekim kuvvetine sahiptir ki, ışık bile bu çekim kuvvetinden kaçamaz.

İşte kara deliğin etrafında bulunan, ışığın kaçamadığı bölgenin sınırına olay ufku adı verilir. Olay ufku, bir kara deliğin kendisinden ziyade, en belirgin etki alanını ifade etmek için kullanılan bir terimdir. Olay ufku, kara deliğin kendi çapından kat kat büyük olabilir.

Ancak bütün kara delikler aşırı yüksek yoğunluğa da sahip değildir. Bu konuyla ilgili bir yazımızı buradan okuyabilirsiniz.

Kara Delikler Neden Siyahtır?

Bir cismin rengine karar veren şey, üzerine düşen ışığın hangi dalga boylarının geri yansıdığıdır. Gözümüze (veya teleskoplarımıza) ulaşan ışığın dalga boyu, o cismin renk bileşenlerini oluşturur. Örneğin bir yaprağın yeşil olma nedeni, üzerine düşen tüm dalga boyları arasından yeşile denk gelen dalga boyunu en fazla geri yansıtıyor olmasıdır. Siyah renginin ise (siyah ışık ile karıştırılmamalıdır) ya ortamda hiçbir ışığın olmaması, ya da cisme ulaşan tüm görünür ışığın soğrulması ile oluşur.

Fakat karadeliklere ulaşan ışık, geri yansımaz. Yansıyamaz. Kütleçekim kuyusu öylesine büyüktür ki, ışık karadeliğin ufkundan dışarı çıkamaz. Bu nedenle bir kara deliğe baktığınızda, gözünüze herhangi bir ışık ulaşmadığı için karadek sizde tek bir görsel izlenim verir: o da siyahtır. Yani aslında gördüğünüz şey siyah renge sahip bir cisim değildir, siz hiçbir şey göremediğiniz için gördüğünüzü düşündüğünüz şeyi siyah olarak algılarsınız. İşte bu yüzden Kara delikler gözlemciye hiçbir ışık yansıtmadıkları için, simsiyahtırlar. Burada bir parantez açmata da fayda var. Sanıldığı aksine Hawking Işıması ya da Hawking Radyasyonu, teorik olarak görünür dalgaboyu dışında ışıma yapacağı için bir renk oluşturmayacaktır. Yani içerisinde ışıma kelimesi geçiyor diye Hawking Işımasının Kara Deliğe bir bir renk vereceği yanılgısına düşmemek gerekir.

Ancak dikkatli gözlemler sonucunda kara delikleri gözlemek mümkündür. İlk etapta Hubble Teleskobu tarafından kara deliklerin dolaylı etkileri gözlenmiş, bu devasa kütleçekim kuyuları etrafında yıldızların tuhaf hareketler sergilediği tespit edilmiştir. Daha sonra, 2016 yılında kara deliklerin birbirine çarpması sonucunda oluşması gerektiği düşünülen kütleçekim dalgaları ilk defa tespit edilmiştir; böylece kara deliklerin varlığının deneysel olarak doğrulanması yönünde önemli bir adım atılmıştır. Nihayet, 2019 yılında bilim insanlarının oluşturmayı başardığı ilk kara delik fotoğrafı, kara deliklerin var olduğunun ve Görelilik Teorisi'nin öngörülerinin isabetliliğinin en nihai kanıtı olmuştur.

İlk defa görüntülenen, M87 Galaksisi'nin merkezindeki kara delik
İlk defa görüntülenen, M87 Galaksisi'nin merkezindeki kara delik
EHT

Bir Kara Delik Oluşturacak Yıldız Ne Kadar Büyük Olmalıdır?

Her kara delik, bir yıldızın yakıtını tüketerek kendi üzerine çökmesi sonucu oluşmaz. Örneğin çok büyük kütleli cisimlerin uzayda birbirine çarpması sırasında da kara delikler oluşabilir. Ancak bildiğimiz en yaygın kara delik oluşum mekanizması, yıldızların çökmesi sonucu oluşan kara deliklerdir (bu tarz kara deliklere collapsar da denir).

Ancak her yıldızın ölümü kara delik oluşturacak kadar vahşi değildir. Bir yıldızın ölümü sırasında bir kara delik oluşturabilmesi için belli bir kütlenin üzerinde olması gerekir. Bu kütle sınırına Chandrasekhar Limiti adı verilir. Bu limit, kabaca 1.4 Güneş Kütlesi kadardır; ancak çoğu durumda 2 ve hatta 3 Güneş Kütlesi olarak kabul edildir. Yani bir yıldızın kara delik oluşturma potansiyelinin oluşabilmesi için, ölümü sırasında Güneş'imizden en az 1.4 kat büyük olması gerekmektedir. Bu, kabaca, 2.784.488.001.602.417.000.000.000.000.000 kilogram veya 2.7 nonilyon kilograma denk gelir.

Güneş'ten 3 kattan daha düşük kütleye sahip yıldızlar öldüklerinde bembeyaz bir ışık küresine dönüşebilirler. Bu tarz bir ölümden geriye kalan yıldıza beyaz cüce adı verilir. Beyaz cücelerin oluşması sırasında, atasal yıldızın dış kısımları uzaya saçılır ve gezegensel nebula adı verilen gaz ve toz bulutu oluşur. Buralar, gezegenlerin daha sık oluştuğu bölgelerdir.

Bu konuyla ilgili daha detaylı bir yazımızı buradan okuyabilirsiniz.

Bir Kara Deliğin İçine Düşersek Ne Olur?

Kara deliklerin içinde ne olduğunu veya tam olarak ne tip süreçler yaşandığını henüz tam olarak bilemiyoruz. Bu konuyla ilgili olarak şu videomuza göz atabilirsiniz.

Buna rağmen, Görelilik Teorisi'ni kullanarak kara delikler gibi yüksek kütleçekim kuvvetine sahip gök cisimlerinin yakınlarında neler olması gerektiğini kestirmemiz mümkündür.

Spagettifikasyon olayını gösteren bir çizim
Spagettifikasyon olayını gösteren bir çizim
NPR

İlk olarak, bir kara deliğin içine düşen bir astronotun deneyimlediği şeyler, onun düşüşünü dışarıdan güvenle izleyen birininkinden fazlasıyla farklı olacaktır. Kara deliğin muazzam kütleçekim kuvvetine fazlasıyla yaklaşan astronot, gelgit kuvvetleri denen bir kuvvetin etkisi altında kalacaktır. Yani vücudunun farklı kısımları, farklı miktarda kütleçekim kuvveti deneyimleyecektir. Örneğin bir karadeliğe balıklama (kafa önde) dalan bir astronotun kafasındaki çekim kuvveti, ayaklarındaki çekim kuvvetinden çok daha büyük olacaktır. Buna bağlı olarak bir spagetti gibi uzayacaktır. İşte Stephen Hawking tarafından popülerleştirilen bu kavrama spagettifikasyon adı verilmektedir.

Greenwich Kraliyet Gözlemevi tarafından çocuklar için hazırlanan ve karadelikleri konu edinen bu harika videoda, karadeliklerle ilgili modern bilimin elindeki farklı teorileri inceleyeceğiz ve ne anlama geldiklerini kısaca ve basit olarak göreceğiz.

Eğer içine düşülen kara delik bir süperkütleli kara delik ise, gelgit kuvvetlerinin etkisi çok daha ufak ve baş edilebilir olmaktadır. Interstellar filminde gösterilen Gargantua kara delik, bu tarz bir kara delik olduğu için meşhur sahneler oldukça isabetli olmaktadır. Interstellar ile ilgili bilimsel bir analizimizi buradan okuyabilirsiniz.

Interstellar filmindeki Gargantua
Interstellar filmindeki Gargantua
Reddit

Kütlesinden bağımsız olarak bir kara deliğin sebep olduğu en önemli etki, zaman genişlemesi denen kavramdır. Bir astronotun kara deliğe düştüğünü gözleyen bir dış gözlemci, astronotun kara deliğin içine düşüşünü asla göremez; sanki sürekli bir düşme halindeymiş gibi görür. Çünkü zaman algımızı yaratan, bir ânı diğer ândan ayıran unsurların başında gözümüze gelen ışığın sıralı doğası gelir. Hareket eden bir cisimden gelen ışık da, farklı uzay-zaman bölgelerinden geçerek gözümüze ulaşır ve "hareket algısı" yaratır.

Ancak kara deliğin kütleçekim kuvvetinden ışığın bile kaçamadığını söylemiştik. Bu durumda olay ufkuna ulaşan bir astronotu izleyen bir gözlemci, astronotun olay ufkunda donakaldığını görecektir. Çünkü artık hareket bilgisini taşıyan fotonlar gözüne asla ulaşamaz.

Kara Deliklerden Kaçmak Mümkün mü?

Bir kara deliğin içinde ne olduğunu bilmediğimiz için, bu soruya yanıt vermek de pek kolay değil. Ancak bazı teorisyenler, kara deliklerin aslında solucan deliği adı verilen bir uzay-zaman tünelinin parçası olduğunu düşünmektedirler. Solucan delikleri, Evren'in farklı kısımlarını birbirine bağlayan uzay-zaman tünelleri gibi düşünülebilir. Bu tünellerin bir ucunda kara delikler (her şeyi yutan cisimler), diğer ucunda ise ak delikler (her şeyi kusan cisimler) bulunduğu düşünülmektedir. Ak deliklerle ilgili bilgiyi buradan alabilirsiniz.

Fakat kara deliklerin aksine, solucan deliklerinin varlığı teorik olarak bile henüz tam olarak gösterilememiştir. Hatta fikri ilk olarak ileri süren fizikçiler, bir solucan deliğinin stabil olarak "açık" kalabilmesi için gereken enerjinin aşırı büyük olduğunu göstermişlerdir. Bu nedenle bu fikir, spekülatif bir düşünce olarak varlığını korumaktadır.

Kara Delikler Ölür mü?

Kara deliklerin sadece her şeyi yutan; ancak etrafa hiçbir şey saçmayan bir yapı olmasından ötürü hiçbir zaman ölmeyeceği düşünülmüştür. Sonuçta bir kara deliğin ölmesi için bir neden yok gibi gözükmektedir. Bu düşünce, büyük fizikçi Stephen Hawking ve Jacob Beckenstein'ın çalışmaları ile tamamen değişmiştir.

Kara delikler, etraflarına Hawking Işıması adı verilen bir ışıma saçmaktadır. Bu ışıma nedeniyle kara delikler, teorik olarak yeterince süre tanındığında buharlaşma ismi verilen bir yolla yok olacaktır. Yapılan hesaplamalar, kara deliklerin yok olması için gereken sürenin on veya yüz milyarlarca yıl düzeyinde olduğunu göstermektedir. Evren'imizin 13.8 milyar yıl yaşında olduğu düşünülürse, bu sürenin uzunluğu daha iyi anlaşılabilir.

Ancak bu buharlaşma, kara deliklerle ilgili ilginç bir sorunu doğurur: Kara delik bilgi paradoksu. Eğer kara delikler, hesaplamaların gösterdiği gibi fiziksel bilgiyi tamamen yok edebilen cisimlerse, birden fazla fiziksel durumu tekil bir duruma indirgeme özelliğine sahipler demektir. Bu, modern fiziğin temellerine aykırı olduğu için sorunludur; çünkü bir fiziksel sistemin dalga fonksiyonunun belli bir zamandaki değeri, bir diğer zamandaki değerini belirleyebilir olmalıdır. Bu durumda kara delikler içindeki bilgiye ne olduğunu, kara deliğe düşmeden önceki halinden çıkarsayabilmemiz gerekir. Fakat bu durumda da, kara delikler bilgiyi (veya fiziksel maddeyi) gerçek anlamıyla yok etmiyor demektir. Bu paradoks, halen çözülmeyi bekleyen bir soru işaretidir.

Kara Deliklerin Tarihi

Kara deliklerin kısa bir tarihini şu şekilde sunmak mümkündür:

  1. 1783'te John Michell, bazı yıldızların çekim gücünün, ışığın kendilerinden kaçamayacak kadar büyük olabileceğini ileri sürdü ("karanlık yıldızlar").
  2. 1796 yılında Laplace, tamamen bağımsız olarak Michell ile aynı sonuca ulaştı.
  3. 1854 yılında Riemann, genel uzayın eğimi kavramını geliştirdi.
  4. 1916 yılında Einstein, kütleçekiminin geometrik teorisini geliştirerek Newton'un büyük oranda tamamlanmamış teorisinin yerini aldı.
  5. 1916 yılında Karl Schwarzschild, Einstein'dan 3 ay sonra yayınladığı makalesinde, "siyah yıldız" çözümünü keşfetti.
  6. 1931 yılında Chandrasekhar, soğuk bir yıldızın maksimum kütlesini hesapladı.
  7. 1939 yılında Oppenheimer ve Synder, tüm termonükleer enerji kaynaklarının tükenmesi sonrasında yeterince büyük bir yıldızın sonsuza kadar kendi üzerine çökeceği sonucuna vardı.
  8. 1960'larda Schwarzschild'in çözümü nihayet anlaşıldı: Dönmeyen saf uzayda oluşan tekillik ve bir olay ufku... Kerr tarafından genişletilen çözüme rotasyon (dönüş) özelliği de eklendi. Newman ise çözüme "yük" kavramını ekledi.
  9. 1970 yılında Cygnus X-1 tarafından kara delik olmaya aday ilk gök cismi tespit edildi. Bu bir nötron yıldızı idi ve X-ışını saçıyordu.
  10. 1994 yılında Hubble Teleskobu bazı yıldızların hızıyla ilgili veri toplarken, sadece süperkütleli kara deliklerin varlığıyla açıklanabilecek bazı galaksiler keşfetti.
  11. 2016 yılında ilk defa birbiriyle çarpışan kara delikler, kütleçekim dalgaları kullanılarak tespit edildi.
  12. 2019 yılında ise, M87 galaksisinin merkezinde bulunan, kütlesi Güneş'ten 6.5 milyar kat fazla olan bir karadeliğin görüntüsü, 8 ayrı radyo teleskoptan toplanan verilerle oluşturuldu. Kara delik, 16 ışık saati (120AU) genişliğinde.

Aslında bazı bilim insanları kara delik fikrinden hiç hoşlanmamıştı. Bunlardan birisi de Albert Einstein'dı. Çünkü ilk etapta bu devasa kütleli, uzay-zamanı sonsuz düzeyde büken cisimlerin nasıl oluştuğu bilinemiyordu. Ancak sonradan yapılan çalışmalar, kara deliklerin oluşum mekanizmalarını netleştirdi. Öncelikle teorik verilerden yola çıkarak geliştirilen kara delik fikri, sonrasında dolaylı gözlemlerle bol miktarda destekçi topladı ve astrofizik camiasında kısa sürede bir görüş birliği oluştu.

Öyle ki, kendi geliştirdiği denklemlerin karadelikleri teorik olarak doğruladığını gören Einstein, başta sevmediği fikri veri ışığında kabul etmek durumunda kaldı. Einstein'ın geliştirdiği Görelilik Teorisi'ne göre, çok miktarda cisim çok ufak bir noktada odaklandığında, uzay-zaman düzlemi aşırı miktarda bükülerek, hiçbir şeyin kaçamayacağı bir kapan haline geliyor. İşte buna "kara delik" adını veriyoruz.

Günümüzde halen karadeliklerle ilgili bilinmeyen çok fazla detay mevcut. Örneğin bir cisim karadeliklerin içine düştüğünde ne oluyor? Karadeliklerin Evren'in oluşumunda bir rolü olabilir mi? Bu sorular, astrofizik ve astronomi bilimleri tarafından halen araştırılan aktif çalışma sahalarıdır.

Bu İçerik Size Ne Hissettirdi?
  • 4
  • 1
  • 4
  • 1
  • 0
  • 3
  • 0
  • 3
  • 0
  • 0
  • 0
  • 0
Kaynaklar ve İleri Okuma
  • H. Site. How Is A Black Hole Created?. (2019, Nisan 13). Alındığı Tarih: 13 Nisan 2019. Alındığı Yer: Hubble Site
  • G. Halevi. Why Don't Stars Collapse On Themselves?. (2017, Ağustos 29). Alındığı Tarih: 13 Nisan 2019. Alındığı Yer: Quora
  • NASA. Black Holes. (2019, Nisan 13). Alındığı Tarih: 13 Nisan 2019. Alındığı Yer: NASA
  • Wikipedia. Black Hole Information Paradox. (2019, Mart 04). Alındığı Tarih: 13 Nisan 2019. Alındığı Yer: Wikipedia

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 19/08/2019 01:31:31 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/7748

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Soru Sorun!
Öğrenmeye Devam Edin!
Evrim Ağacı %100 okur destekli bir bilim platformudur. Maddi destekte bulunarak Türkiye'de modern bilimin gelişmesine güç katmak ister misiniz?
Destek Ol
Gizle
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Okumak hepimizi göçmen yapar: Hepimizi evimizden uzaklaştırır; ancak aynı zamanda hepimize, her yerde evler bulur.”
Jean Rhys
Geri Bildirim Gönder