Evrim Ağacı
Reklamı Kapat

Schrödinger'in Kedisi: Kuantum Mekaniği, Atom Altı Parçacıkların Tuhaf Dünyası'nı Nasıl Tanımlıyor?

Schrödinger'in Kedisi: Kuantum Mekaniği, Atom Altı Parçacıkların Tuhaf Dünyası'nı Nasıl Tanımlıyor?
Tavsiye Makale
Reklamı Kapat

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Schrödinger'in Kedisi, kuantum mekaniğinde kimi zaman bir "paradoks" olarak nitelendirilen bir düşünce deneyidir. Deney, 1935 senesinde ünlü Avusturyalı fizikçi Erwin Schrödinger tarafından geliştirilmiştir. Schrödinger, bu örneği kuantum mekaniğinin "Kopenhag Yorumu" veya "Kopenhag Yaklaşımı" denen yaklaşımında gördüğü temel sorunu açıklamak için ileri sürmüştür. Ancak bu yoruma geçmeden önce, kuantum mekaniğini biraz daha yakından tanımakta fayda var.

Kuantum Fiziği

Fizikte atom altı parçacıkların durumlarını ve birbirleriyle olan etkileşimlerini inceleyen dalın öncülüğünü kuantum fiziği ve kuantum mekaniği yapmaktadır. 20. yüzyıldan itibaren, maddeleri oluşturan "parçacık" isimli yapıların dünyasını keşfetmeye başladık ve onlar hakkında gündelik hayatımızdaki deneyimlerimize nazaran oldukça tuhaf olan gerçekleri öğrendik. Bu konuya olan ilgiyle beraber “parçacık fiziği” ve “yüksek enerji fiziği” gibi alt dallar da ortaya çıkıp gelişti. Sonrasında küçüklerin dünyasından yola çıkarak büyüklerin dünyasını (mikroevrenden makroevreni) anlamaya çalışan “kozmoloji” ile evren boyutuna kadar genişlettik.

Ayrıca sadece geleceğe dair değil, geçmişe dair sorularımıza da bu parçacıkların dünyası ile cevaplar bulduk, hala da bulmaktayız. En basitinden, “Yaşadığımız evren nasıl oluştu?”, “Görebildiğimiz maddeleri oluşturan temel şeyler nelerdir ve bunlar hangi yasalara uymaktadırlar?” gibi merak ettiğimiz sorulara fizik ile cevaplar verebiliyoruz. Dolayısıyla evreni ve işleyişini anlayabilmek istiyorsak ilk olarak “küçüklerin dünyası”na bakmalı ve incelemeliyiz.

Kabaca söylemek gerekirse gündelik hayatımızdaki maddeleri oluşturan şeyler atomlardır. Yarı-klasik bir model olan “Bohr Atom Modeli” bize şunu söylemektedir:

  • Merkezde artı yüke sahip protonlarla, elektriksel yüke sahip olmayan nötronlar “çekirdek” kavramını oluşturur.
  • Çekirdeğin etrafında ise eksi yüke sahip elektron/elektronlar, izinli yörüngelerde bir “elektron bulutu” şeklinde, elektriksel ve nükleer kuvvetler ile hareket etmektedir.
Bohr Atom Modeli
Bohr Atom Modeli
Wikimedia

İşte bu elektronların hareketine dair bilgiyi “Dalga Mekaniği” ve “Schrödinger Dalga Denklemi” ile elde etmekteyiz. Buraya geçmeden hemen önce konunun daha iyi anlaşılabilmesi için, gündelik hayatımızdan yani klasik fizikten bir örnekle devam edelim:

100 metre uzunluğunda düz bir pistte sabit hızla koşmaya başladığınızı düşünün. Eğer koştuğunuz hızı bilirseniz, pisti ne kadar sürede tamamlayacağınızı yada hareketinizin herhangi bir anında nerede olacağınızı Newton Hareket Yasaları ve klasik fizikle çok kolayca bulabilirsiniz. Aynı işlemi geriye dönük olarak da yapıp herhangi bir süre önce pistin neresinde olduğunuzu bulmanız da mümkün. Sabit hızlı hareket denklemleri ile bunu çok kolayca hesaplayabilirsiniz.

x(t)=V⋅tx(t) = V \cdot t

x(t):x(t): t anındaki yer değiştirme

V:V: hız

Evrim Ağacı'ndan Mesaj

t:t : süre

Bu ve diğer hareket türlerine uyarlanan fizik denklemleri ile gündelik hayatta bunu yapabiliriz. Ama iş atom altı parçacıkların hareketine geldiğinde biraz değişiklik yapmak ve klasik sistemimize ait denklemleri onlara uyarlamak zorundayız. İşte bu hareket denkleminin kuantum versiyonuna biz “Schrödinger Dalga Denklemi” diyoruz.

Schrödinger Dalga Denklemi

Bu denklem aslında Newton’ın İkinci Hareket Yasası ile aynı işleve sahiptir. Bu yasa bize kısaca şunu söyler: Eğer bir cisme bir kuvvet etki ediyorsa, o cisim ivmeli hareket eder; bu kuvvet sabit ise, cismin ivmesi de sabittir; zamanla değişen kuvvet ise ivme de değişmektedir. Yani aslında ilk verdiğimiz örnek olan pist örneğindeki gibi, Schrödinger dalga denklemi bize tüm zamanlar için x(t)x(t)’yi (konumu) belirlememizi sağlar; fakat sadece belirli olasılıklar dahilinde! Gündelik yaşantımızdaki örneklerde olduğu gibi kesinlikten söz edemiyoruz. Schrödinger Dalga Denklemi'ni şu şekilde yazmak mümkündür:

ıℏ∂Ψ∂t=−ℏ22m∂2Ψ∂x2+VΨ\LARGE{\imath\hbar\dfrac{\partial\varPsi}{\partial t} = -\dfrac{\hbar^2}{2m} \dfrac{\partial^2\varPsi}{\partial x^2}+ V\varPsi}

Denklemdeki ilk terim parçacığa ait hamiltonyendir ve kinetik enerjinin kuantum mekaniksel karşılığıdır. İkinci terim ise parçacığa ait potansiyeldir. Bu iki terimin birleşmesiyle parçacığa ait zamana bağlı/bağımsız olmak üzere Schrödinger Dalga Denklemi elde edilmiş olur.

Şimdi bu denklemin üzerine düşünelim ve şu soruyu soralım: Bu dalga denklemi/fonksiyonu tam olarak nedir?

O halde şöyle devam etmekte yarar var: İşi, istatistiksel fizikle birleştirelim! Maddeler milyarlarca atom ve moleküllerden oluşmakta. Bunların içerisinde ise bundan bile çok sayıda atom altı parçacık bulunmaktadır. Dolayısıyla elimizde çok sayıda parçacıktan oluşan sistemler vardır. Bunların birbirleriyle etkileşimi, en basitinden gaz molekülü içerisindeki atomların davranışları oldukça karmaşık olmakla birlikte, ölçümdeki başlangıç koşullarına hassasiyet gibi durumlardan ötürü bu neredeyse imkansızlaşmakta ve istatistiksel olarak inceleme mümkün olmaktadır.

Ama olasılığın işin içine girmesinin ana nedeni bu değildir. Bunu anlamak için kuantum fiziksel sistemlerde ölçüme ve Heisenberg Belirsizlik İlkesi’ne bakmalıyız.

Heisenberg Belirsizlik İlkesi

Bu ilke kuantum fiziğinin temel yapı taşlarından biridir. Heisenberg Belirsizlik İlkesi'ni şu şekilde ifade etmek mümkündür:

Δx⋅ΔP≥ℏ2\LARGE{\varDelta x \cdot \varDelta P \ge \dfrac{\hbar}{2}}

Werner Heisenberg’in keşfettiği ilke şunu söylemektedir:

Bir atomaltı parçacığa ait x konum ve P momentum gözlenirleri aynı anda aynı kesinlikle/hassasiyetle ölçülemez. Birine ait değerdeki belirsizlik azalırsa, diğer değerdeki belirsizlik artmaktadır.

Yani bu değişkenlerden birisini ne kadar yüksek kesinlik ile ölçersek, diğerindeki kesinlik o düzeyde azalmaktadır ve bu nedenle de olması gereken değerden uzak ("hatalı") bir değer elde ederiz.

Bu olasılıkçı yaklaşım, başta fizikçiler tarafından oldukça soğuk karşılandı ve bu belirsizliğe neden olanın, aslında kuantum teorisinin eksikliğinden, yani tamamlanmamış olmasından kaynaklandığı ileri sürüldü. Başta Albert Einstein olmak üzere bu konuya birçok fizikçi itirazlar sundu. Fakat ilk öne sürüldüğü dönemden günümüze kadar yapılan deney ve gözlemler, bu ilginç durumun kuantum teorisinin eksik olmasından değil, aksine, maddenin doğasının tam olarak böyle olmasından kaynaklandığını göstermiş oldu.

Heisenberg'in belirsizlik ilkesini, işin matematiğine girmeden göstermeyi deneyelim: Fizikte "gözlem yapmak" ya da "bir sistem hakkında bilgi almak", ona ışık yani “foton” yollamak demektir. Elbette farklı gözlem teknikleri de mevcuttur; ancak en yaygın yöntem, fotonlar ile gözlenen cismi etkileşime sokmaktır. Foton, ışığı oluşturan, enerjiye sahip, elektromanyetik alanın kuvvet taşıyıcı parçacığıdır. Işık, bu foton dediğimiz “enerji paketçikleri”nden oluşur. Gözlemlemek istediğiniz sisteme bu fotonları yollarsınız ve sistemden size yansıyan fotonlar ile sistem hakkında bilmeniz gereken parametreleri öğrenmiş olursunuz. Klasik dünyamızda işler böyle ilerlemektedir.

Aslında kuantum boyutta da durum böyledir; fakat incelediğiniz sistemler boyut olarak fotonlarla aynı boyuta ve hatta daha da küçük boyutlara sahip olduğundan dolayı, fotonla parçacık arası etkileşim nedeniyle tam da burada belirsizlik meydana gelmektedir. Çünkü sonuçta gönderdiğiniz fotonun bir enerjisi var ve bu enerji parçacıkla etkileşime girince bir kısmı parçacığa aktarılmaktadır. Bu da sonuç olarak bize kuantum sistemlerde ölçümde belirsizliğe sebep olmaktadır. Kaynaklarımızdan bu konuda daha fazla bilgiye ulaşabilirsiniz.

Elektron Çift Yarık Deneyi ve Gözlemci Etkisi
Elektron Çift Yarık Deneyi ve Gözlemci Etkisi
Pixabay

Üstteki bilgilerden sonra, herhangi bir atom altı parçacık için bu durumu inceleyelim ve bir parçacığın, herhangi bir tt anındaki konumunu bulmaya çalışalım.

Parçacığa ait Hamiltonyen ve potansiyeli zamana bağlı yazarsak, Schrödinger dalga denklemi elde edilmiş olur. Bu denklemin çözümü bize o parçacığın herhangi t anındaki bir x değerinde (belirli bir aa ve bb aralığında) bulunması olasılığını verecektir. Burada önemli olan, olasılık sözcüğüdür. Biz buna “olasılık yoğunluğu” (İng: "Probability Density") diyoruz. Dalga fonksiyonunu normalize ettikten sonra, karesini alarak bunu elde edebiliriz. Ortaya çıkan çözüm, parçacığın herhangi bir değer aralığında bulunma olasılığını verir ve bu olasıklar dahilinde kuantumsal sistemler ele alınır. Parçacığın t anında bulunma olasılığını şu şekilde ifade edebiliriz:

∫∣Ψ(x,t)∣2dx\LARGE{\int \mid \varPsi (x,t) \mid ^2 dx}

Bu istatistiksel yaklaşımla beraber Kuantum Fiziği’nin “Kopenhag Yorumu” dediğimiz bir açıklama getirilmiştir.

Kopenhag Yorumu

Kuantum mekaniğinin Kopenhag Yorumu'na göre, kuantum mekaniği, bize tarafsız gerçekliği tanımlamamakta, bunun yerine sadece gözlem/ölçüm yapabilme olasılıklarına yönelik bilgi verebilmektedir. Bunu basit bir şekilde tanımlaması oldukça güçtür; zaten yine önemli fizikçilerden John Cramer, bu yaklaşımı şöyle tanımlamaktadır:

Kuantum mekaniğinin Kopenhag yaklaşımını ele alan, tartışan ve eleştiren çok geniş bir literatür bulunuyorsa da, bu yorumun tam ve açık bir tanımını yapan hiçbir kaynak bulunmuyor gibi gözükmektedir.

Yine de tanımlamaya çalışalım: Bu yoruma göre, yukarıda ölçmeye çalıştığımız atom altı parçacık, aslında hiçbir yerde değildi. Parçacığı belirli bir yerde bulmaya zorlayan aslında biziz; yani “ölçüm”ün kendisidir. Eğer ölçüm yapılmazsa, parçacık bütün bu konumların hepsinde, yani “süperpozisyon” durumunda bulunmaktadır ve biz ölçüm yaparak, bu süperpozisyon durumlarını tek bir değere/olasılığa "çökertiyoruz". Bunu da ölçümle parçacığı zorlayarak, ona etki ederek yapıyoruz.

İşte bu yorumu anlamanın en güzel yolu, bu yoruma yönelik geliştirilmiş en meşhur eleştiri olan Schrödinger'in Kedisi deneyidir. Baştan söylemekte fayda var ki bu deney gerçek bir deney değildir; sadece bir "düşünce deneyi"dir ve dolayısıyla gerçekte hiçbir kedi zarar görmemiştir.

Schrödinger'in Kedisi Düşünce Deneyi
Schrödinger'in Kedisi Düşünce Deneyi
Pixabay

Schrödinger'in Kedisi

Schrödinger, parçacık ya da dalgalardan ziyade enerjiye odaklanan ve bundan yola çıkarak kuantum mekaniğini yorumlayan Kopenhag yaklaşımını eleştirmek için, kutu içerisinde bulunan bir kediden söz eder.

Bu kediyi kendi başına bir süre bıraktığımızda, kedinin hala hayatta olup olmadığını herhangi bir gözleme dayanmaksızın bilmenin hiçbir yolu yoktur. Çünkü kedinin kutu içerisinde meydana gelen önceki bir rastgele koşula bağlı olarak halen hayatta olması veya çoktan ölmüş olması mümkündür. Ancak ve ancak kutu açılacak olursa veya kediyle ilgili gözlem yapmamızı sağlayan bir aracın konuya dahil olması durumunda kediyle ilgili kesin bir bilgiye ulaşabiliriz. Aksi takdirde kutu içerisindeki kedi kuantum mekaniğinin Kopenhag yorumuna göre hem ölüdür, hem de diri... Yani süperpozisyon durumundadır. Schrödinger bu düşünce deneyini şöyle anlatmaktadır:

Çelikten bir oda içerisinde bir kedi olduğunu düşünün. Ayrıca oda içerisinde bir Geiger sayacı [radyokatif parçacıkları tespit eden bir araç] ile çok az bir miktar radyoaktif madde bulunmaktadır. Bu madde o kadar küçüktür ki, muhtemelen 1 saat içerisinde atomları yarılanacaktır ve ışıma yapacaktır. Ancak eşit olasılıkla bu madde 1 saat içerisinde hiçbir ışıma yapmayacaktır. Eğer ki ışıma yaparsa, Geiger sayacının tüpü boşalacak ve bir çekicin hareketini tetikleyecektir. Bu çekiç, ufak bir hidrosiyanik asit tüpünü parçalayacaktır. Eğer ki birisi tüm sistemi kendi başına 1 saat boyunca bırakacak olursa, eğer ki bu süreçte hiçbir ışıma meydana gelmezse kedi halen hayatta olacaktır. Bu sistemin psi-fonksiyonu, kedinin hayatta olması ile ölü olması (ifademi bağışlayın) durumlarını karışık halde ve eşit parçalarda olacak şekilde tanımlayacaktır.

Bu, normalde atomik düzeyde bulunan belirsizlik durumunun makroskopik bir belirsizliğe dönüştüğü tipik bir örnektir. Bu durum, yalnızca doğrudan gözlem ile anlaşılabilir. İşte bu nedenle gerçekliği temsil eden 'bulanık modeli' saf bir şekilde hemen kabul etmemeliyiz. İçerisinde açık olmayan ya da çelişkili hiçbir şey bulunmamaktadır. Titrek veya odaklanmamış bir fotoğraf ile bulutların ve sis dumanlarının çekildiği bir fotoğraf arasında fark vardır.

Burada anlaşılması gereken şey, kedi dediğimiz varlığın makro bir cisim olduğu gerçeğidir. Dolayısıyla gerçek bir kuantum deneyinde makro boyuttaki cisimlere (örneğin bir kediye) yer verilmez; fakat kedi yerine parçacıkları düşünecek olursanız, kuantum mekaniğinin Kopenhag Yorumu'nun söylemek istediği şeyi gayet iyi anlayabilirsiniz.

Eğer Kopenhag Yorumu gerçekten doğruysa, bu durumda kuantum dünyasının aşina olduğumuz dünyadan ne kadar farklı işlediğini görmüş oluyoruz. Her ne kadar tüm sağduyumuza ve gündelik algılarımıza ters olsa da, kuantum dünyasında işler böyle yürüyor.

Garip ve sıra dışı...

Kuantum fiziği kafanızı karıştırmıyorsa, onu gerçekten anlamamışsınızdır. Niels Bohr

Popüler Kültürde Schrödinger'in Kedisi

Bu ilginç düşünce deneyi, popüler kültürde de kendine yer bulmayı başarmıştır. Konu hakkında hazırlanan birçok görsel ve "meme", günlük yaşantımızdaki çeşitli olaylarla Schrödinger'in kedisi deneyini ilişkilendirmektedir. Aşağıdaki iki örnek bunu göstermektedir.

Schrödinger'in Telefonu
Schrödinger'in Telefonu
Dolabı açana kadar hem kırıklar hem değil!
Dolabı açana kadar hem kırıklar hem değil!
Schrödinger'in kedisi hem yaşıyor, hem ölü olabileceğine göre; doktorun da hem iyi, hem kötü haberlerinin olması çok normal, değil mi? Doktorun sözlerini dinleyene kadar hangisi olduğunu bilmemiz mümkün değil...
Schrödinger'in kedisi hem yaşıyor, hem ölü olabileceğine göre; doktorun da hem iyi, hem kötü haberlerinin olması çok normal, değil mi? Doktorun sözlerini dinleyene kadar hangisi olduğunu bilmemiz mümkün değil...
Ben Schwartz

Schrödinger ile İlgili Bir Fıkra

Heisenberg, Schrödinger ve Ohm bir gün arabayla seyehat etmektedirler ve bir polis onları durdurur. Polis, arabayı kullanan Heisenberg'e sorar:

Ne kadar hızlı gittiğinizi biliyor musunuz?

Heisenberg der ki:

Hayır; ama nerede olduğumu tam olarak biliyorum!

Polis ne dediğini anlamaz ve dolayısıyla şöyle der:

Hız limitinin 60 olduğu yerde 90 ile gidiyordunuz.

Heisenberg ellerini çılgınca sallayarak şöyle der:

Ah, harika, yaptığını beğendin mi? Şimdi nerede olduğumu da bilmiyorum.

Polis şoförün tuhaf hareketlerinden şüphelenir ve bagajı açmalarını ister. Daha bagaj açılır açılmaz gözleri faltaşı gibi açılır ve "Burada ölü bir kedi olduğunun farkında mısınız?!"

Şoför yanındaki koltukta oturan Schrödinger öfkeyle "Seni gerizekalı, senin yüzünden artık biliyoruz!"

Polisin canına tak eder ve hepsini tutuklamaya karar verir.

Ohm direnir.

Bu İçerik Size Ne Hissettirdi?
  • Güldürdü 14
  • Merak Uyandırıcı! 10
  • Muhteşem! 6
  • Mmm... Çok sapyoseksüel! 5
  • Tebrikler! 4
  • Bilim Budur! 2
  • İnanılmaz 2
  • Umut Verici! 1
  • Grrr... *@$# 1
  • Üzücü! 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • D. J. Griffiths, et al. (2018). Introduction To Quantum Mechanics. ISBN: 978-1107189638. Yayınevi: Cambridge University Press.

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 29/10/2020 11:58:42 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/2340

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Güncel
Karma
Agora
Bilim İnsanı
Uterus
Habercilik
Su Ayısı
Sars Virüsü
Müzik
Yaşlılık
Robot
Bakteri
Biliş
Maskeler
Mars
Korku
Atom
Diyet
Zihin
Kalp
Mers
Evrimsel Süreç
Savunma
Kedi
Gezegen
Oyun Teorisi
Bilim Felsefesi
Müfredat
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Reklamı Kapat
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Şu anda yapabileceğim en iyi şey, metalden kafesler içinde kamburları çıkmış halde ve umutsuzlukla dışarı bakan şempanzelerin sesi olmaktır. Çünkü onların sesi olan kimse yok.”
Jane Goodall
Geri Bildirim Gönder