Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Genel Görelilik: Einstein Alan Denklemleri

Genel Görelilik: Einstein Alan Denklemleri
6 dakika
1,607
  • Özgün
Tüm Reklamları Kapat
Madde uzay-zamana nasıl büküleceğini, uzay-zaman da maddeye nasıl hareket edeceğini söyler.-J. A. Wheeler

Einstein 1915 yılında yılında yaptığı yayınla, enerji-momentum ile uzay-zaman eğriliği arasında bir ilişki olduğunu ortaya koydu. Yani daha basit bir ifadeyle, madde ile geometri arasında sıkı bir ilişki bulunuyordu. Wheeler'ın sözünde olduğu gibi; madde, uzay-zamanı büküyor ve bükülmüş uzay-zaman da maddeye jeodezikler boyunca hareket etmesi gerektiğini söylüyordu. Bugün bunu ifade eden denklem setine, Einstein Alan Denklemleri diyoruz.

Einstein Alan Denklemleri

Denklemin sol tarafında yer alan Gik ifadesi, Einstein tensörünü ifade ederken, sağ tarafta yer alan Tik ifadesi stres-enerji (enerji-momentum) tensörünü ifade eder. Yani denklemin sol tarafı geometriyi, sağ tarafı ise maddeyi ifade etmektedir. Denklem sıklıkla aşağıdaki gibi yazılır.

Tüm Reklamları Kapat

Burada sol taraf Gik'nın açık halini ifade eder. Rik terimi Ricci eğrilik tensörü, gik metrik tensör, Reğrilik skaleri, Λ (lambda) ise kozmolojik sabittir. Bazen Einstein alan denklemlerinin kozmolojik sabitsiz halini de görebilirsiniz.

Burada i ve k alt indisleri, kaç boyutlu uzayda-zamanda çözüm yaptığınıza göre değerler alır (bazen ν ve μ ile de gösterilir). Sıklıkla çözümler dört boyutlu uzayda-zamanda ele alınır ve bunlardan biri zaman, diğer üçü ise uzay bileşenidir. Örneğin kartezyen koordinatlarda (t,x,y,z) koordinatları kullanılır. Bu da i ve k'nın (0,1,2,3) değerlerini alacağını gösterir (bazı yerlerde (1,2,3,4) şeklinde de görebilirsiniz). Bazı kitaplarda notasyon farklı olsa da sıklıkla 0 koordinatı t'ye karşılık gelir, biz de öyle alacağız. Burada bir diğer dikkat edilmesi gereken nokta, zaman bileşeninin işaretinin uzaya göre zıt işaret aldığıdır. Yani eğer (0,1,2,3) notasyonunu kullanıyorsak işaret (-,+,+,+) ya da (+,-,-,-) olarak alınır.

Tüm Reklamları Kapat

Tek bir denklem gibi görünen bu denkleme neden Einstein alan denklemleri dendiğini indislerden anlayabilirsiniz. i ve k için dörder tane seçenek olduğundan, 4x4=16 farklı denklem olduğu ortaya çıkar. Bunları aşağıda daha açık bir şekilde görebilirsiniz.

Fakat bunlardan altısı birbirinin aynıdır. Yani toplamda 16 denklem olması gerekirken, simetriden ötürü (matriste üst üçgenseli düşünün), Einstein alan denklemlerinde yalnızca 10 tane farklı bileşeni bulunur. Seçtiğinizi metriğe göre ise, elde ettiğiniz denklem sayısı azalır. Örneğin Schwarzschild çözümünde yalnızca 4 tane denklem ortaya çıkar. Bazen i ve k alt indisleri sayılar yerine, koordinatları ifade eden terimlerle de kullanılabilir. Örneği R00 yazmak yerine, Rtt yazmak tercih edilebilir. Notasyon tercihi size kalmış. Bazen bunlar bir takım kurallara göre kullanılır.

Einstein Alan Denklemlerinin Çözümü

Aslında Einstein alan denklemleri, bize bir diferansiyel denklem seti verir. Mesele bu diferansiyel denklem setini çözerek, tıpkı Newton'ın F=ma'sında olduğu gibi, bir hareket denklemi elde etmektir. Yani Einstein alan denklemlerinin çözümünden, çözümü yapılan geometride maddenin davranışının ne olması gerektiği bulunur. Örneğin boş bir uzayda, dönmeyen, küresel simetrik, yüksüz bir karadelik için Schwarzschild çözümünü elde ederiz. Bu da böyle bir karadeliğin etrafındaki uzay-zamanı nasıl etkilediğini bulmamızı sağlar.

Evrim Ağacı'ndan Mesaj

Elde edilen çözüm, koordinat tercihinizden bağımsızdır. Yani kartezyen koordinatları kullanarak yaptığınızda elde ettiğiniz çözüm ile, küresel koordinatları kullanarak yaptığınızda elde ettiğiniz çözüm aynıdır. Dilerseniz başlangıçta koordinat dönüşümü yaparsınız, dilerseniz sonuçta dönüşüm yaparsınız. Aynı sonucu verecektir. Yalnızca burada seçtiğiniz metriğin matrisinin daima tersinin bulunuyor olması gerekir.

Einstein Alan Denklemlerinin Elementleri

Ricci Eğrilik Tensörü

Einstein alan denklemlerinde yer alan Rik, Ricci eğrilik tensörü, aşağıdaki şekilde ifade edilir.

Burada Rlijk Riemann tensörüdür ve Rik'nın hesaplanabilmesi için Rjijk'nın hesaplanması gerekir. Burada i ve k değerleri bizim seçimimiz iken j ve p değeri seçimimizde yoktur. Bunun hesaplanabilmesi için j değerlerinin tümü için toplam alınır.

Bu hesaplandığında seçilen i ve k'lar için Rik hesaplanmış olur. Burada oldukça fazla parametre bulunması sebebiyle fazla miktarda sonuç olduğu görülür. i, j ve k değeri için dörder değerden toplamda 64 ifade gelir. Ayrıca her birinin içerisinde dört değer daha alan p değeri üzerinden toplam alınmalıdır, bu da 256 değer yapar. Fakat bunların çoğu sıfırdır. Özellikle Schwarzschild ve Friedmann çözümlerinde hatta çoğunda 10 bileşenin tamamı bulunmaz. Genellikle Rtt, Rrr, Rθθ, RΦΦ bileşenleri sıfırdan farklıdır. Böyle bir durumda i=k olduğu görülür, bu da hesabı tekrar 64 parametreye düşürür. Fakat, dönen bir karadelik için tanımlı metrik olan Kerr metriğinde, dönmenin sebep olduğu açılar da devreye girerek bu sayıyı artırır. Bu yüzden metriğin davranışını anlamak, hesabı anlamak adına önemlidir.

Christoffel Sembolü

Yukarıda Riemann tensöründe yer alan ifade olan Gamma ikl ise Christoffel sembolüdür ve kabaca metrik bağlantıyı inceler. Bağıntısı aşağıdaki gibi verilir.

Tüm Reklamları Kapat

Burada m değeri üzerinden toplam alınır. Her bir parametre eğer tek tek denenirse; i, k, l ve m değerlerinin her biri için 4 değer bulunduğundan, toplamda 4x4x4x4=256 tane Christoffel sembolünün hesaplanması gerektiği görülür. Fakat bunların da bazıları simetriktir ve aynı değeri verir (örneğin k ve l'nin yerini değiştirirseniz ifade değişmez). Ayrıca seçilen metriğe göre, çoğunun değeri sıfır çıkacaktır. Örneğin metriğiniz sadece Rtt, Rrr, Rθθ, RΦΦ değerlerini barındırıyorsa, gim değerinde i=m olmalıdır. Bu da Christoffel sembölünde i=m için çözüm yapmanızın yeterli olduğunu, gerisinin zaten sıfır çıkacağını gösterir. Bu gibi çıkarımlarla yapılan hesap sayısı oldukça aşağıya çekilebilir.

Özetle göz korkutuyor gibi görünse de çoğu değer bu şekilde sıfır çıkmaktadır. Basit yaklaşımlarla ve dikkatli bir hesaplamayla diferansiyel denklem setine ulaşılabilir. Mesele diferansiyel denklemleri çözebilmektir ya da seçtiğiniz metriğin zorluğuna göre bunu düzenleyebilmektir. Elbette günümüzde bunları elle tek tek çözmek yerine, Mathematica gibi programlama dilleriyle kolaylıkla gerekli denklemlere ulaşabiliyoruz. Fakat bunlar işin sadece hamallık kısmını ortadan kaldırıyor.

Ricci Eğrilik Skaleri

Eğrilik skaleri ise, adından anlaşılacağı üzere herhangi bir vektörel bileşene sahip değildir, yani sıfırıncı mertebeden bir tensördür. Birinci mertebeden bir tensörün ise bir vektör olduğunu hatırlayın. Eğrilik skaleri aşağıdaki gibi ifade edilir.

Metrik Tensör

Metrik tensör (ya da basitçe metrik), seçtiğiniz uzay-zaman koordinatlarının geometrik yapısını ifade eder. Daha basit bir deyişle, tanımladığınız uzay-zamanda iki nokta arasındaki geometrinin nasıl olduğunu anlatır. Örneğin Schwarzschild metriği aşağıdaki gibi tanımlıdır.

Tüm Reklamları Kapat

Bu metrikte verilen uzay-zamanda iki nokta arasındaki ayrılığın (ds); dtdt, drdr, dθdθ ve dΦdΦ bileşenleri ile ifade edildiğini görüyoruz. Dolayısıyla metrik tensörümüz aşağıdaki gibi olur.

Metrikte dtdr gibi bir ifade olmadığından g01 0'a eşittir. Yalnızca köşegen elemanlarının sıfırdan farklı olduğunu görüyoruz. Fakat bu her zaman böyle değildir. Örneğin Kerr metriğinde dtdΦ terimi de bulunur, yani g03'ün bir değeri vardır.


Hazırlayan:Ögetay Kayalı

Referanslar
1. Kadri Yakut, Ege Üniversitesi Astronomi Bölümü, Extragalactic Astronomy ders notları
2. Misner, Thorne & Wheeler, Gravitation, Wiley.
3. Marko Vojinovic, Schwarzschild Solution in General Relativity
<http://gfm.cii.fc.ul.pt/events/lecture_series/general_relativity/gfm-general_relativity-lecture4.pdf>
4. Heinicke & Hehl (2015). Schwarzschild and Kerr Solutions of Einstein's Field Equations
<https://arxiv.org/pdf/1503.02172.pdf>

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
0
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 0
  • Tebrikler! 0
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 01/03/2024 13:37:04 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/12792

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Çocuklar İçin Bilim
Araştırma
Böcek Bilimi
Kemik
Diş Sorunları
Teknoloji
İlişki
Goril
Manyetik
Kromozom
Biyocoğrafya
Ateş
Antropoloji
Yemek
Yaşlanma
Avcı
Beyaz
Ergen
Grip
Parçacık
Albert Einstein
Doğa Gözlemleri
Uçma
Enzim
Eşey
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Kafana takılan neler var?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Youtube
Bir Beyin Cerrahının Gözünden BEYNİN İÇİ! | Mehmet Çağlar Berk (Anadolu Sağlık Merkezi Hastanesi)
Bir Beyin Cerrahının Gözünden BEYNİN İÇİ! | Mehmet Çağlar Berk (Anadolu Sağlık Merkezi Hastanesi)
Ötanazi: Ölüm Hakkımız Var mı? | Taner Beyter (Öncül Analitik Felsefe)
Ötanazi: Ölüm Hakkımız Var mı? | Taner Beyter (Öncül Analitik Felsefe)
Kediniz Sizi Nasıl Seks Makinasına Çeviriyor?
Kediniz Sizi Nasıl Seks Makinasına Çeviriyor?
Siz Ne Kadar Ortalama İnsansınız? | Galton Panosu!
Siz Ne Kadar Ortalama İnsansınız? | Galton Panosu!
Bu Motor, Nasıl Havada Asılı Durabiliyor?
Bu Motor, Nasıl Havada Asılı Durabiliyor?
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Ö. Kayalı. Genel Görelilik: Einstein Alan Denklemleri. (26 Eylül 2020). Alındığı Tarih: 1 Mart 2024. Alındığı Yer: https://evrimagaci.org/s/12792
Kayalı, Ö. (2020, September 26). Genel Görelilik: Einstein Alan Denklemleri. Evrim Ağacı. Retrieved March 01, 2024. from https://evrimagaci.org/s/12792
Ö. Kayalı. “Genel Görelilik: Einstein Alan Denklemleri.” Edited by Ögetay Kayalı. Evrim Ağacı, 26 Sep. 2020, https://evrimagaci.org/s/12792.
Kayalı, Ögetay. “Genel Görelilik: Einstein Alan Denklemleri.” Edited by Ögetay Kayalı. Evrim Ağacı, September 26, 2020. https://evrimagaci.org/s/12792.
ve seni takip ediyor
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close