Bu Reklamı Kapat
Bu Reklamı Kapat

Pi Sayısı Nedir? π Sayısı Nasıl Hesaplanır ve Ne İşe Yarar?

Pi Sayısı Nedir? π Sayısı Nasıl Hesaplanır ve Ne İşe Yarar? Wallpapers Craft
16 dakika
30,210
  • Matematik

Pi sayısı (π\pi), 3.14159... diye başladıktan sonra, durmaksızın devam eden bir sayı ve matematiksel bir sabittir.[1], [27] Öklidyen geometri çerçevesinde pi sayısı, bir çemberin çevresinin çapına oranı olarak tanımlanır; ancak pi sayısının bundan başka tanımları da mevcuttur. π\pi (veya π) sembolüyle kullanımına ilk olarak İskoç matematikçi William Jones tarafından 1706'da rastlansa da, Antik Yunan filozofları tarafından keşfedildiği bilinmektedir ve hatta Arşimet Katsayısı olarak da bilinmektedir.[2]

Günümüzde pi sayısı; matematik, fizik, mühendislik, mimari ve daha birçok yerde karşımıza çıkmaktadır; medeniyetimiz içerisinde vazgeçilmez bir role sahip olduğu rahatlıkla söylenebilir.

Bu Reklamı Kapat

Pi sayısının, bir çemberin çevresinin çapına oranı olduğunu geometrik olarak gösteren bir animasyon. Buradaki çember, çapına bağlı olarak kendi çevresi etrafında döndükçe, çevresinin taradığı alan, çapının (1 birimin) pi katı olmaktadır.
Wikipedia

En temel tanımı dairenin geometrik özellikleri ile ilgili olduğu için π\pi, trigonometri ve geometrideki birçok formülde, özellikle de daireler, elipsler ve kürelerle ilgili olan formüllerde karşımıza çıkar. Daha modern matematiksel analizdeyse pi sayısı, geometrik bağlamından bağımsız olarak, bir "özdeğer" veya bir "periyot" olarak tanımlanır. Bu nedenle pi sayısı, dairelerin geometrisi ile pek ilgisi olmayan sayı teorisi ve istatistik gibi matematik ve bilim alanlarında ve fiziğin/mühendisliğin neredeyse tüm alanlarında karşımıza çıkar.

π\pi sayısı, böylesine geniş bir alanda karşımıza çıktığı için, hem bilim camiasında hem de popüler kültürde en yaygın bilinen matematiksel sabitlerden biridir. Bugüne kadar direkt olarak pi sayısıyla ilgili olan birden fazla kitap yayınlanmıştır ve pi sayısının basamaklarına yönelik hesaplama rekorlarının kırılması hâlen haber değeri taşıyan bir başarı olarak görülmektedir.

Bu Reklamı Kapat

Ayrıca pi sayısının basamaklarının ezberlenmesi de matematikseverler arasında, pifiloloji olarak isimlendirilen eğlenceli bir hobi olarak görülmektedir:[28] 2022 itibariyle rekor, pi sayısının noktadan sonra 70.030 basamağını 17 saat 14 dakika içinde ezbere ve doğru bir şekilde sayan Hindistanlı Suresh Kumar Sharma'ya aittir. Rekor, 21 Ekim 2015 tarihinden bu yana kırılamamıştır.

Pi Sayısının Özellikleri

Pi Sayısı, Sonsuz mu?

Her ne kadar pi sayısının tam değeri, yani nerede sona erdiği henüz bilinmese de ve sayının muhtemelen bir sonu olmasa da, semantik nedenlerle pi sayısının "sonsuza kadar devam ettiğini" söylemek yanıltıcı olabilir; çünkü matematikte sonsuzluk bir sayı değil, bir kavramdır.[3], [4] Dolayısıyla pi sayısının "sonsuz" olduğunu veya "sonsuza kadar devam ettiğini" (İng: "infinite") söylemek yerine; sınırlarının belirsiz olduğunu (İng: "indefinite") söylemek daha doğrudur.[5] Ancak çoğu zaman bu fark üzerinde yeterince durulmadığından, pi sayısının ondalık basamaklarının sonsuza kadar gittiği söylenebilmektedir. Bu, sadece pi sayısına özgü bir özellik değildir; bütün irrasyonel sayılar için geçerlidir.[29]

Pi Sayısı, (Muhtemelen) Kendini Tekrar Etmez!

Ayrıca pi sayısının ondalıklı kısmında, kendini tekrar eden ve matematiksel olarak ifade edilebilecek bir örüntüye de henüz rastlanmamıştır.

Evrim Ağacı'ndan Mesaj

Buna bağlı olarak pi sayısının içinde, var olabilecek tüm sayıların sonlu kombinasyonlarının bulunabileceği düşünülmektedir. Ancak bu, ispatlanmış bir iddia değildir; sadece öyle gibi gözükmektedir.[6] Çünkü (örneğin) 0.011000111100000111111... diye giden sayı da irrasyonel bir sayıdır ve basamakları tıpkı pi sayısı gibi sonsuza dek gider; ancak bariz bir şekilde, bünyesinde diğer tüm sayıları barındırmaz (ve barındıramaz da).[7]

Pi Sayısı, İrrasyoneldir!

Daha matematiksel bir tanım yapmamız gerekirse, pi sayısının irrasyonel olduğunu söylemek daha doğru olacaktır. Yani pi sayısı, iki tam sayının bölümü olarak (mn\frac{m}{n}) ifade edilemez. Bir diğer deyişle, ondalık basamaklarının sonunu tespit etmemiz mümkün değildir.

Sadece pi sayısı da değil: 2.71828... diye giden e sayısı, 1.618033... diye giden altın oran veya basitçe 2\sqrt{2} sayısı, irrasyoneldir. Hiçbir şekilde iki tam sayının birbirine oranı şeklinde ifade edilemezler.[8], [9] Ancak pi sayısını sonsuz oranlar şeklinde tanımlamak mümkündür. Örneğin:

π=3+17+115+11+1292+11+11+11+⋱\Large{\pi=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}}}}}}}

Hatta bu sonsuz kesirli sayılarda bazı örüntüler bile tespit edilebilmiştir. Örneğin, faydalı olabilecek bir diğer sonsuz kesir şudur:

Bu Reklamı Kapat

π=3+126+326+526+726+926+1126+1326+⋱\Large{\pi=3+\frac{1^2}{6+\frac{3^2}{6+\frac{5^2}{6+\frac{7^2}{6+\frac{9^2}{6+\frac{11^2}{6+\frac{13^2}{6+\ddots}}}}}}}}

Pi Sayısı, 22/7 Değildir!

Belki lisede pi sayısının 22/722/7 olarak ifade edilebileceğini öğrenmiş olabilirsiniz; ancak bu, π\pi için pek iyi bir yakınsama değildir ve ondan %0.04 oranında uzak bir sayıdır (ayrıca 22/7, doğal olarak, rasyonel bir sayıdır ve bu nedenle irrasyonel olan pi sayısına eşit olamaz):

22/7=3.1428571428622/7=3.14285714286

π=3.14159265358979323846264338327950288419716939...\pi=3.1415926535 8979323846 2643383279 5028841971 6939...

Bu Reklamı Kapat

Bu ufacık fark belirli uygulamalarda kabul edilebilir bulunabilir; ancak matematiksel olarak eşitlik iddia etmekte kullanılamaz. Bu konuya yazının ilerleyen kısımlarında döneceğiz.

Pi Sayısı, Transendentaldir!

Pi sayısını biraz daha özel kılan ise transendental sayı olmasıdır; yani rasyonel katsayılara sahip bir polinomun kökü (çözümü) olarak da ifade edilemez. Örneğin altın oran olarak bilinen ve 1.618033... diye giden sayı da irrasyonel bir sayıdır ve altın sayının basamaklarının sonu da bilinmemektedir; ancak bu sayı, bir transendentel sayı değildir; çünkü x2−x−1=0x^2-x-1=0 polinomunun köklerinden biridir.

Bunun birçok anlamından biri şudur: Pi sayısı; rasyonel sayıların veya köklerin sınırlı bir kombinasyonu olarak yazılamaz (örneğin pi sayısı, 313\sqrt[3]{31} veya 10\sqrt{10} olarak yazılamaz).

Pi Sayısı Ne İşe Yarar?

Başta da sözünü ettiğimiz gibi pi sayısı, bilimdeki en temel ve en önemli sabitlerden biridir. Burada, karşımıza çıktığı alanların bir kısmının fazlasıyla kısaltılmış bir özetini bulacaksınız.

Bu Reklamı Kapat

Agora Bilim Pazarı
Fizikokimya (2. Cilt)
  • Boyut: 19,5 X 27,5
  • Sayfa Sayısı: 580
  • Basım: 1
  • ISBN No: 9799758624989
Devamını Göster
₺92.00
Fizikokimya (2. Cilt)

Geometri

Pi sayısının en bariz kullanımı, "çember" veya "daire" olarak ifade ettiğimiz geometrik şekilleri tanımlamakta kullanılmasıdır. Pi sayısı, bir çemberin çevresinin çapına oranıdır:

π=Cd\pi=\frac{C}{d}

Bunun anlamı şudur: Bütün çemberlerin çevrelerinin çaplarına oranı, her zaman sabittir ve pi sayısına eşittir. Bir çemberin çapı 1 mikrometre de olsa, 1 ışık yılı genişliğinde de olsa, o çemberin çevresinin çapına oranı pi sayısına eşit olacaktır. Elbette bu, sadece düz (Öklidyen) geometri için geçerlidir; eğri (Öklidyen-olmayan) geometrilerde de benzer sabitler tanımlanabilir; fakat bunlar pi sayısına eşit olmayacaktır.

Ayrıca pi sayısı, bir dizi geometrik işlemde karşımıza çıkar:

  • Yarıçapı rr olan bir çemberin çevresi 2πr2\pi r'dir.
  • Yarıçapı rr olan bir çemberin alanı πr2\pi r^2'dir.
  • Yarı-majör eksenlerinden biri aa, diğeri bb olan bir elipsin alanı πab\pi ab'dir.
  • Yarıçapı rr olan bir kürenin hacmi 43πr3\frac{4}{3}\pi r^3'tür.
  • Yarıçapı rr olan bir kürenin yüzey alanı 4πr24\pi r^2'dir.

Trigonometri

Trigonometrik fonksiyonlar, açılardan faydalanır ve açılar, genellikle radyan cinsinden ölçülür. Radyan olarak ölçülen açılarda pi sayısı büyük neme sahiptir; zira 1 tam çember 2π2\pi düzeyinde bir açıyı tarar.[30] Dolayısıyla derece cinsinden açı hesabında 1°=π/1801\degree=\pi / 180 olarak hesaplanır.

Ayrıca yaygın olarak kullanılan trigonometrik fonksiyonlar da pi sayısınınkatları olarak ifade edilebilirler. Örneğin sin⁡\sin ve cos⁡\cos fonksiyonları 2π2\pi'lik bir periyoda sahiptir.

Pi Sayısının Tarihi ve Basamaklarını Bulma Yarışı

Pi sayısının bilinen bir sonu olmadığından ve sayı irrasyonel olduğundan, bu sayının basamaklarını doğru olarak tespit edebilecek bir algoritma/yöntem geliştirme çabası antik zamanlardan beri süregelmektedir. Burada, kronolojik bir sırada pi sayısının yolculuğuna kısa bir bakış atacağız. Burada kronolojik bir sıra veriyor olsak da, bahsedeceğimiz devirlerde birçok matematiksel atılımın, çok geniş coğrafyalara dağılmış halde ve birbirinden tamamen bağımsız/habersiz olarak yapıldığını hatırlatmakta fayda görüyoruz.

Pi sayısının en erken ne zaman isabetli bir şekilde hesaplandığına yönelik ilk iddia, Antik Mısır'a aittir: MÖ 2550-2490 yılları arasında inşa edilen Mısır Piramitleri'nin astronomik ve geometrik detayları üzerine yapılan (çoğu abartılı ve gerçek dışı olan) incelemelerden yola çıkan bazı Mısırologlar, Antik Mısırlılar'ın pi sayısını 22/7 olarak tespit ettikleri iddia etmişlerdir - ve bu konu, sonradan "Antik Mısır bilgeliğine" yönelik absürt (hatta yer yer "uzaylı müdahelelerini" içerecek kadar bilimdışı) iddialara konu olmuştur.[10], [11], [12] Ancak iddia, modern matematikçiler ve tarihçiler yoğun eleştiriye maruz kalmıştır ve günümüzde kabul görmemektedir.[13], [14], [15], [16]

Buna rağmen, pi sayısının yakınsamalarına yönelik ilk yazılı kaynaklar gerçekten de Babil ve Mısır metinlerinden gelmektedir (Mısır'dan kalma metinler, piramitlerin inşasından çok sonrasına denk gelmektedir). Örneğin Babiller'e ait MÖ 1900-1600 yıllarına tarihlenen bir kil tablet, pi sayısının 25/8=3.125 değerine sahip olduğunu ileri sürmektedir.[16] MÖ 1650 yılına tarihlenen ve MÖ 1850 yılından kalma bir dokümanı kopyalayan Rhind Papirusu'nda pi sayısı (169)2=3.16(\frac{16}{9})^2=3.16 olarak alınmıştır.[17]

MÖ 1200 yılında Çin'de pi sayısı 3 olarak hesaplanmıştır. Yunan filozof ve matematikçi Anaksagoras, MÖ 434 yılında sayıyı 3.088311.. olarak giden bir sayı olarak hesaplamıştır.

Bu Reklamı Kapat

Hindistan'da MÖ 4. yüzyılda yazılan ve astronomik hesaplamaları içeren Shatapatha Brahmana metninde pi sayısı 339108≈3.139\frac{339}{108}\approx3.139 olarak alınmıştır.[18] MÖ 150 yılından kalma diğer Hint metinlerinde pi sayısı 10≈3.1622\sqrt{10}\approx3.1622 olarak belirlenmiştir.[17]

Nihayet Arşimet, MÖ 250 yılında π\pi sayısını arzu ettiğiniz basamağa kadar bulabileceğiniz bir algoritma geliştirmiştir.[19] Arşimet, döngüsel bir algoritma kullanarak pi sayısının 22371\frac{223}{71} ile 227\frac{22}{7} arasında olduğunu bulmuştur. Buna göre:

3.1408<π<3.14293.1408<\pi<3.1429

Muhtemelen daha önceden sözünü ettiğimiz π=227\pi=\frac{22}{7} inancı da bu hesaplamadan köken almaktadır.

Bu Reklamı Kapat

MS 100'lü yıllarda Çinli matematikçiler de Hintliler gibi 10\sqrt{10} sonucuna varmışlardır. MS 150 yılında Ptolemy, Almagest isimli eserinde pi sayısının 3.1416 olduğunu hesaplamıştır; ancak muhtemelen bu sayıyı kendisi hesaplamadı ve ya Arşimet'ten ya da Pergalı Apollonius'tan aldı.[17], [20]

MS 3. yüzyılda Çinli matematikçiler pi sayısını 14245≈3.1556\frac{142}{45}\approx3.1556 olarak hesaplamışlardır. 265 yılında Wei Krallığı'ndan matematikçi Liu Hui, poligon-temelli bir algoritma kullanarak pi sayısını 3.14163.1416 olarak hesaplamışlardır.[20] 5. yüzyıldaysa, sonsuz serileri kullanarak pi sayısını 7. basamağına kadar tespit etmeyi başarmışlardır: 480 yılında Çinli matematikçi Zu Chongzhi, pi sayısı için şu aralığı belirlemiştir:

3.1415926<π<3.14159273.1415926<\pi<3.1415927

Bu aralığı veren yakınsama kesirleri olarak da 355113\frac{355}{113} ve 227\frac{22}{7} kesirlerini önermiştir. Bunlardan küçük olan kesire "Milü" (Tür: "yakın oran"), büyük olan kesire "Yeülü" (Tür: "yakınsak oran") adını vermiştir. Bu 7 basamaklı yakınsama, sonraki 800 yıl boyunca rekor olarak kalmıştır.

Bu Reklamı Kapat

499 yılında Hintli matematikçi Aryabhata, pi sayısını 3.1416 olarak hesaplamıştır. 1220 yılındaysa Fibonacci, yine bir poligon metodu yardımıyla (Arşimet'ten bağımsız olarak) pi sayısını 3.1418 olarak hesaplamıştır. İtalyan yazar Dante, pi sayısı için 3+210≈3.141423+\frac{\sqrt{2}}{10}\approx3.14142 yakınsamasını önermiştir.

1424 yılında Pers matematikçi Gıyaseddin Cemşid, pi sayısının 60'lık sistemde 9 basamağını (yani 10'luk sistem yaklaşık 16 basamağını) hesaplayarak, Çin'in rekorunu kırmayı başarmıştır. Bu rekor, 180 yıl boyunca tekrar kırılamamıştır.

1579 yılında Fransız matematikçi François Viète, pi sayısının 9 basamağını doğru olarak hesaplamayı başarmıştır.

1593 yılında Flaman matematikçi Adriaan van Roomen, rekoru 15 basamağa çıkarmıştır. Birazdan detaylarını anlatacağımız gibi, NASA'nın bugün kullandığı basamak sayısı bu kadardır.

Bu Reklamı Kapat

1596 yılında Hollandalı matematikçi Ludolph van Ceulen, 20 basamağa ulaşmıştır; kısa bir süre sonra da 35 basamağa çıkarmıştır. Bu müthiş başarı nedeniyle π\pi sayısı Almanya'da 20. yüzyıla kadar "Ludolph Sayısı" olarak anılmıştır.

Hollandalı matematikçi Willebrord Snellius, 1621 yılında 34 basamağa kadar hesaplama yapabilmiştir; 1630 yılındaysa Avusturyalı astronom Christoph Grienberger 38 basamağa ulaşmıştır.

Bu tür antik yöntemler, az sayıda basamağı tespit etmek istediğinizde avantajlıdır; ancak eğer ki amacınız pi sayısının 50 milyonuncu basamağını bulmaksa, bu tür yöntemler fazlasıyla yavaş ve zahmetli olacaktır. Gerçekten de poligon yakınsaması gibi antik yöntemlerle pi sayısının 39. basamağı anca 1630 yılında, 71. basamağı ise 1699 yılında hesaplanabilmiştir.[17]

Bu sorunu çözmek için iki yöntem kullanabilirsiniz: kalkülüs ve bilgisayarlar.

Bu Reklamı Kapat

Kalkülüsün İcadı ve Pi Sayısının Matematiksel Yakınsamaları

Isaac Newton ve Gottfried Wilhelm Leibniz'in birbirinden bağımsız olarak kalkülüsü icat etmeleri sonucunda, pi sayısının yüzlerce basmaağı hesaplanabilir hâle gelmiştir - ki az sonra göreceğimiz gibi bu, bilimsel işlemler için fazlasıyla yeterlidir.

Kalkülüsten yararlanan ilk yakınsama, 1593 yılında Fransız matematikçi François Viète tarafından geliştirilmiştir:

2π=22⋅2+22⋅2+2+22…\frac{2}{\pi}=\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2+\sqrt{2}}}{2}\cdot\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\dots

Görülebileceği gibi bu ilk yakınsamalar, sonradan gelenekselleşecek sonsuz toplamlar yerine, sonsuz çarpma yöntemini kullanmaktadır.

Bu Reklamı Kapat

1655 yılında John Wallis, benzer bir yakınsama denemiştir:

π2=(21⋅23)⋅(43⋅45)⋅(65⋅67)⋅(87⋅89)…\frac{\pi}{2}=(\frac{2}{1}\cdot\frac{2}{3})\cdot(\frac{4}{3}\cdot\frac{4}{5})\cdot(\frac{6}{5}\cdot\frac{6}{7})\cdot(\frac{8}{7}\cdot\frac{8}{9})\dots

Bu iki yakınsamanın kalkülüsün icadından önce gelmesi takdire şayandır. Kalkülüs sonrası ilk yakınsama, İskoç matematikçi James Gregory tarafından 1671'de, sonrasındaysa birebir aynı yakınsama, 1674'te Leibniz tarafından yapılmıştır (bu nedenle buna Gregory-Leibniz Serisi denmektedir):

arctan⁡z=z−z35+z55−z77+…\arctan{z}=z-\frac{z^3}{5}+\frac{z^5}{5}-\frac{z^7}{7}+\dots

Bu Reklamı Kapat

Bu seriyi z=1z=1 için hesapladığınızda, sonuç π/4\pi/4 olmaktadır.[21]

Bu seri basit kalkülüs açısından faydalı olsa da, algoritmik olarak pi sayısına gereğinden yavaş yakınsayan bir yakınsamadır. Bu nedenle 1706 yılında John Machin, aynı seriyi geliştirerek çok daha hızlı bir yakınsama elde etmiştir:

π4=4arctan⁡15−arctan⁡1239\frac{\pi}{4}=4\arctan\frac{1}{5}-\arctan\frac{1}{239}

Machin, bu yakınsamayı kullanarak noktadan sonraki 100. basamağa kadar erişebilmiştir. Kendisinden sonra gelen matematikçiler, Machin-benzeri Formüller adı verilen algoritmalar geliştirerek, daha da yüksek hızlara erişebilmişlerdir. Bu yöntem, bilgisayarların yükselişine kadar en hızlı hesaplama yöntemi olarak kalmıştır ve sonraki 250 yılda, pi sayısını 620. basamağa kadar verebilmiştir (bu, 1946'da Daniel Ferguson tarafından başarılmıştır).

Bu Reklamı Kapat

Pi sayısının hesaplanabilen basamaklarının sayısının zamana bağlı olarak değişimi. Sadece bu görseli kullanarak, bilgisayarların hangi noktada icat edildiğini tespit edebilir misiniz?
Pi sayısının hesaplanabilen basamaklarının sayısının zamana bağlı olarak değişimi. Sadece bu görseli kullanarak, bilgisayarların hangi noktada icat edildiğini tespit edebilir misiniz?
Wikipedia

Bilgisayarların Kattığı Müthiş Hız

Günümüzde matematikçiler, halen pi sayısını gerçek anlamıyla ifade edebilecek yöntemler aramaktadırlar.[22], [23], [24] Bu çaba için artık süperbilgisayarlar kullanılmaktadır ve basamakları keşif çabası halen sürmektedir!

İlk olarak 1949 yılında John von Neumann ve ekip arkadaşları, ENIAC isimli bilgisayarı kullanarak Pi'nin ilk 2037 basamağını ortaya çıkardılar. O zamandan beri çalışan birçok bilgisayar sayesinde:

  • İlk 1.000.000 basamağı 1973 senesinde keşfettik.
  • 2010 senesinde 2 trilyonuncu basamak keşfedildi.
  • 17 Ekim 2011 günü, Shigeru Kondo, tam 371 günlük süperbilgisayar hesaplaması sonucunda Pi'nin ilk 10.000.000.000.000 (10 trilyon) basamağını açığa çıkardı!
  • 11 Kasım 2016'da, Peter Trueb'in çabaları sayesinde 105 günlük bir hesaplama sonucunda pi sayısının ilk 22.459.157.718.361 (22.4 trilyon) basamağı keşfedildi.
  • 12 Eylül 2021'de, 108 gün süren bir hesaplama sonucunda 62.831.853.071.796 (62.8 trilyon) basamağı keşfedildi.

Pi Sayısının Basamaklarını Kendi Bilgisayarınızda Hesaplayın!

Günümüzdeki algoritmalardan birini kullanmak isterseniz, Gauss-Legendre İteratif Algoritması'nı kullanabilirsiniz. Öncelikle, kullandığınız yazılım dili her ne olursa olsun, şu değerleri tanımlayın:

a0=1, b0=12, t0=14, p0=1a_0=1, \space b_0=\frac{1}{\sqrt{2}},\space t_0=\frac{1}{4}, \space p_0=1

Bu Reklamı Kapat

Sonrasında, şu sayıları döngüsel bir şekilde hesaplatın:

an+1=an+bn2a_{n+1}=\frac{a_n+b_n}{2}

bn+1=anbnb_{n+1}=\sqrt{a_nb_n}

tn+1=tn−pn(an−an+1)2t_{n+1}=t_n-p_n(a_n-a_{n+1})^2

Bu Reklamı Kapat

pn+1=2pnp_{n+1}=2p_n

Bu algoritmayı çalıştırdığınızda, pi sayısı şu şekilde yakınsayacaktır:

π≈(an+bn)24tn\pi\approx\frac{(a_n+b_n)^2}{4t_n}

Pi Sayısının Kaç Basamağı Kullanılmalıdır?

Üniversite-öncesi eğitim hayatının en meşhur "geyiklerinden" biri, pi sayısının kaç alınmasıyla ilgilidir: Öncelikle 3 alarak başlanan eğitim hayatı, sonradan 3.1 ve 3.14 şeklinde ilerler. Nihayetinde belirli mühendislik problemleri için üniversitede 3.14159, yani noktadan sonra 5 basamağa kadar kullanılır; tabii bu evrede bilgisayar kullanımı devreye girdiği için, birçok kişi pi sayısını elle girmek zorunda kalmaz.

Bu Reklamı Kapat

Merak ediyorsanız, modern bilimin en mühendislik konularından olan uzay mühendisliği için NASA, noktadan sonra 15 basamağa kadar kullanmaktadır:

π=3.141592653589793\pi=3.141592653589793

NASA'nın Dawn misyonunun direktörü ve baş mühendisi Marc Rayman, bu tercihi şöyle temellendiriyor:[25]

Neden daha fazla ondalık basamak kullanmadığımızı anlamak için, buna biraz daha yakından bakalım. Sanırım, bilim insanlarının şimdiye kadar gerçekleştirdiği ve noktadan sonra sizin sunduğunuz kadar (noktadan sonra onlarca) basamak sayıyı dahil etmenin gerekli olmadığını, fiziksel olarak gerçekçi hesaplamaları kullanarak bile görebiliriz. Şu örnekleri düşünün:

Bu Reklamı Kapat

Dünya'dan en uzak uzay aracı Voyager 1'dir. Bu yazının yazıldığı gün itibariyle, yaklaşık 20.1 milyar kilometre uzaktadır. Diyelim ki tam olarak bu büyüklükte (veya 40.2 milyar kilometre çapında) bir yarıçapa sahip bir dairemiz var ve çevreyi hesaplamak istiyoruz, yani π×yarıçap×2\pi\times\text{yarıçap}\times2. Yukarıda verdiğim gibi 15. ondalık basamağa yuvarlanan pi kullanırsak, bu çarpımın 125.5 milyar kilometreden biraz fazla çıktığını görürüz. Burada değerin tam olarak ne olduğuyla (isterseniz çarpabilirsiniz) ilgilenmemize gerek yok; daha ziyade, pi'nin daha fazla basamağını kullanmayarak sebep olduğumuz hatanın ne düzeyde olduğuna bakmamız gerekiyor. Başka bir deyişle, pi'yi 15. ondalık noktasından keserek, o daire için birazcık hatalı bir çevre hesaplamış olduk. Bu hata payı, 40.2 milyar kilometre çapındaki daire için sadece 3,8 santimetre civarındadır. Bunu bir düşünün: Etrafımızda 125.5 milyar kilometreden büyük bir dairemiz var ve bu mesafeyi pi'nin 15 basamağıyla hesaplarsak, serçe parmağınızın uzunluğundan bile daha az hata payımız olacak.

Bunu gezegenimiz Dünya üzerinden de düşünebiliriz: Dünya, ekvatorda 12.755 kilometre çapındadır. O zaman çevresi 40.072 kilometredir. Dünyanın çevresini dolaşsaydınız (ve tepeler, vadiler, binalar gibi engeller, dinlenme durakları, okyanustaki dalgalar vb. göz ardı etseydiniz), bu kadar mesafe katederdiniz. pi'nin az önceki gibi 15 basamağa kadar olan, sınırlı versiyonunu kullansaydınız, kilometre sayacınız ne kadar hatalı olurdu? 1 molekül boyutunda olurdu! Elbette moleküller farklı boyutlarda olabilirler; ama sanıyorum bu, pi'yi 15 basamağa kadar kullanmanın sebep olduğu hata payının küçüklüğü hakkında size bir fikir verir. Bunu görmenin başka bir yolu da, daha fazla pi rakamı kullanmayarak kabullendiğiniz hata miktarının, Dünya çevresindeki yolculuğunuz için bir saç telinden 10.000 kat daha ince olacağıdır!

Gelelim en büyük boyuta: Gözlenebilir Evren'e... Evren'in yarıçapı yaklaşık 46 milyar ışık yılıdır. Şimdi farklı bir soru sorayım: Yarıçapı 46 milyar ışıkyılı olan bir dairenin çevresini bir hidrojen atomunun (en basit atomun) çapına eşit bir doğrulukla hesaplamak için, pi sayısının noktadan sonra kaç tane rakamına ihtiyacımız var? Cevap, 39 veya 40 ondalık basamaktır. Evren'in ne kadar fevkalade uçsuz bucaksız olduğunu bir düşünün - ki Evren, gerçekten de kavrayabileceğimizin çok ötesindedir; hatta en karanlık, en güzel, yıldızlarla dolu gecede bile gözlerinizle görebileceğinizin kesinlikle çok çok çok ötesindedir. Bu kadar devasa bir Evren'de tek bir atom ne kadar inanılmaz derecede küçük olduğunu düşünürseniz, böylesi hassas bir hesap için bile sadece 39-40 basamağın yeterli olduğunu görebilir, dolayısıyla birçok mühendislik uygulaması için sadece 10-15 basamağın fazlasıyla yeterli olduğunu anlayabilirsiniz.

Anlayacağınız, pratik tüm amaçlar için 3.14 bile fazlasıyla yeterlidir; garanticiyseniz 3.14159 alabilirsiniz; NASA seviyesinde hassasiyet istiyorsanız 3.141592653589793 alabilirsiniz.

Bu Reklamı Kapat

Bilim Dışında Pi Sayısı

Pi Sayısı ve Müzik

Aşağıda, Pi sayısına dayanarak hazırlanmış bir beste dinleyeceksiniz. Öncelikle sizi besteyle baş başa bırakalım:

Videonun orjinalinde, İncil'den ve çeşitli batıl inançlardan (666 sayısı gibi) örnekler verilmeye zorlanmıştı. Bu sebeple bazılarını gerçek, bilimsel verilerle değiştirdik. Yine de, hoş ve eğlenceli bir video olduğu kanısındayız. Video boyunca verdiğimiz bilgilerin de faydalı olacağı kanısındayız.

Ancak orijinalini görmek isterseniz, buradan izleyebilirsiniz:

Tabii bu müziği kulağa bu kadar hoş getiren başlıca unsurlardan birisi, Pi'nin sayı diziliminin "müzikal" olması falan değildir. Sanatçı, müzikal bilgisi dahilinde hangi sayıları hangi notalara ataması gerektiğini belirlemektedir. Dolayısıyla kulağa hoş gelecek notalar tercih edilmektedir. Daha önemlisi, sol el harmonileri, müzikal değeri arttıracak biçimde belirlenmektedir. Dolayısıyla, her sanatçı bu sayılara farklı notalar atayarak farklı müzikler elde edebilir. Bu müzik, Pi sayısının "evrensel" müziği değildir. Bir diğer örnek buradadır:

Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 12
  • Muhteşem! 5
  • İnanılmaz 5
  • Bilim Budur! 3
  • Merak Uyandırıcı! 3
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • ^ S. Bogart. What Is Pi, And How Did It Originate?. (17 Mayıs 1999). Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Scientific American | Arşiv Bağlantısı
  • ^ W. Jones. (1706). Synopsis Palmariorum Matheseos. ISBN: 9781354508442. Yayınevi: Palala Press.
  • ^ Math Is Fun. What Is Infinity?. Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Math Is Fun | Arşiv Bağlantısı
  • ^ Q. Yuan, et al. Is Infinity A Number?. (1 Mayıs 2011). Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Mathematics Stack Exchange | Arşiv Bağlantısı
  • ^ K. Jay, et al. Difference Between "Infinite" And "Indefinite". Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: English Language & Usage Stack Exchange | Arşiv Bağlantısı
  • ^ Ask a Mathematician. Since Pi Is Infinite, Do Its Digits Contain All Finite Sequences Of Numbers?. (8 Kasım 2009). Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Ask a Mathematician / Ask a Physicist | Arşiv Bağlantısı
  • ^ B. M. Scott, et al. Does Pi Contain All Possible Number Combinations?. (18 Ekim 2012). Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Mathematics Stack Exchange | Arşiv Bağlantısı
  • ^ C. Pickover. The 15 Most Famous Transcendental Numbers -. Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: University of Wisconsin | Arşiv Bağlantısı
  • ^ Math Is Fun. Irrational Numbers. Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Math Is Fun | Arşiv Bağlantısı
  • ^ M. Clagett. (1989). Ancient Egyptian Science. ISBN: 9780871692146. Yayınevi: American Philosophical Society.
  • ^ M. Clagett. (1989). Ancient Egyptian Science: Ancient Egyptian Mathematics. ISBN: 9780871692320. Yayınevi: American Philosophical Society.
  • ^ M. Verner. (2002). The Pyramids: The Mystery, Culture, And Science Of Egypt's Great Monuments. ISBN: 9780802139351. Yayınevi: Grove Press.
  • ^ W. M. F. PETRIE. (1925). Surveys Of The Great Pyramids1. Springer Science and Business Media LLC, sf: 942-943. doi: 10.1038/116942a0. | Arşiv Bağlantısı
  • ^ M. Shermer. (2002). The Skeptic Encyclopedia Of Pseudoscience. ISBN: 9781576076538. Yayınevi: ABC-CLIO.
  • ^ A. J. Wells. (2006). The British National Bibliography.
  • ^ a b R. Herz-Fischler. (2000). The Shape Of The Great Pyramid. ISBN: 9780889203242. Yayınevi: Wilfrid Laurier University Press.
  • ^ a b c d J. Arndt. (2001). Pi - Unleashed. ISBN: 9783540665724. Yayınevi: Springer Science & Business Media.
  • ^ K. Chaitanya. (1982). A Profile Of Indian Culture.
  • ^ E. W. Weisstein. Archimedes Algorithm. Alındığı Yer: Wolfram Alpha | Arşiv Bağlantısı
  • ^ a b C. B. Boyer. (1991). A History Of Mathematics. ISBN: 9780471543978. Yayınevi: Wiley.
  • ^ P. Eymard. (2005). The Number Pi. ISBN: 9780821832462. Yayınevi: American Mathematical Society.
  • ^ P. Beckmann. (2007). A History Of Pi. ISBN: 9780880294188. Yayınevi: Marboro Books.
  • ^ S. Plouffe. On The Computation Of The N^th Decimal Digit Of Various Transcendental Numbers. (2 Aralık 2009). Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: arXiv.org | Arşiv Bağlantısı
  • ^ J. D. Cook. Best Rational Approximations For Pi. (22 Mayıs 2018). Alındığı Tarih: 2 Kasım 2021. Alındığı Yer: Applied Mathematics Consulting | Arşiv Bağlantısı
  • ^ M. Rayman. How Many Decimals Of Pi Do We Really Need?. (16 Mart 2016). Alındığı Tarih: 14 Mart 2022. Alındığı Yer: NASA JPL | Arşiv Bağlantısı
  • C. Rossi. (2004). Architecture And Mathematics In Ancient Egypt. ISBN: 9781107320512. Yayınevi: Cambridge University Press.
  • ^ S. Schnell. Pi Is Encoded In The Patterns Of Life. Alındığı Yer: The Biophysical Society | Arşiv Bağlantısı
  • ^ Pi World Ranking List. Pi World Ranking List. Alındığı Yer: Pi World Ranking List | Arşiv Bağlantısı
  • ^ A. Iyer. Do We Have Any Mathematical Proof That Pi Is Infinite?. (31 Mart 2020). Alındığı Yer: Science ABC | Arşiv Bağlantısı
  • ^ F. A. J.. (1964). Theory And Problems Of Differential And Integral Calculus (Schaum's Outline Series). ISBN: 9780070026537.
Bu Reklamı Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 20/05/2022 14:35:23 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/1066

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Bu Reklamı Kapat
Size Özel (Beta)
İçerikler
Sosyal
Jinekoloji
Patlama
Endokrin Sistemi Hastalıkları
Sars-Cov-2
Santigrat Derece
Antik
Tüy
Wuhan Koronavirüsü
Kanser
Balık Çeşitliliği
Yüzey
Yapay Zeka
Evrim Ağacı
Goril
Atom
Safsata
Kimya Tarihi
Epidemik
Küresel Isınma
Eşcinsellik
Ecza
Mers
Tehlike
Pandemi
Ribozim
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Başlık
Kafana takılan neler var?
Bağlantı
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nda reklamları 2 şekilde kapatabilirsiniz:

  1. Ücretsiz üye girişi yapmak: Sitedeki reklamların %50 kadarını kapatmak için ücretsiz bir Evrim Ağacı üyeliği açmanız ve sitemizi/uygulamamızı kullanmanız yeterli!

  2. Maddi destekçilerimiz arasına katılmak: Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Alıntı Ekle
Kurallar
Komünite Kuralları
Bu komünite, fark edildiğinde ufku genişleten tespitler içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Bu Eseri Neden Tavsiye Ediyorsun?
Aşağıdaki kutuya, isimli neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin faydalı bulunması halinde Evrim Ağacı kullanıcılarından daha fazla UP kazanman mümkün olacak. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Tavsiye Et