Paylaşım Yap

Deprem Nedir? Depremlere Sebep Olan Doğa Yasaları ve Bu Yasaları Açıklayan Modeller Nelerdir?

8 dakika
50,888
Deprem Nedir? Depremlere Sebep Olan Doğa Yasaları ve Bu Yasaları Açıklayan Modeller Nelerdir?
Evrim Ağacı Akademi: Depremler Yazı Dizisi

Bu yazı, Depremler yazı dizisinin 1 . yazısıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al

Deprem dediğimiz doğa olayı, yer kabuğundaki kırılmalar nedeniyle ortaya çıkan titreşimlerin dalgalar halinde yayılmasıdır. Bu olay, sanılanın aksine, yerkabuğunun hareketsiz değil de hareketli olduğunun bir göstergesi olup, kaotik süreçler içeren ve fizik bilimi başta olmak üzere diğer bilim dalları tarafından da incelenen bir olgudur.

Depremi inceleyen bilim dalı sismoloji olarak bilinmektedir. Nasıl oluştuğunu, deprem dalgalarının nasıl yayıldığını, bilimsel metotlar ve ölçüm aletleri yardımıyla incelemektedir.

Depremin Oluş Nedenleri ve Türleri

Dünya’nın yapısına baktığımızda jeolojik ve jeofizik çalışmalardan elde edilen bilgilere göre bir yeryüzü modeli oluşturulmuştur. Modele göre yerkürenin 70-100 km kalınlığında bir taşküre yani “litosfer” bulunmaktadır. Okyanuslar ve kıtalar burada bulunmaktadır. Diğer bir bölge ise “manto”dur. Manto genelde katıdır; ama yerel bazda sıvı ortamları da vardır. Mantonun altında çekirdek bulunmakta olup demir-nikel karışımına sahiptir. Çekirdeğe gidildikçe sıcaklık artmakta olup enine dalgaların yayılabilmesi için çekirdeğin sıvı olması gerektiği sonucu ortaya çıkmaktadır.

Wikimedia

Litosferin altında ise “astenosfer” denilen katman bulunmaktadır. Yumuşak üst manto olarak da bilinir. Burada konveksiyon akımları nedeniyle oluşan kuvvetler, taş kabuğu parçalayarak “levha”ları meydana getirmektedir. Bu konveksiyon akımlarının ana nedeni ise radyoaktivitedir. Radyoaktivite arttıkça sıcaklık ve ısı artmakta olup, konveksiyon akımlarına sebep olmaktadır. Bu akımlar, listosferde gerilmelere (stres) sebep olurken zayıf levhaların da kırılmasına yol açar. Dünya’da halen 10 büyük levha ve çok sayıda küçük levha bulunmaktadır. Bu levhalar, astenosferde sal gibi yüzmektedir. Ayrıca insanların hissedemeyeceği bir hıza sahip olup, hareket halindedirler.

Bu konveksiyon akımlarını incelediğimizde, akımların yüksek olduğu yerlerde levhalar birbirlerinden uzaklaşmakta olup, burada magma ile okyanus ortası sırtları oluşmaktadır. Levhalar, hareketli olmaları sebebiyle birbirleriyle sürekli temas halindedirler. Bu temas sırasında sürtünmeler ve sıkışmalar olmakta, sürtünen levhalardan biri aşağı mantoya batmaktadır. Eriyerek gitgide yitme zonlarını oluştururlar. Bu olay ardışıklı şekilde devam etmekte olup etkileşime girdikleri yerler ise deprem bölgeleri olarak adlandırılmaktadır.

Levhaların hareketlerine bakacak olursak, biri diğerinin altına giren iki levha arasında, hareketi engelleyen bir sürtünme kuvveti mevcuttur. Levhanın hareket etmesi ancak bu sürtünme kuvvetinin aşılması sonucunda gerçekleşir.

Sürtünme kuvvetini aşan levhalar sonucu bir hareket meydana gelmekte olup, bu göreli harekete bağlı olarak sarsıntı meydana gelir. Bu sarsıntı çok kısa zaman aralığında gerçekleşir ve “şok” niteliği taşır. Sonuç olarak çok uzak mesafelere ulaşan deprem dalgaları oluşmaktadır. Bu açığa çıkan deprem dalgalarının depremin oluş noktasından uzaklaştıkça enerjisi azalarak yayılır. Yayılma sonucu “fay” denilen arazi kırıkları meydana gelir. Bazen bu arazi kırıkları gözlemlenebilirken bazen de yüzey tabakaları arasında kaldığı için gözlemlenemez.

Depremlerin bu şekilde oluşumu 1911 yılında Amerikalı Reid tarafından incelenmiştir. Reid'in, “Elastik Geri Sekme Kuramı” adını verdiği bu olgu, laboratuvarlarda defalarca denenerek ispatlanmıştır. Bu kurama göre depremler, çoğunlukla deprem sırasında faylarda esnek geri sekmeler şeklinde, yani fayın her iki tarafında ve ters yönlü olmak üzere gerçekleşir.

Deprem Türleri

Depremleri oluş nedenlerine göre sınıflandırırsak, 3 ana gruba ayırabiliriz:

  1. Tektonik Depremler
  2. Volkanik Depremler
  3. Çöküntü Depremleri

İlk gruptaki tektonik depremler, yukarıdaki anlatılan sebeplerden dolayı meydana gelmektedir. Genellikle levha sınırlarında oluşmaktadır. Dünya’daki depremlerin yaklaşık %90’ı bu grupta yer alır. Ülkemizdeki depremler de bu türden depremlerdir.

İkinci gruptaki volkanik depremler, yerin altındaki erimiş maddelerin yeryüzüne çıkarken çıkardıkları gazların fiziksel ve kimyasal olarak patlaması sonucu meydana gelirler. Yerel bazlı depremler olup büyük çapta hasara yol açmazlar. En çok Japonya ve İtalya gibi ülkelerde gözlemlenir.

Son gruptaki çöküntü depremler ise, yer altındaki boşlukların, jipslerin ve kayaçların erimesi sonucu ortaya çıkan depremlerdir. Bunlar da yerel bazlı olup, enerjileri azdır. Büyük çapta hasara yol açmazlar.

Deprem Yasaları

Yukarıda depremin doğası ve türleri hakkında bilgilendirme yaptığımıza göre, işin fiziksel/matematiksel altyapısına artık bir bakış atabiliriz. Bunu da fiziğin alt dalı olan ve birçok bilim dalını etkileyen istatistiksel mekaniğin yöntemleri ile yapacağız.

Deprem olayı, doğal yapısı gereği kaotik bir süreç olup, nonlineer dinamik sistemler altında oldukça yoğun olarak incelenen bir konudur. Bu özelliğinden ötürü de depremleri uzun dönemde yüksek bir kesinlik ile tahmin etmek mümkün olmamaktadır. Bunun detaylarını hava durumu örneği üzerinden, buradaki yazımızda analiz etmiştik.

Guternberg - Richter Yasası

Genel olarak bu yasa, deprem büyüklük dağılımı olarak bilinir. Deprem büyüklüklerine karşılık, meydana gelen deprem sayıları logaritmik olarak çizilir. Bu eşitlik, şu şekilde temsil edilir:

log⁡(N)=a−bM\LARGE{\log(N) = a - bM}

NN parametresi, MM seviyesinden daha büyük depremlerin sayısı olup, aa ve bb, deprem oluşumuna ait fiziksel parametredir. Bu parametrelere detaylı değinmeyeceğiz; ancak ilgili okuyucular, kaynaklar kısmından detaylı bilgi bulabilirler.

Güney Kaliforniya ve Japonya depremleri için deprem büyüklük- sayı grafikleri aşağıdaki gibidir. Deprem verileri, deprem kataloglarından alınmıştır.

Güney Kaliforniya için Guternberg-Richter Grafiği
Güney Kaliforniya için Guternberg-Richter Grafiği
Depremlerin İstatistiksel Mekaniksel İncelenmesi Lisans Tezi -2019 (Anıl Kocabaldır)
Japonya için Guternberg-Richter Grafiği
Japonya için Guternberg-Richter Grafiği
Depremlerin İstatistiksel Mekaniksel İncelenmesi Lisans Tezi -2019 (Anıl Kocabaldır)

Omori Yasası

Depremde meydana gelen en büyük şiddet değerine sahip olan deprem, “ana şok” olarak ifade edilir. Bu ana şoktan sonra meydana gelen depremler, ana şoktan küçük ve giderek deprem sayısı bakımından azalma gösterir. Bu depremlere de “artçı şok” denilmektedir.

Ana şoktan sonra artçı şokların sayısı zamanla azalır ve bu azalma, Omori Yasası olarak ifade edilen bir yasayı takip etmektedir. Artçı şokların azalma oranı şu eşitlikle ifade edilebilir:

n(t)=K(t+c)p\LARGE{n(t) = \frac{K}{(t +c)^p}}

Eşitlikteki n(t)n(t), t zaman sonrasındaki artçı şokların sayısı olup, KK, cc ve pp ampirik sabitlerdir.

Güney Kaliforniya’daki 1999 yılında meydana gelen, Richter ölçeğinde 7.10 şiddetine sahip Hector Mine depremi ve 1992 yılında meydana gelen 7.3 şiddetindeki Landers depremi için Omori Yasası aşağıdaki grafiklerdeki gibidir.

Hector Mine Depremi için Omori Yasası - 10/16/1999
Hector Mine Depremi için Omori Yasası - 10/16/1999
Depremlerin İstatistiksel Mekaniksel İncelenmesi Lisans Tezi -2019 (Anıl Kocabaldır)
Landers Depremi için Omori Yasası - 28/06/1992
Landers Depremi için Omori Yasası - 28/06/1992
Depremlerin İstatistiksel Mekaniksel İncelenmesi Lisans Tezi -2019 (Anıl Kocabaldır)

Deprem Modelleri

Depremlerin mekanizmalarını açıklamak adına kullanılan fiziksel/matematiksel modellemeler mevcuttur. Bu modellerin amacı eldeki veriler ile birlikte sanal deprem verileri elde edip deprem mekanizmasını tam olarak anlamaya çalışmaktır. Daha ileri seviyede ise deprem vs. gibi kaotik süreçlerin ileriye dönük tahminindeki “hata paylarını” oldukça küçültmeye çalışmak hedeflerden sadece biridir. Bu, yukarıdaki yasalara ek diğer yasalarla birlikte, bu yolda önemli ipuçları barındırmakta olan modelleri bu yazımızda fazla detaya ve matematiğe girmeden değineceğiz.

Burridge-Knopoff Modeli

Kronolojik olarak gidersek ilk değineceğimiz model 1967 yılında Burridge-Knopoff tarafından ileri sürülen “Burridge – Knopoff Modeli”dir. Kabaca bu model, yaylı blok model olarak da bilinmektedir. 2 boyutlu olup dinamik bir sistem özelliği barındırır.

Burridge-Knopoff Modeli için Bloklar
Burridge-Knopoff Modeli için Bloklar
Complexity and Criticality - Christensen & Moloney
Burridge - Knopoff Modeli için Bloklar - 2
Burridge - Knopoff Modeli için Bloklar - 2
Complexity and Criticality - Christensen & Moloney

Modele göre her blok, en yakın 4 komşuya bağlıdır. Bloklar sabit katı bir levhaya sürtünmeli olarak bağlıyken, aynı zamanda da başka bir yay setiyle de tek bir katı tahrik plakaya bağlıdır. İki katı plakanın göreli hareketi nedeniyle bloklar tahrik edilmekte olup, enerji biriktirler. Biriken bu enerji ile, etki eden kuvvet eşik değeri aştığında bloklar kaymaya başlar. Bu böylece diğer bloklara aktarılır. Sonuç olarak deprem dediğimiz stres boşaltımı meydana gelir.

CNM (Coherent Noise Model)

Bu model M. E. J Newman ve Kim Sneppen tarafından oluşturulmuştur. Kabaca, dışarıdan uygulanan, eşzamanlı gürültü (İng: "coherent noise") ile yönlendirilen, basit bir dinamik modeldir. Zaman ortalamalı bir model olup, 1987 yılında Bak, Tang ve Weisenfeld tarafından, sürekli büyüyen kum yığınına kum tanelerinin konmasıyla ortaya çıkan “çığ” etkisine benzer şekilde matematiksel olarak ifade edilir. Ki biz bu sistemlere fizikte “Kendiliğinden Organize Kritiklik” (İng: "Self-Organised Criticality") içeren sistemler diyoruz.

OFC Model (Olami -Feder- Christensen Model)

Bu model ise, Olami – Feder Christensen tarafından 1992 yılında ileri sürülmüştür. CNM’de olduğu gibi, bu model de kendiliğinden organize kritiklik içermektedir. Aslında, ilk olarak değindiğimiz Burridge-Knopoff modelinin, yarıdurgun 2 boyutlu bir versiyonu olarak düşünülebilir.

Diğer Modeller

Deprem mekanizmalarını açıklayan modellerden 3 tanesini inceledik. Elbette bilim insanları tarafından günümüzde kullanılan oldukça farklı modeller de bulunmakta. Ama hepsinin ortak noktası, bu ilk 3 model baz alınarak olguları açıklamak... Yani diğer tüm modellerinin çıkış noktaları, kronolojik olarak bu modellerdir diyebiliriz.

Sakin Kalma Dağılımları

Son olarak değinmemiz gereken ve bu modellerden ortaya çıkan bir dağılım var. "Sakin Kalma Dağılımları" dediğimiz (İng: "Calm-time distributions"), art arda meydana gelen depremler arasındaki sürelerin zamana göre çizildiği grafiklerdir. Kabaca iki olay (bu durumda deprem) arasındaki zamansal dağılım olarak ifade edilir.

Bu ve diğer yasalardan elde edilen grafikler, fizikteki “güç yasası” (İng: "Power Law") formuna uyar. Dolayısıyla depremlerin ve hatta diğer nonlineer dinamik sistemlerin geleceği hakkında oldukça önemli bilgiler verir.

Landers ve Hector Mine depremleri için sakin kalma dağılımlarına ait grafikler aşağıdaki gibidir:

Landers Depremi için Sakin Kalma Dağılımları
Landers Depremi için Sakin Kalma Dağılımları
Depremlerin İstatistiksel Mekaniksel İncelenmesi Lisans Tezi -2019 (Anıl Kocabaldır)
Hector Mine Depremi için Sakin Kalma Dağılımları
Hector Mine Depremi için Sakin Kalma Dağılımları
Depremlerin İstatistiksel Mekaniksel İncelenmesi Lisans Tezi -2019 (Anıl Kocabaldır)

Sonuç olarak bu yazımızda depremlerin doğası ve altında yatan mekanizmalara fizik ve matematik açısından genel bir bakış atmış olduk. Geçmişten günümüze doğru bilimsel anlamdaki bu açıklamalarla aslında doğadaki kaotik davranışların Markovyen ve Nonmarkovyen durumları hakkında bir inceleme yaptık. İlgili okuyucular için bu kavramlar hakkında daha teknik ve matematiksel bilgilere kaynaklar kısmından ulaşılabilir.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Depremler Yazı Dizisi

Bu yazı, Depremler yazı dizisinin 1 . yazısıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
93
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

İçerikle İlgili Sorular
Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 60
  • İnanılmaz 23
  • Merak Uyandırıcı! 20
  • Mmm... Çok sapyoseksüel! 16
  • Grrr... *@$# 16
  • Muhteşem! 14
  • Bilim Budur! 14
  • Umut Verici! 6
  • Korkutucu! 6
  • Güldürdü 3
  • Üzücü! 3
  • İğrenç! 3
Kaynaklar ve İleri Okuma

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/11/2024 11:53:09 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8936

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Eşey
Genler
Evrim Ağacı Duyurusu
Yeşil
Asteroid
Beslenme Bilimi
Kalıtım
Sendrom
Kanser
Dağılım
Ağrı
Nöronlar
Deniz
Sars
Ara Tür
Renk
Embriyo
Tür
Periyodik Tablo
Hukuk
Ortak Ata
Carl Sagan
Evrimsel Tarih
Hayatta Kalma
Kanser Tedavisi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
A. Kocabaldır, et al. Deprem Nedir? Depremlere Sebep Olan Doğa Yasaları ve Bu Yasaları Açıklayan Modeller Nelerdir?. (29 Haziran 2020). Alındığı Tarih: 21 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/8936
Kocabaldır, A., Bakırcı, Ç. M. (2020, June 29). Deprem Nedir? Depremlere Sebep Olan Doğa Yasaları ve Bu Yasaları Açıklayan Modeller Nelerdir?. Evrim Ağacı. Retrieved November 21, 2024. from https://evrimagaci.org/s/8936
A. Kocabaldır, et al. “Deprem Nedir? Depremlere Sebep Olan Doğa Yasaları ve Bu Yasaları Açıklayan Modeller Nelerdir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 29 Jun. 2020, https://evrimagaci.org/s/8936.
Kocabaldır, Anıl. Bakırcı, Çağrı Mert. “Deprem Nedir? Depremlere Sebep Olan Doğa Yasaları ve Bu Yasaları Açıklayan Modeller Nelerdir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, June 29, 2020. https://evrimagaci.org/s/8936.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close