Atom Teorisinin Evrimi - 2: Rutherford ve Sonrası (20. Yüzyıldan Günümüze)

Yazdır Atom Teorisinin Evrimi - 2: Rutherford ve Sonrası (20. Yüzyıldan Günümüze)
Bir önceki yazımızda Thales'ten başlayarak, atoma dair yaklaşım, hipotez ve teorilerin tarihini 20. Yüzyıla kadar taşımıştık. Burada ise kaldığımız yerden devam edeceğiz.


Çekirdeğin Keşfi: Rutherford'un Çekirdekli Atom Modeli

19. Yüzyılın sonlarında fizikçiler birkaç küçük detayın ötesinde bilinmeyenlerin kalmadığı, fiziğin sonuna gelindiği gibi bilimin karakteriyle uyuşmayan bir düşünceye kapıldılar. Aslında bunda kısmen haklı da olabilirlerdi. Galilei ve Newton’un mekanik alanındaki araştırmalarıyla başlayan bilimsel ilerleyiş süreci yaklaşık üç yüz sene öylesine yoğun geçmişti ki bilim insanları bile ortaya çıkan gerçekliklerin haricinde doğanın herhangi bir saklı yüzünün kalmadığını düşünmekte haklıydılar. Fakat elbette, işin aslı böyle değildi. Bunun böyle olmadığını gösterecek kişilerden biri de Cambridge’te Thomson’ın Cavendish Laboratuvarında asistanı olarak çalışan Ernest Rutherford idi. Rutherford, Thomson’ı elektronun keşfine götüren çalışmaları sırasında onun yanında bulunmuş, yardımcısı olarak çalışmıştı. Şimdi hocasından aldığı bilim meşalesini daha ilerilere taşıyacaktı.


Ernest Rutherford (30 Ağustos 1871 - 19 Ekim 1937)


Yüzyılın sonunda Marie ve Pierre Curie uranyum ve toryum elementleri üzerinde çalışmaya başladılar ve kısa zamanda bu elementlerin fiziğe yeni bir bakış açısı getirmeye gebe olduklarını anladılar. Uranyum ve toryumun kendiliğinden bozunma özelliği gösterdiklerini keşfettiler ve bu olaya “rakyoaktivite” ismini verdiler. Daha sonrasında polonyum ve radyumun da böyle bir özelliği olduğunu gözlemlediler. Radyoaktivite atomun keşfi sürecinde fizikçilerin çok işine yarayacaktı. 

Bu anlamda Rutherford fiziğin yeni alanıyla ilgilenmeye başladı. Rakyoaktivite özelliği gösteren rakyoaktif atomların bozunma süreci birtakım ışımalar yaparak gerçekleşiyordu. Rutherford bu ışımaları kategorize etti. Işınları bir manyetik alanın içerisine gönderdiğinde kimisinin katot ışınlarıyla (elektronlarla) aynı yönde kimisininse ters yönde saptığını gözlemledi. Ters yönde sapma gösteren ışımaların elektrik yüklerinin katot ışınlarıyla zıt olması gerekirdi ve bu ışımaya alfa ismini verdi. Aynı yönde sapanlara ise beta dedi. Bir de manyetik alandan hiç etkilenmeyen ışıma türü vardı. Bunun yüksüz olacağını düşündü ve gama ismini uygun gördü.


Alfa ışınları kağıt ya da eliniz gibi maddelerin içerisinden bile geçemeyecek kadar güçsüzdür. Ancak beta ve gama ışınları bu tür maddelerin içinden sorunsuzca geçer. Beta ışınları alüminyum gibi metalleri geçemezken, gama ışınlarını kurşun gibi metallerle durdurabiliriz.



Rutherford radyoaktivitenin sırlarını keşfetmeye çalışırken atomun yapısıyla ilgili ciddiye alınması gereken bir önerme geldi. 1903 yılında Japon fizikçi Hantaro Nagaoka, Satürn Modeli dediği bir atom tarifi yaptı. Ona göre elektronlar artı yüklü bir parçacık etrafında aynı düzlem üzerindeki dairesel yörüngelerde dolaşıyorlardı. Onun modeli ne derece kayda değer bulundu bilinmez fakat 1909 yılında Hans Geiger ve Ernest Marsden, Rutherford’un laboratuvarında ve onun gözetiminde atomun yapısını çözmeye koyuldular. 

Bunun için Rutherford’un alfa ismini verdiği parçacıkları kullandılar. Yaptıkları deney, esas itibariyle çok basitti. Atoma alfa parçacıklarını fırlatacak ve içinde ne olduğunu öğrenmeye çalışacaklardı. Yapacakları deney, bir iğne yardımıyla bir şeftalinin içerisindeki çekirdeği incelemek gibi bir şeydi. İğneyi şeftaliye batırarak içindeki “çekirdek”i keşfedeceklerdi.
Deneyde alfa parçacıklarını elde edebilmek için bir radon kaynak kullandılar. Radyoaktif olduğundan kendiliğinden alfa ışıması gerçekleştirebilecek olan radon kaynağı bir yüzünde küçük bir delik olan ağır metal bir kutuya yerleştirdiler. Böylelikle alfa parçacıklarını bir istikamette odaklandırabileceklerdi. Kutudan çıkacak olan alfa parçacıklarının tam karşısına 0.00006 cm inceliğinde bir altın levha yerleştirdiler. Her şey neredeyse tamamdı; ama altın levhayla etkileşecek alfa parçacıklarının bu etkileşme sonucunda hangi yöne sapacağını tayin edebilmek gerekiyordu. Bunun için altın levhanın etrafını, üzerine alfa parçacıkları çarptığında ışınlar yayan çinkosülfid bir ekranla çevirdiler. Bu sayede ekrana çarpıp parlamaya neden olan alfa parçacıklarının ne kadarlık bir sapmaya maruz kaldıklarını kolaylıkla gözleyebileceklerdi.



Geiger-Marsden Deney Düzeneği: Deney sonuçları Rutherford tarafından yorumlanmıştır.


Deney sonuçları oldukça enteresandı. Parçacıkların neredeyse tamamı çok küçük sapmalarla altın levha engelinden geçiyordu fakat sekiz binde biri hareket yönü ters istikamette değişecek şekilde yöneliyordu. Bir hayli düşük bir oranla da olsa parçacıkların sanki bir yansıma yaparmış gibi geriye yönelmeleri Rutherford’u da fazlasıyla şaşırtmıştı. Sonucu şöyle yorumladı: 

"Tıpkı bir peçeteye 15 inçlik bir mermi sıkmışsınız da mermi gerisin geri size dönmüş gibi."

Rutherford meseleyi incelemeye koyuldu ve kısa zamanda deney sonuçlarını doğru olarak yorumlamayı başardı. Artı yüklü alfa parçacıklarının çok düşük bir oranda gerisin geri saçılması atomun ortasında küçük bir hacimde artı yükün yoğunlaşmasını gerektiriyordu. Bu yoğun kütleye çekirdek adını verdi. Alfa parçacıklarının yüksek bir oranda küçük açılı sapmalar göstermesi ise atomun çekirdek haricinde boşluklu bir yapıda olduğu gerçeğini gözler önüne seriyordu.


Sol tarafta, Thomson'ın modeline göre olması gereken davranış görülmektedir. Sağ tarafta ise, Rutherford'un gözlemlediği durum gösterilmektedir. Dolayısıyla Thomson'ın modelinin hatalı olduğu anlaşılmıştır.


Rutherford alfa parçacıklarıyla çeşitli atomları bombardıman altına almanın daha başka keşiflere yol açabileceğini düşündü. Bu sefer alfa parçacıklarını nitrojen gazına yöneltti ve çinkosülfür ekranda alfa parçacıklarının haricinde hidrojen atomlarının ışımaya neden olduğunu gözlemledi. Hidrojen atomu ancak nitrojen atomlarından gelebilirdi ve bu durum nitrojen çekirdeklerinin hidrojen atomuna benzeyen artı yüklü parçacıklardan meydana geldiğini gösteriyordu. Bu parçacık daha sonraları “proton” olarak isimlendirilecekti. Her element atomunun yapısını belirleyen de çekirdek içerisinde sahip olduğu artı yüklü parçacık sayısıydı. Atom nötr yapıda olduğundan artı yüklü parçacık sayısı kadar da elektron sahibi olmalıydı. Artık Rutherford kendi atom modelini oluşturmaya hazırdı ve 1911 yılına gelindiğinde çekirdekli atom modeli olarak da anılan atom modelini duyurdu:

1. Atomda pozitif yükler çekirdek adı verilen çok küçük bir hacimde toplanmıştır.

2. Atomda pozitif yüklü tanecikler kadar elektron vardır ve bu elektronlar çekirdek etrafındaki dairesel yörüngelerde dolanırlar.

3. Elektronlar çekirdekten oldukça uzakta yer alırlar ve atom büyük oranda boşluktan oluşur.



Rutherford'un Çekirdekli Atom Modeli





Eksik Parçaları Tamamlayan Keşif: Niels Bohr ve Kuantum'un Doğuşu

Rutherford modeli oldukça mantıklı görünmesine rağmen bazı çıkmazlara sahipti. İlk etapta Rutherford’u elektronların çekirdek etrafındaki yörüngelerde dolandığı düşüncesine iten sebep neydi anlaşılamadı. Ortada elektronların yörüngelerde dolandığına dair hiçbir kanıt yoktu. Öte yandan yörüngede dolaşan elektronlar, ışıyarak enerjilerini kaybettiğinden protonların çekim etkisiyle spiral yaparak çekirdeğe düşmeliydiler. Rutherford’un atomu hesaplamalarda çok fazla yaşayamadan çöküyordu. Ama pratikte böyle bir şey gözlenmiyordu. 

Rutherford atom modeli katot ışınlarının oluşmasına neden olan elektronları da açıklayamıyordu. Atomun yapısı, elektronların özgürce yörüngesini terk ederek atomun dışına çıkmasına elverişli şekle sahip olmalıydı. Bütün bu sorular çok kısa bir süre içinde fiziğe yeni bir soluk getiren kuantum düşüncesiyle ve yine bu yeni kuantum akımının öncülerinden sayılan Niels Bohr tarafından cevaplandırılacaktı.

20. yüzyılın başlarında Rutherford atomu alfa parçacıklarıyla bombalarken, onun deneyleri sonucunda oluşturacağı modelinin çıkmazlarını çözüme kavuşturacak yepyeni bir araştırma konusu doğuyordu. Bu konu fiziksel meselelere yepyeni bir yaklaşım sergileyen kuantum düşüncesiydi. 

Fizikte bir süredir ışığın bazı garip davranışlarının anlaşılmasına çalışılıyordu. İlk gariplik 1815 yılında Fraunhofer tarafından gözlenmişti. Güneş ışığını bir prizmadan geçiren Newton ortaya çıkan muhteşem güzellikteki yedi rengin karşısında çok muhtemel ki büyük bir heyecan duymuştur. Çünkü onun için her şey tamamıyla kusursuz görünüyordu. Fakat Fraunhofer bu tayfı mikroskopla incelemek istedi ve sonucun heyecanlandırıcı olduğu kadar garipliklerle dolu olduğunu gördü. Tayfın bazı yerlerinde karanlık çizgiler vardı. Nedeninin anlaşılması için uzun bir zaman gerekecekti.

Takip eden yıllarda kara cisim ışıması denen bir anlaşılmazlıkla karşılaşıldı. Kara cisimler ışığı çok büyük oranda soğuran, aldığı enerjiyi biriktiren ve bu enerjiyle ışıyan cisimlerdir. Bu cisimlere kara denmesinin sebebi de tüm ışığı soğurduklarından siyah görünmeleridir. Bir kara cisim ısıtıldığında tıpkı metal bir teli ısıtıyormuş gibi ışımanın enerjiye bağlı olarak renk değiştirdiği gözlemlenir. Işıma önce kırmızı renktedir ve ısıtma devam ettikçe ışıma tayf boyunca maviye doğru kayar. Buraya kadar hiçbir sorun yok fakat mesele ışımalara matematiksel denklemlerle yaklaşmaya gelince ortaya büyük sorunlar çıkar. O zamana kadar bugün bizim “klasik fizik” diye tabir ettiğimizden başka bir fizik yoktur. Olaya klasik fizik denklemleriyle yaklaşılınca ışıma maviye doğru gittikçe (dalgaboyu küçüldükçe) şiddetin sonsuza gittiği görülür. 

Denklemler deney sonuçlarıyla tamamıyla bir uyumsuzluk içindedir. Adeta klasik fizik tıkanmıştır. Kara cisim ışıması üzerine Alman fizikçi Max Planck çalışır ve sonuçlara matematiksel bir farklılık getirir. Öyle ki kara cisimlerden yayılan enerji sürekli değil de bir tamsayının katları olarak ele alındığında denklemler sonuçlarla tamamıyla uyuşmaktadır. Bu bakış açısı ve getirdiği yeni fikirler Planck’ın öncülüğünde fizikte yeni bir alan doğurmuştur. Enerjinin kuantumlu (kesikli) olabileceği fikri bütün anlaşılmazlıkları çözer ve birim enerji paketleri fikriyle ulaşılan tamsayı bugün Planck sabiti olarak anılan sayıdır.

Yüzyıllar önce Demokritos maddenin sürekli olduğu fikrini nasıl bir kenara ittiyse 1901 yılında Planck da enerjinin sürekliliğine bir darbe vuruyordu. Kuantum düşüncesi hiç şüphesiz fizikte bir devrimi başlatmıştı ve bu devrim atom teorilerinin gelişmesini doğrudan etkileyecekti. Enerjinin kesikli oluşu kara cisim problemini aşmamızı sağlıyordu ama Fraunhofer’ın gözlemi hala soru işaretleriyle doluydu. Bunun çözümü için yeni bir atom teorisi gerekecekti.

1911 yılında Rutherford yeni atom modelini oluşturduğunda kuantum düşüncesi birçok fizikçiyi olduğu gibi çok muhtemeldir ki onu da pek etkilememişti. Bu yüzden atom modelini kuantum düşüncesiyle yorumlamayı hiç düşünmedi. Diğer taraftan sadece kuantum düşüncesiyle hareket ederek de yeni bir atom modeli geliştirmek imkânsızdı. Rutherford’un modelinin tüm kazanımlarını ve çıkmazlarını kuantum fikriyle değerlendirip yeni bir model oluşturacak kişi Niels Bohr’du.


Niels Bohr (7 Ekim 1885 - 18 Kasım 1962)


Bohr 1913 yılında Rutherford’un atom modelini ve enerjinin kuantumlu olduğu fikrini alıp bir potada eriterek yeni bir model oluşturdu:

1. Elektronlar çekirdek çevresinde rastgele dairesel bir yörüngede değil, belli enerjiye sahip olan dairesel yörüngelerde bulunabilirler.

2. Elektronlar bulundukları enerji seviyesinin enerjisine sahiptir. Enerji seviyeleri atom çekirdeğine yakınlığına göre n = 1, 2, 3, 4, 5, 6 gibi tamsayılarla veya K, L, M, N, O, P, Q gibi harflerle ifade edilirler.

3. Yüksek enerji düzeyinde bulunan bir elektron daha düşük enerji düzeyine geçerse fotonlar halinde ışık enerjisi yayar, tersi bir şekilde bir elektron bulunduğu enerji düzeyinden daha yüksek bir enerji düzeyine geçebilmek için dışardan enerji almalıdır. Bir atomun elektronları dışardan enerji alarak yüksek enerji düzeyine yükselirse bu atoma "uyarılmış atom" denir.


Bohr Atom Modeli'nin 3 boyuytlu gösterimi



Bohr Modeli'nin 2 boyutlu gösterimi




Bohr atom kuramı Fraunhofer’ın gözlemini açıklayabiliyordu. Güneş ışınlarının bir kısmı atmosferdeki atomların elektronlarınca emilerek tayftan siliniyordu. Üstelik tayfın karanlık çizgilerinin sürekli değil de birkaç tane olması Bohr’un modelindeki elektronların ancak belli yörüngelerde bulunabileceği fikrini destekliyordu. Elektronların yalnız belli yörüngelerde bulunması fikri enerjilerini kaybetmedikleri ve neden çekirdeğe düşmediklerini açıklıyordu fakat modelin hala yetersiz olduğu yerler vardı.

Sonraki yıllarda Bohr, modelini periyodik tablodaki periyodikliği de açıklayacak biçimde genişletti. Elektronlar belli yörüngelerde (ilkinde 2 ve sonrakilerde 8 olmak üzere) ancak belli sayılarda bulunabiliyorlardı. Yörüngelerden biri dolunca elektronlar bir üst yörüngeye yerleşiyorlar ve kimyasal özellikler dış yörüngedeki elektron sayısıyla açıklanabiliyordu. Dış kabuğu dolu olan element tepkimeye girmiyordu. Bohr’un modeli önemli açıklamalar getirmişti fakat hala bir şeyler eksikti. Her şeyin ötesinde elektronlar neden sadece belli yörüngelerde bulunabiliyordu? Elektron bir parçacıktı ve belli enerji düzeyleri fikri ışıma için yani dalga için düşünülebilirdi.



Atomun "Boşluklarını" Doldurmak: Kuantum Fizikçileri ve Keşifleri

1923 yılında Arthur Compton yeni bir keşif gerçekleştirdi. Compton Etkisi veya Compton Saçılımı denilen ve kendisine Nobel ödülünü getiren bu keşifte Compton, ışık demetinin elektronlara çarpıp bir kısım enerjilerini aktardıklarını ve elektronların ivmelenmelerine neden olup geriye kalan enerjileriyle yansıdıklarını gördü. Aslında bu etki daha önceleri de biliniyordu fakat ışık bir dalga olarak ele alındığından, teorik çözümlerde dalga denklemleri kullanılıyordu ve denklemler bir kez daha gözlemlerle uyuşmuyordu. Compton, bu etkinin, enerjinin ve momentumun korunumu gibi fiziğin bilinen olgularıyla açıklanabileceğini gösterdi ve bu durum kimi zaman ışığın bir parçacık gibi değerlendirilebileceğinin ispatıydı.




Compton Saçılımı



Hem dalga hem parçacık özellikler gösteren ışığın bu ikiliğinden yola çıkan Fransız fizikçi Louis de Broglie eğer dalgalar parçacık özelliği gösterebiliyorsa parçacıklarında dalga özelliği gösterebileceklerini düşündü. 1923’te yayınladığı doktora tezinde her parçacığın bir dalga özelliği taşıyabileceğini ortaya koydu ve elektronun dalga boyunu hesapladı. Yaptığı hesap elektron yörüngelerinin neye göre belirlendiğine mantıklı bir çözüm getirebiliyordu. Hesapları herhangi bir yanlışlık taşımıyor olsa bile parçacık özellikleri tamamıyla bilinen elektronun dalga özelliği gösterebileceğine dair henüz hiçbir deneysel kanıt yoktu.

Wolfgang Pauli 1925 yılında elektronların neden aynı kuantum durumunu paylaşamadıklarını açıklayan bir yasa keşfetti. Pauli dışlama ilkesi olarak bilinen bu yasa, Bohr atom modelinde elektronların neden farklı yörüngelerde olmaları gerektiğini açıklıyor fakat neden her yörüngede iki elektron olduğunu açıklayamıyordu. İki elektronun aynı yörüngeyi paylaşabilmeleri için bir farklılıkları olması gerekiyordu. Bu sorun George Uhlenbeck ve Samuel Goudsmit’in ortaya attığı spin kavramıyla aşıldı. Spin kavramı elektronların açısal momentumunun bir ifadesiydi. Bu kavrama göre aynı enerji düzeyini paylaşan elektronlar birbirlerine göre ters spin değerlerine sahipti ve böylelikle neden her yörüngede iki elektron bulunduğu açıklanmış oluyordu.

Broglie’nin varsayımından hareket eden Avusturyalı fizikçi Erwin Schrödinger 1926 yılında harikulade bir denklem oluşturdu. Öyle ki bu denklemin çözümleriyle bütün parçacıkları ifade etmek mümkündü. Tamamıyla yeni bir mekanik alanı olan Kuantum Mekaniği'ni sistematik bir şekilde önemini ortaya koyan bu denklem, Schrödinger dalga denklemi olarak bilinen denklemdir. 


Schrödinger'in Denklemi: Denklemde "i" sanal sayı, "h" Planck sabiti, "psi" dalga denklemi, "m" kütle, "nabla kare" Laplasyen operatörü, V ise parçacığı etkileyen potansiyel enerjidir.



Parçacıkların dalgalar gibi görülebileceği fikri giderek güç kazanıyordu fakat Schrödinger’in dalga denklemine yeni ve mantıklı bir yaklaşım sergilenmesi gerekliydi. Bu yeni yorum Max Born tarafından getirildi ve Born kendi ismiyle anılan yakınsama metotlarıyla dalga fonksiyonunun karesinin, parçacığın herhangi bir zamanda herhangi bir yerde bulunma olasılığını verdiğini gösterdi.

Born’un getirdiği yoruma göre bir parçacığın herhangi bir noktada kesin olarak bulunacağını söyleyebilmek olanaksızdır. En fazla yapacağınız parçacığın o noktada hangi olasılıkla bulunabileceğini belirlemektir. Daha sonrasında yaptığınız ölçümle bu olasılığı kırıp parçacığın nerede olduğunu gözlemleyebilirsiniz. Yeni bir ölçümde parçacık yer değiştirmiş olabilir çünkü ölçümü her tekrarladığınızda parçacığın belli yerlerde belli bulunma olasılıkları olduğu gerçeği değişmez.


Parçacıkların Dünyasında Gözlem Yapmak: Heisenberg'in Belirsizlik İlkesi

Kuantum dünyası aklın ötesine geçen hayaller doğuruyordu. Bir parçacığın nerede olduğunun asla kesin olarak belirlenemeyeceğini ancak olasılıklarla ifade edilebileceğini öğrenen fizikçiler bütün bu kuantum sonuçları üzerine bir de belirsizlik ilkesiyle tanıştılar. Atomu tanıma süreci, birbiri ardına gelen gerçeklerle insanlığı kuantum dünyasına taşıyordu.

Herhangi bir nesnenin konumunu belirleyebilmemiz için onu gözleyebilmemiz gerekir. Yani onu görebilmemiz. Nesneye çarpıp gözümüze veya herhangi bir algılayıcıya gelen ışıkla bu görme faaliyetini gerçekleştiririz. Peki, bir elektronu gözlemek istersek işler nasıl değişir?
Küçüklerin dünyasında da bizim çevremizdeki gözlemlere benzer sonuçlar elde edilebilir mi? 

Işığın bir dalga olduğunu dolayısıyla bir dalgaboyu değerine sahip olduğunu biliyoruz. Elektron çevremizdeki herhangi bir nesneyle asla karşılaştırılamayacak kadar küçük bir boyutta olduğundan onu görebilmek için kullanacağımız ışığın dalgaboyuyla elektronumuzun boyutlarını mukayese etmeliyiz. Sonuç itibariyle ışığımızın dalgaboyu elektron çapımızdan büyük olmamalı aksi halde onu net bir şekilde göremeyiz. Pekâla, dalgaboyu elektron çapından küçük olan bir ışığı göndersek ne olur? 

Cevap Compton etkisinde saklı: Işığın dalgaboyu küçüldükçe enerjisinin arttığını, ışığın bir parçacık olarak düşünülebileceğini ve bu parçacıklara da foton ismi verildiğini biliyoruz. Küçük dalgaboylu ve yüksek enerjili foton elektrona çarptığında enerjisinin bir kısmını aktarır ve elektronun momentumu değişir. Dolayısıyla elektronun momentumunda değişikliğe sebep vermeden konumunu öğrenmek mümkün değildir. 

Peki, ışığın dalgaboyunu büyütsek ve dolayısıyla daha düşük enerjili fotonlar göndersek ne olur? Bu seferde dalgaboyu elektron çapından büyük olduğundan her ne kadar elektronun momentumunda daha düşük bir değişime sebep versek de konumunu belirlemeye yönelik belirsizliğimiz artar. Elektron, ışığın dalgaboyunun, kendisinden büyüklüğü oranında belirsiz konumlara sahip olabilir. 

İşte 1927 yılında Werner Heisenberg de aynen böyle düşündü ve belirsizlik ilkesini öne sürdü: 

“Herhangi bir parçacığın momentumu ve konumu aynı anda tam doğrulukla ölçülemez”.





Birbiri ardına gelen tüm bu gelişmeler atom teorisinin kuantum düşüncesiyle açıklanabileceğini gözler önüne seriyordu fakat hala bu düşünceden şüphe duyanlar vardı. Bir parçacık nasıl dalga özelliği gösterebilirdi? Cevap Heisenberg’in belirsizlik ilkesini geliştirdiği aynı yılda, 1927’de, elektronların varlığını ortaya koyan J. J. Thomson’ın oğlu George Paget Thomson’dan geldi.

Paget Thomson’ın yaptığı deneyi anlayabilmek için biraz eskilere gitmek gerekir çünkü deneyin neredeyse aynısını 1801 yılında Thomas Young yapmıştır. Young, iğne deliğinden geçirdiği ve böylelikle tek bir merkezde odakladığı güneş ışığının yolu üzerine, üstünde iki küçük yarık bulunan bir plaka koymuştu. Düzeneğin sonuna ışığın yarıklarla olan etkileşiminin sonucunu görmek için de bir perde yerleştirmişti. Yarıklardan geçen ışık perdede aydınlık ve karanlık saçaklar oluşturacak şekilde bir girişim deseni meydana getirmişti ve girişim deseni ancak dalgalar tarafından gözlenebilecek bir olgu olduğundan deney açıkça ışığın dalga özelliği gösterdiğini kanıtlamıştı. 

Paget Thomson benzer bir deneyi fakat bu sefer elektronları kullanarak gerçekleştirmek istedi. Sonuç oldukça şaşırtıcıydı. Perdede tıpkı dalga özelliğiyle bilinen ışığın oluşturduğu gibi aydınlık ve karanlık saçaklarıyla bir girişim deseni vardı ve bu durum Broglie’nin elektronların dalga özelliği gösterebileceğine dair geliştirdiği fikrini açıkça destekler nitelikteydi.


Young Deneyi'nde, tek yarık ve çift yarık ile elde edilen aydınlık ve karanlık bölgeler


Çift yarık deneyinin şematik gösterimi




Atom Ailesine Katılan Son Üye: Nötron

Atomun kuantum modelini birbirini kovalayan keşiflerin ardından neredeyse oluşturmuş bulunuyoruz. Yalnızca bir eksik var: atomun çekirdeğini protonla paylaşan nötron. Nötron yüksüz olduğundan gözlenen en son parçacık oldu. Aslında nötronun var olması gerektiği daha öncelerden fark edilmişti. Atom nötrdü ve elektron sayısı kadar proton olması gerekliydi. Fakat çekirdek var olması gereken protonlardan çok daha ağırdı. Öyleyse çekirdeğin içinde yükü olmadığı için gözlenemeyen en az proton kadar kütlesi olan bir parçacık daha olmalıydı. 

Gözlem 1932’de James Chadwick’ten geldi. Chadwick alfa parçacıklarıyla bombardıman ettiği berilyum folyonun yaydığı ışının, karşısına çıkan çekirdeklerdeki protonlara çarpıp dışarı fırlamalarına yol açtıklarını gözlemledi. Enerji ve momentum korunumu yasalarıyla hareket ederek bu ışının, protonun kütlesine yakın bir kütleye sahip fakat yüksüz parçacıklardan oluştuğunu belirledi. Parçacıkların ismini de kendisi önerdi.



Büyük Final... Mi?: Modern Atom Teorisi (Kuantum Atom Modeli)

Atomun kuantum modeli artık oluşturulmaya hazırdır. Bu model Modern Atom Teorisi olarak da anılır ve herhangi bir şekilde resmedilmesi elektron davranışları sebebiyle pek mümkün olmayan düşünsel bir modeldir. Kuantum modeli Bohr’un modelinin devamı niteliğinde olup onun açıklayamadığı elektronların neden sadece belli yörüngelerde dolandığı gerçeğini açıklar. Elektronlar, dalga karakterlerinin bir özelliği olarak çevresi, elektron dalgaboyunun ancak tamsayı katında olan yörüngelere yerleşebilirler. Dolayısıyla çevresi üç buçuk elektron dalgaboyu büyüklüğünde bir yörüngeden söz edilemez. Bunun yanı sıra dışlama ilkesi gereği elektronlar farklı yörüngelerde olmak zorundadır ve Born’un olasılık kuramı gereği bir elektronun yerini kesin olarak ifade etmek mümkün değildir. Bütün bunların ışığında elektronlar çekirdeğin etrafında ancak bir elektron bulutu içinde resmedilebilirler.


Kuantum Atom Modeli



Bunların yanı sıra Paul Dirac birtakım matematiksel hesaplama sonucu bilinen bütün bu parçacıkların birer karşı parçacığı olduğunu öne sürdü. Sonraki yıllarda bu karşı parçacıkların tamamı gözlendi. 1964’te Gell-man ve Zweig, elektron ve foton gibi temel parçacıklar haricinde diğer parçacıkların daha temel yapılardan oluşması gerektiğini öne sürdüler. Gell-man bu daha temel parçacıklara kuark ismini önerdi. 1968’de Stanford Doğrusal Hızlandırıcı Merkezinde protonların yüksek enerjili elektronlarla bombalanması sonucu kütle yoğunluğu sergileyen üç küçük noktanın varlığı anlaşıldı. Daha sonra bu üç küçük noktanın kuarklar olduğu ve proton ile nötronun üç kuarkın birleşmesiyle oluştuğu öğrenildi.

Parçacık fiziğindeki gelişmeler bugün hala atom teorilerine ışık tutuyor. Maddeyi oluşturan, rakyoaktiviteyi taşıyan, doğanın temel kuvvetlerinden sorumlu olan birçok parçacık ortaya çıkarıldı. Bu parçacıklar bize evrenin sırlarını da fısıldıyorlar. Bilim bitmek tükenmek bilmeyen merakı sonucu aydınlattığı atom fikri gibi bugün doğanın birçok gizli kalmış yanını ortaya çıkarmak için uğraşıyor. Hiç şüphesiz bugünün uğraşları ileride yeni bilimsel öykülere konu olacak.

Umuyoruz tüm okurlarımıza faydalı bir özet olmuştur. 

Saygılarımızla.

Yazan: Levent Özkarayel (Evrim Ağacı Okuru)

Düzenleyen: ÇMB (Evrim Ağacı)

Kaynaklar ve İleri Okuma:
  1. Fundementals of Physics. 8th edition. Extended/David Halliday, Robert Resnick, Jearl Walker 
  2. TÜBİTAK
  3. Parçacık Fiziği, Sezen Sekmen – ODTÜ Yayıncılık 
  4. Bilim Tarihi, Cemal Yıldırım – Remzi Kitabevi 
  5. Fizikte 10 Teori, Mehmet Taşkan – Cinius Yayınları 
  6. Atomic Timeline
  7. LeMoyne College
  8. Northeastern Oklahoma A&M College
  9. American Institute of Physics
  10. Wikipedia-1
  11. Wikipedia-2
  12. Wikipedia-3
6 Yorum