Paylaşım Yap
Tüm Reklamları Kapat

Cebirin Temel Teoremi Nedir?

7 dakika
2,839
Cebirin Temel Teoremi Nedir? Inc
Tüm Reklamları Kapat

Şayet üniversitede sayısal bir bölüm okuduysanız "Kalkülüsün temel teoremi" diye bir teoremi mutlaka duymuşsunuzdur. Basitçe bu teorem bize türev ile integral arasında bir ilişki olduğunu söyler ve hem matematikte hem de temel ve uygulamalı bilimlerde oldukça faydalı bir araçtır. İsminden anlaşılacağı üzere, kalkülüsün temel teoremi oldukça temel bir teoremdir çünkü bütün analiz (matematiğin bir dalı) kalkülüsün temel teoremi üzerine inşa edilmiştir.

Peki ya matematiğin öbür dalları, onlar da böyle bir teorem üzerine inşa edilmişler midir? Bunun cevabı evet! Bu yazımızda da matematiğin tarihsel olarak ikinci ortaya çıkan ve günümüzde matematikçiler arasında en popüler çalışma alanlarından biri olarak cebirden bahsedeceğiz. Daha spesifik olarak, cebirden değil, cebirin temel teoreminden (veya d'Alambert Teoremi veya d'Alambert-Gauss Teoremi) bahsedeceğiz.

Cebirin Temel Teoremi, Cebirin Temel Teoremi Değil!

Ancak burada ilginç bir detay var: Kalkülüsün temel teoremi, gerçek anlamıyla kalkülüsün en temel teoremi iken ve kalkülüsün geri kalanı (ve modern kalkülüs ve diferansiyel denklemler) o teorem üzerine inşa edilmişken, bugün inceleyeceğimiz "cebirin temel teoremi", modern cebir aslında bu temel teorem üzerine inşa edilmiş değildir. Bu, tarihsel bir hatalı isimlendirmedir; zira "cebirin temel teoremi" geliştirildiğinde, "cebir" dediğimiz matematik dalı "denklemler teorisi" olarak bilinen çok daha antik bir yapıdaydı. Bu teorem, o dönemde var olan teori için oldukça temel ve önemliydi; fakat modern cebir, "cebirin temel teoremi"nin çok ötesine geçmiştir. Dolayısıyla kalkülüsün temel teoreminin matematikteki yeri ve önemiyle, cebirin temel teoreminin matematikteki yeri ve önemini kıyaslamak doğru olmayacaktır.

Tüm Reklamları Kapat

Üstelik birazdan göreceğimiz üzere, ilginç bir şekilde, "cebirin temel teoremi"nin tamamen cebire dayalı bir ispatı bulunmamaktadır. Bu teoremi ispatlayabilmek için, reel sayıların tamlığının (İng: "completeness of the real numbers") bir türü kullanılmak zorundadır. Bu tamlık, cebirsel bir kavram değildir ve karmaşık sayılara ihtiyaç duymaktadır. Bu da cebirin temel teoreminin pek de "temel" olmadığına işaret etmektedir.

Yine de tarihsel önemi ve matematikteki genel yeri bakımından bu teoremden bahsetmekte fayda görüyoruz.

Cebirin Temel Teoremi Nedir?

Teoreme değinmeden önce birkaç basit tanım yapacağız.

Tanım: Kompleks Sayılar (ve ii Sayısı)

C:={x+iy ∣ x,y∈R, i=−1}\mathbb{C}:=\Big\{x+iy\ |\ x,y\in\mathbb{R},\ i=\sqrt{-1}\Big\}

Tüm Reklamları Kapat

olarak tanımlanan kümeye "kompleks sayılar kümesi" denir. Buradaki ii sayısının oldukça ilginç bir hikayesi var, yeri gelmişken ona da kısaca değinelim.

ii sayısının genelde şu denklemin kökü olarak tanımlandığı düşünülür:

x2+1=0x^2+1=0

Ancak sayının tarihsel gelişimi öyle değildir. Elbette, günün sonunda yine bu denkleme ulaşılır; ancak tarihte ilk olarak kübik denklemlerin çözümünde matematikçilerin karşısına "-1 sayısının karekökü" ifadesi çıkmıştır. Bu sayının gerçek sayılar kümesinde bir karşılığı olmadığı için, -1'in karekökünü ayrı bir sayı olarak kabul edilmiş ve toplama ile çarpma işlemleri aşağıdaki şekilde tanımlanmıştır.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

(a+b−1)+(c+d−1)=(a+c)+(b+d)−1(a+b\sqrt{-1}) + (c+d\sqrt{-1})=(a+c)+(b+d)\sqrt{-1}

(a+b−1)×(c+d−1)=(ac−bd)+(cb+ad)−1(a+b\sqrt{-1}) \times (c+d\sqrt{-1})=(ac-bd)+(cb+ad)\sqrt{-1}

Kısmen yanlış bir düşünce olsa da okur zihninde kolay canlandırması açısından, bu işlemlerin, köklü sayılardaki işlemlere benzediği düşünebilir. Daha sonrasındaysa her defasında -1'in karekökünü yazmak zor geldiği için, bunun yerine notasyon olarak "ii" kullanmak yaygınlaşmıştır. Ayrıca belirtmekte fayda var ki bazı mühendislik dallarında "ii" yerine (yeri geldiğinde) "jj" de kullanılır; yani tüm dünyanın uzlaştığı bir notasyon yoktur.

Kompleks sayılar hakkında konuşacak çok şey var; ama şimdi polinom kavramını tanımlayalım ve ardından teoremimize geçelim.

Tanım: Polinom

C\mathbb{C} kompleks sayılar kümesi olmak üzere,

C[x]:={a0+a1x+a2x2+...+anxn ∣ ai∈C, n∈N}\mathbb{C}[x]:=\Big\{a_0+a_1x+a_2x^2+...+a_nx^n\ | \ a_i\in\mathbb{C}, \ n\in\mathbb{N}\Big \}

Tüm Reklamları Kapat

olarak tanımlanan küme, kompleks katsayılı polinomların kümesidir. Bu kümenin her elemanına "kompleks değerli polinom" denir. Biz, kısaca "polinom" diyeceğiz. En yüksek kuvvetli terimin derecesine bu "polinomun derecesi" denir. Şimdi bu kümenin elemanlarına bir göz atalım. Örneğin:

p(x)=ix+(2−i)x2p(x)=ix+(2-i)x^2

C[x]\mathbb{C}[x] üzerinde bir polinomdur ve derecesi 2'dir çünkü en yüksek dereceli terimin üssü 2'dir.

Tüm Reklamları Kapat

q(x)=x+9ix4q(x)=\sqrt{x}+9ix^4

ise bir polinom değildir; çünkü xx'in karekök içinde olduğu bir terim görüyoruz - ki polinom tanımına baktığımızda kuvvetlerin doğal sayı olması gerekmektedir. Oysa karekök, 1/2. kuvvet ile özdeştir; yani bu kuvvet, bir doğal sayı değildir.

Teorem: Cebirin Temel Teoremi

Cebirin temel teoreminin şunu söylediği söylenir:

  • Teorem: p(x)∈C[x]p(x)\in\mathbb{C}[x], nn. dereceden bir polinom olmak üzere, p(x)=0p(x)=0 denklemini çözen n n farklı kompleks xx sayısı vardır.

Bu teoremi anlamaya çalışalım. Örneğin p(x)=x2+4x+3p(x)=x^2+4x+3 polinomunu ele alalım. Bu polinomun derecesi 22 olduğundan, cebirin temel teoremine göre 22 tane kökü olmalıdır. Gerçekten de −3-3 ve −1 -1 bu polinomun kökleridir (bunu kendiniz de deneyebilirsiniz).

Tüm Reklamları Kapat

Agora Bilim Pazarı
Celestron LCD Ekranlı Dijital Mikroskop II

Celestron Türkiye distribütöründen direkt ve ücretsiz kargo

Celestron 44341 LCD Ekranlı Dijital Mikroskop II onboard yazılımı ile tam renkli 3.5 “TFT LCD ekranı vardır. Dahili 5MP dijital kamera yüksek çözünürlüklü görüntüler ve numunenin SD video kaydını yakalar. Kolay slayt hareketler için tamamen ayarlanabilir mekanik 180 derecelik görüntülerin kolay paylaşımını sağlayan döner ekrana sahiptir.

Teknik Özellikler

  • Görüntüleme Sensörü: 5.0 MP CMOS, mercek yerini 10x büyütme
  • AC Adaptörü: Evrensel 100 – 240 volt, 50/60 Hz
  • USB Bağlantısı: 2.0, 1,5 m kablo dahildir
  • Büyütme (düşük güç): 40x
  • Büyütme (yüksek güç): 400 x (Dijital zoom ile 1600)
  • Kesintisiz Video: 30 fps, Kesintisiz video
  • Birlikte Verilen Aksesuarlar: 1 GB SD hafıza kartı
  • Gövde: Üst ve alt ayarlanabilir aydınlatma
  • Lens Çapı: 3 akromatik – 4x, 10x, 40x
  • Kondenser Mercek: NA 0.65
  • Aydınlatma: Ayarlanabilir dahili üst ve alt LED’ler
  • Aşama: Metal klipleri ile tamamen mekanik olarak (88 mm x 88 mm)
  • Boyutlar: 170 mm x 140 mm x 330 mm
  • Ağırlık: 1600 gr
  • LCD Ekran: Yüksek çözünürlüklü, 4x dijital zoom ile 320 x 240 piksel (90 mm) çözünürlük, 3.5, 262K renk
  • Filtre Tekerlek: 6 pozisyon – kırmızı, mavi, yeşil, 1 mm, 3 mm, 6 mm açıklık
  • Piller: 4 AA
Devamını Göster
₺21,000.00
Celestron LCD Ekranlı Dijital Mikroskop II
  • Dış Sitelerde Paylaş

Fakat hemen dikkatinizi çekebilir: q(x)=x2+2x+1q(x)=x^2+2x+1 polinomuna baktığımızda, tek kökün 11 olduğunu, başka kök olmadığını görürsünüz, ama neden? Yoksa cebrin temel teoremi yanlış mı?

Hayır, yanlış değil elbette. Fakat biz teoremi, bilerek eksik ve yanlış verdik. Bu teorem, genelde bu haliyle bilinse de görüleceği üzere bu haliyle yanlıştır. Maalesef bu teorem, popülarite uğruna çokça çarpıtılmış bir teoremdir. Doğrusunu şimdi veriyoruz.

Teorem: Cebirin Temel Teoremi (Gerçek Versiyonu)

Cebirin gerçek/esas versiyonu şöyledir:

  • Teorem: p(x)∈C[x]p(x)\in\mathbb{C}[x] , n.n. dereceden bir polinom olmak üzere, p(x)=0p(x)=0 denklemini çözen  en az 11, en çok nn tane xx kompleks sayısı vardır.

Şimdi bu teoremi istediğiniz polinomla test edin, bu teoremin her zaman doğru olduğunu göreceksiniz.

Burada matematikten keyif alan kişiler, bu versiyonun bir öncekinin havasını vermediğini, o halinin daha iddialı durduğunu düşünebilirler. Belki öyle gelebilir; ancak bu hali kesinlikle çok daha iddialıdır; çünkü bu teorem, bu haliyle, elinizde bir polinom varsa bu polinomun her zaman 1 kökünü kompleks sayılarda bulabileceğiniz söylemektedir.

Örneğin p(x)=x2+1p(x)=x^2+1'i deneyin, kökleri i i ve −i-i çıkacaktır. Bu polinomun reel sayılarda hiç çözümü olmamasına rağmen kompleks sayılarda çözümü vardır. Bu yüzden bu teorem, kompleks sayılar kümesini bu kadar güçlü yapan teoremlerden birisidir. Size bu kümede her zaman bir kök bulabilme hakkı tanır. Ayrıca size bulabileceğiniz maksimum kök sayısını da söyler.

Peki bu teoremin nasıl uygulamaları vardır?

Cebirin Temel Teoreminin Uygulamaları

Lineer Cebir Üzerine Bir Uygulama

Bu uygulamayı anlayabilmeniz için matris ve determinantları bildiğinizi varsayıyoruz, çünkü burada hepsine girmemiz konuyu çok dağıtırdı.

Elimizde n×n n\times n'lik kompleks değerli bir AA matrisi olsun. Cebirin temel teoremi, bu matrisin her zaman bir özdeğerinin olduğunu söyler. Çünkü özdeğerler

det⁡(A−λI)=0\det(A-\lambda I)=0

Tüm Reklamları Kapat

polinomunun kökleridir. Bu polinomun katsayıları kompleks sayı olduğundan (matrisimizin satır-sütun elemanlarının kompleks sayı olduğunu varsaydık), cebirin temel teoremine göre bu matrisin en az 11 en çok nn tane özdeğeri vardır.

Polinomların Çarpanlara Ayrılması

Cebrin temel teoremi bize bir p(x)=a0+a1x+a2x2+...+anxnp(x)=a_0+a_1x+a_2x^2+...+a_nx^n polinomunun 1≤m≤n1\leq m\leq n arasında bir kök sayısına sahip olduğunu söyler. Bu kökleri x1,x2,...,xmx_1, x_2,..., x_m olarak isimlendirelim. O halde cebirin temel teoremi, bu polinomun alternatif olarak

p(x)=A(x−x1)k1(x−x2)k2...(x−xm)kmp(x)=A(x-x_1)^{k_1}(x-x_2)^{k_2}...(x-x_m)^{k_m}

şeklinde yazılabileceğini söyler. Burada AA bir kompleks sayıdır, ayrıca polinomun baş katsayısı da denir. k1,k2,...,kmk_1, k_2,..., k_m ise köklerin "katlılığı" (İng: "multiplicity") olarak adlandırılır. Örneğin x2−2x+1=0x^2-2x+1=0 polinomunun iki kökü de 11'dir; yani 11'in katlılığı 22'dir, çünkü iki tane o kökten vardır.

Polinomların bu hali, üzerlerinde işlem yapmayı çok kolay hale getirir, çünkü çarpım durumundaki terimlerle uğraşmak daha rahattır. Bu cebrin temel teoreminin en güçlü uygulamalarından birisidir.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Özetini Oku
34
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 20
  • Mmm... Çok sapyoseksüel! 15
  • Muhteşem! 10
  • İnanılmaz 6
  • Merak Uyandırıcı! 5
  • Bilim Budur! 1
  • Korkutucu! 1
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/11/2024 13:37:24 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13103

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Kategoriler ve Etiketler
Tümünü Göster
Keşfet
Akış
İçerikler
Gündem
Eşey
Genler
Evrim Ağacı Duyurusu
Yeşil
Asteroid
Beslenme Bilimi
Kalıtım
Sendrom
Kanser
Dağılım
Ağrı
Nöronlar
Deniz
Sars
Ara Tür
Renk
Embriyo
Tür
Periyodik Tablo
Hukuk
Ortak Ata
Carl Sagan
Evrimsel Tarih
Hayatta Kalma
Kanser Tedavisi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. Taşdemir, et al. Cebirin Temel Teoremi Nedir?. (10 Kasım 2022). Alındığı Tarih: 21 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/13103
Taşdemir, M., Bakırcı, Ç. M. (2022, November 10). Cebirin Temel Teoremi Nedir?. Evrim Ağacı. Retrieved November 21, 2024. from https://evrimagaci.org/s/13103
M. Taşdemir, et al. “Cebirin Temel Teoremi Nedir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 10 Nov. 2022, https://evrimagaci.org/s/13103.
Taşdemir, Mert. Bakırcı, Çağrı Mert. “Cebirin Temel Teoremi Nedir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, November 10, 2022. https://evrimagaci.org/s/13103.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close