Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Deep Blue'dan 20 Yıl Sonra: Yapay Zeka, Satrancı Fethettikten Beri Nasıl Gelişti?

Deep Blue'dan 20 Yıl Sonra: Yapay Zeka, Satrancı Fethettikten Beri Nasıl Gelişti? Scientific American
Dünya Satranç Şampiyonu Garry Kasparov
9 dakika
4,576
Evrim Ağacı Akademi: Yapay Zekaya Giriş Yazı Dizisi

Bu yazı, Yapay Zekaya Giriş yazı dizisinin 9. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Yapay Zeka Hakkında Bir Rehber: Nedir, Ne Değildir, Ne Olacaktır?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al

Yirmi yıl önce IBM’in Deep Blue bilgisayarı, altı rauntluk bir maçta yıllardır dünya satranç şampiyonu olan Garry’i yenen ilk makine olarak dünyayı şaşkına çevirdi. Bu süper-bilgisayarın kuşkucu Garry Kasparov’a karşı başarısı, bir makinenin büyük bir ustayı nasıl alt ettiği konusunda tartışmalara yol açtı. Bu durum, Kasparov ve diğerleri tarafından şirketin hile yaptığına dair suçlamalara neden oldu. Mayıs 1997’deki uğursuz maça kadar geçen aylarda ve yıllarda yaşananlar, aslında devrimci olmaktan ziyade, evrimseldi. Entelektüel antrenman maçları, özenli ilerleme ve Philadelphia'da yenilgi ile dolu Rocky Balboa benzeri bir yükseliş, nihayetinde başarılı bir rövanş için zemin hazırladı.

Garry Kasparov

Bilgisayar bilimciler onlarca yıldır, satrancı yapay zekâ için bir eşik olarak görmüşlerdi. Satranç oynayan hesap makineleri, 1970'lerin sonlarında ortaya çıktı; ancak Carnegie Mellon Üniversitesi lisansüstü öğrencilerinden oluşan bir ekibin, normal bir turnuva oyununda büyük bir ustayı yenmek için Derin Düşünce (İng: "Deep Thought") adı verilen ilk bilgisayarı üretmeleri için bir on yıl daha geçmesi gerekiyordu. Bu başarı kısa sürmüştü; çünkü aynı yıl (1989), Kasparov, Derin Düşünce’yi iki maçta kolayca alt etmişti.

Tüm Reklamları Kapat

IBM, Carnegie Mellon Üniversitesi’nden yeterince etkilendi ve araştırmacıları işe almaya başladı. CMU ekibinin teknolojisini, Deep Blue’nun erken bir sürümünü geliştirmek üzere kullandı. Deep Blue takımı 1996'da Philadelphia'daki bir turnuvada Kasparov'a tekrar kaybetti, ancak dünya şampiyonuna karşı altı maçtan birini kazanmayı başardı.

Şu anda IBM, T. J. Watson Araştırma Merkezi'nin Bilgi İşlem Organizasyonu bünyesindeki AI Foundations grubunda seçkin bir araştırma personeli olan Deep Blue Yapay Zekâ Uzmanı Murray Campbell şöyle diyor:

Tüm Reklamları Kapat

Bakıldığında küçük görünen bu zafer, doğru yolda olduğumuzu göstermek için çok önemliydi. 1997'deki son maçımıza kadar kazanabildiğimiz tecrübelerimize dayanarak sistemde yeterince iyileştirme yaptık.
Murray Campbell
Murray Campbell

Scientific American, Campbell ile bilgisayar bilimcilerinin satranç konusundaki "uzun saplantıları", IBM'in hüküm süren satranç şampiyonu karşısında durumu nasıl tersine çevirebildiği ve yapay zekanın karşısındaki zorluklar hakkında konuştu.

(Röportajın düzenlenmiş metni aşağıdadır.)

Murray Campbell Röportajı: Kasparov'dan Günümüze Yapay Zeka

Deep Blue projesine ilk nasıl dahil oldunuz?

IBM'in temasa geçtiği Carnegie Mellon Üniversitesi'nde bir grup yüksek lisans öğrencisinden biriydim. Bilgisayar satrancına uzun süredir ilgim vardı ve hatta lisans öğrencisiyken bir satranç programı yazmıştım. Aslında CMU'da tam olarak bir dünya şampiyonuna karşı oynayabilecek yüksek performanslı bir satranç bilgisayarı oluşturmak üzerine değil, daha çok yapay zeka üzerine çalışıyordum. Ancak bir yan proje olarak birçoğumuz (Feng-hsiung Hsu ve Thomas Anantharaman da dahil) bir turnuvada profesyonel düzeyde büyük bir ustayı yenen ilk program olan Derin Düşünce (İng: "Deep Thought") olarak bilinen makineyi geliştirdik.

Evrim Ağacı'ndan Mesaj

"Ancak bir yan proje olarak birçoğumuz (Feng-hsiung Hsu ve Thomas Anantharaman da dahil) bir turnuvada profesyonel düzeyde büyük bir ustayı yenen ilk program olan Derin Düşünce (Deep Thought) olarak bilinen makineyi geliştirdik."
"Ancak bir yan proje olarak birçoğumuz (Feng-hsiung Hsu ve Thomas Anantharaman da dahil) bir turnuvada profesyonel düzeyde büyük bir ustayı yenen ilk program olan Derin Düşünce (Deep Thought) olarak bilinen makineyi geliştirdik."

IBM, bu makineyi oldukça düşük bir bütçeyle oluşturma başarımızı fark etti ve bu makinenin Deep Blue olarak adlandırılan yeni neslini geliştirmek için bir kısmımızın IBM Research'e (1989 sonlarında) katılmasının ilginç olacağını düşündü. Onlar, dünyanın en iyi satranç oyuncuları hakkında bilgisayarların yakın gelecekte yapabileceklerinin ötesinde özel bir şey olup olmadığını öğrenmek istediler. Diğer araştırmacılar bunun hala onlarca yıl uzakta olduğunu düşünmesine rağmen bizim hissiyatımız birkaç yıl içinde yapılacağıydı.

Satrancı bir bilgisayar bilimcisi için özellikle ilginç bir problem haline getiren şey nedir?

Dünyada yüz milyonlarca insan satranç oynuyor. Satranç; strateji, öngörü, mantık gibi insan zekasını oluşturan her türlü niteliği gerektiren bir oyun olarak bilinir. Bu yüzden satrancı yapay zekanın gelişimi için bir ölçüm çubuğu olarak kullanmak mantıklıdır.

Satranç gibi bir oyuna baktığımızda “Evet, tabii ki bilgisayarlar iyi iş çıkarıyor çünkü oyunun kuralları, hareketleri, hedefleri iyi tanımlanmış.” deriz. Tüm bu bilgileri bilmek, kısıtlayıcı bir problemdir. Yine de tüm bu sadeleştirmelere rağmen satrancın oldukça karmaşık bir oyun olduğunu söyleyebilirsiniz. İşte bu nedenle bir çalışma alanı olarak dünya şampiyonunu yenmemiz 50 yıllık bir geliştirme sürecini aldı.

Deep Blue ekibinde rolünüz özellikle neydi?

Yapay zekâ uzmanıydım. Yapay zekâ, 1989'da ve 1990'ın başlarında oldukça farklıydı. O günlere hâkim olan şimdi eski moda veya sembolik yapay zekâ dediğimiz, daha az makina öğrenmesine dayanan yapay zekaydı. Elbette o günlerde de makina öğrenmesi ciddi bir çalışma alanıydı ama bugün olduğu gibi değil. Bugün büyük veri setlerine, büyük bilgisayarlara ve verileri karıştırıp bazı şaşırtıcı şeyler yapabilen modeller ortaya çıkarabilecek oldukça gelişmiş algoritmalara sahibiz. IBM ile başladığımda, oyun oynama programları için makina öğrenmesi metotları oldukça ilkeldi ve Deep Blue'yu oluşturmamızda bize pek yardımcı olamadı. Biz de Deep Blue'nun rekabet etmek için ihtiyaç duyacağını bildiğimiz, olası sürekliliklerin verimli bir şekilde aranması ve değerlendirilmesi için algoritmalar üzerinde çalıştık.

Deep Blue Satranç Bilgisayarı
Deep Blue Satranç Bilgisayarı

O zamanlar yapay zekâ üstündeki en önemli kısıtlamalar neydi?

Donanım, bugün büyük veri modelleri oluşturmada yararlı olduğu kanıtlanmış büyük ağ türlerini oluşturmayı aslında desteklemiyordu. Ve verinin kendisi, o noktada ihtiyaç duyduğumuz ölçüde orada değildi. Ne zaman geriye dönüp 20 veya 25 yıl önceki en popüler bilgisayar sistemlerine baksanız, böyle bir sistemde herhangi bir şeyi nasıl yapabileceğiniz konusunda şok olursunuz. Ama sonunda elbette anladık, o zamanlar neyi kaçırdığımızı bilmiyorduk sanırım çünkü hiç deneyimlememiştik.

Tüm Reklamları Kapat

Verilere gelince o zamanlar kimsenin büyük bir faydası olduğuna dair net bir fikri olduğunu sanmıyorum. Gerçekten büyük bir veri kümesi oluşturmak para kazandırmazdı çünkü işleme gücü zaten onu kullanmak için yeterli olmayacaktı. Böylece çok daha küçük veri kümeleriyle idare ettik.

Deep Blue'yu inşa etmede kendi satranç uzmanlığınız ne kadar yararlıydı?

Düşünebileceğiniz kadar yararlı değildi. İlk aşamalarda, sistemle ilgili sorunları belirleyebildim ve bir sorunu başka sorunlar oluşturmadan çözebileceğimi düşündüğüm yaklaşımlar önerebildim. Muhtemelen bu bizi belirli bir noktaya getirecek kadar iyiydi. Sonuçta yarışmalarda oynayacaksanız oyuna özgü sahip olmanız gereken bir yığın bilgi vardır. Gerçek bir dünya şampiyonuna karşı oynayacağımız noktaya yaklaştığımızda, bize yardım etmeleri için büyük ustaları, özellikle Joel Benjamin'i getirdik.

Büyük ustalar, Deep Blue’nun oyununu yükseltmeye nasıl yardımcı oldu?

Yardım ettikleri iki kısım vardı: Özellikle biri, her satranç programının zamandan kazanmak ve mantıklı pozisyonlara gelmesini sağlamak için kullandığı açılış kütüphanesine yardım etmekti. İnsanlar yüzyıllardır satranç açılışları üzerinde çalışıyorlar ve kendi favori hareketlerini geliştirdiler. Büyük ustalar, Deep Blue'ya programlamak için onlardan bir grup seçmemize yardımcı oldu.

Onlara Deep Blue için antrenman maçı ortakları da diyebilirsiniz. Bilgisayara karşı oynarlar ve sistemin zayıflıklarını tespit etmeye çalışırlardı. Sonra onlarla ve Deep Blue ekibinin geri kalanıyla oturup bu zayıflığın gerçekte ne olduğunu ve onu ele almanın bir yolu olup olmadığını ifade etmeye çalışırdık.

Tüm Reklamları Kapat

Deep Blue hangi hamleleri yapacağına nasıl karar verdi?

Deep Blue bir melezdi. Satranç hızlandırıcı çiplerle birleştirilmiş genel amaçlı süper bilgisayar işlemcileri vardı. Satranç hesaplamasının bir kısmını yürütmek için süper bilgisayarda çalışan ve daha sonra bir hareketin daha karmaşık kısımlarını hızlandırıcıya devredip ardından muhtemel hamleleri ve sonuçları hesaplayacak bir yazılıma sahiptik. Süperbilgisayar, bu değerleri alıp sonunda hangi yolu izleyeceğine karar verirdi.

Deep Blue, Kasparov'u yenmek için 1996'dan 1997'ye nasıl ilerledi?

Birkaç şey yaptık. Yeni nesil bir donanım yaratarak sistemin hızını aşağı yukarı ikiye katladık. Ardından satranç çipine, farklı pozisyonları tanımasını ve satranç kavramlarına daha duyarlı olmasını sağlayan özellikler ekleyerek sistemin satranç bilgisini arttırdık. Bu çipler sonraki pozisyondaki en iyi hareketi bulmak için olasılık ağacını araştırabilirdi. 96 ile 97 yılları arasındaki iyileştirmenin bir parçası, bir satranç pozisyonunda daha fazla kalıp tespit etmemiz ve bunlara değerler koyabilmemiz dolayısıyla satranç pozisyonlarını daha doğru şekilde değerlendirebilmemizdi. Deep Blue'nun 1997 versiyonu, pozisyon türüne bağlı olarak saniyede 100 milyon ila 200 milyon pozisyon ve altı ila sekiz çift (bir beyaz, bir siyah) hareket derinliğini, bazı durumlarda 20 veya daha fazla çifte kadar arayabilirdi. 1997 Deep Blue'nun 1996 versiyonundan çok daha iyi olduğuna emin olsak da aklımda maçın en olası sonucu beraberlikti. Maçın son raunduna girerken bile bir beraberlik ve muhtemelen bir rövanş bekliyordum.

IBM, 1997'deki turnuvadan sonra Kasparov’un rövanş talebini neden kabul etmedi?

Bir bilgisayarın bir maçta dünya satranç şampiyonunu yenebileceğini ve diğer önemli araştırma alanlarına geçme zamanının geldiğini kanıtlama amacımıza ulaştığımızı hissettik.

Bu maçtan bu yana geçen yirmi yılda yapay zekâ nasıl değişti?

Elbette, makinelerin işlem hızı ve hafızası vb. gelişti. İnsanlar aynı zamanda, işlerinin bir parçası olarak günün özdevimli öğrenme algoritmaları için kaynak sağlayan çok daha fazla veri toplamaya başladı. Neticede tüm bunları birleştirmenin dikkate değer bazı sonuçlar üretebileceğini anlamaya başladık. Jeopardy'yi oynayan IBM Watson sistemi! Dünyada var olan birçok veriyi (Wikipedia vb.) alan ve bu verileri gerçek dünya hakkındaki soruları nasıl yanıtlayacağını öğrenmek için kullanan makina öğrenmesi tabanlı bir sistem kullanıldı. O zamandan beri, konuşma tanıma ve makina görüşü gibi belirli algısal görevlerin nasıl yapılacağını öğrenmeye devam ettik. Bu, Watson'ın radyoloji görüntülerini analiz etme ve bu bilgileri hekimlerle paylaşma gibi daha fazla görevi yerine getirmesini sağladı.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Yedi Ucuz Şey Üzerinden Dünya Tarihi Kapitalizm, Doğa ve Gezegenin Geleceği Hakkında Bir Rehber

Yedi Ucuz Şey Üzerinden Dünya Tarihi

Kapitalizm, Doğa ve Gezegenin Geleceği Hakkında Bir Rehber

Raj Patel ve Jason W. Moore

Yarım binyıllık sömürgeci kapitalizmin anatomisi sayılabilecek bu çalışma, apaçık ortada durduğundan olsa gerek, çoğunlukla önemsemediğimiz doğa, para, emek, bakım, gıda, enerji ve yaşamın ucuzlatılmasıyla kapitalizmin insanlarla yaşam ağı arasındaki ilişkileri nasıl kontrol ettiğinin izini sürüyor.

İlk kapitalist ürün şekerin üretiminden kapitalist sınırların genişlemesine uzanan süreçte doğa-toplum, kadın-erkek ikiliğinin, sömürgeciliğin, ırkçılığın, yerli mücadelelerinin, savaşların, krizlerin, isyanların bu yedi ucuz şeyle ve birbirleriyle nasıl ilişkilendiğini irdeleyen, günümüzün krizlerini ele alan özgün bir neoliberal ekonomi eleştirisi Yedi Ucuz Şey Üzerinden Dünya Tarihi bugün bulunduğumuz yere nasıl geldiğimizin ve daha adil, sürdürülebilir bir medeniyet için nasıl ilerlememiz gerektiğinin ufuk açıcı bir anlatısı.

Çoğu insan için gezegenin sonunu hayal etmek kapitalizmin sonunu hayal etmekten daha kolay.

Ucuzluk derken ne anlatmak istediğimize gelelim: Kapitalizmin krizlerini geçici olarak çözerek kapitalizmle yaşam ağı arasındaki ilişkileri yöneten bir dizi stratejidir. Ucuz, düşük maliyetle aynı şey olmasa da maliyetlerin düşmesinde etkilidir. Ucuz, çalışmanın herhangi bir biçimini –insan ve hayvan, botanik ve jeolojik– mümkün en asgari bedelle seferber eden bir strateji, bir uygulama, bir şiddettir. Kapitalizmin bu adlandırılmamış yaşam kurma ilişkilerini üretim ve tüketim döngülerine dönüştürdüğü ve bu ilişkilerin olabildiğince düşük fiyatlarla hayata geçtiği süreç hakkında konuşmak için ucuzu kullanıyoruz.”

Devamını Göster
₺80.00
Yedi Ucuz Şey Üzerinden Dünya Tarihi  Kapitalizm, Doğa ve Gezegenin Geleceği Hakkında Bir Rehber

Deep Blue üzerinde çalışma deneyiminiz ileriye dönük yapay zekâ üzerindeki çalışmanızı nasıl etkiledi?

Asıl öğrendiğimiz şey, karmaşık bir soruna bakmanın birden fazla yolu olduğudur. Örneğin satrançta, örüntü tanıma temelli ve sezgiye dayalı insan yolu vardır. Bir de çok yoğun arama gerektiren ve milyonlarca hatta milyarlarca olasılığa bakan makina yolu vardır. Genellikle bu yaklaşımlar birbirini tamamlayıcıdır. Bu satrançta kesinlikle doğrudur; ancak gerçek dünyadaki birçok problemde de geçerlidir. Bilgisayarlar ve insanlar birlikteyken, ayrı olduklarından daha iyidir. Örneğin, bilgisayarların hastaların teşhis ve tedavisini tek başına üstlenmesini istemeyiz; çünkü bir hastayı teşhis etmede verilerde tespit edilmesi zor olan pek çok maddi olmayan şey vardır. Ancak belki de doktorun farkında olmadığı, çok yeni teknik makaleler veya klinik deneylere dayanan, göz önünde bulundurulması gereken seçenekler hakkında tavsiyelerde bulunma açısından böyle bir sistem çok kıymetli olabilir.

Şu anda yaptığımız işin önemli bir parçası; kara kutu olma eğiliminde olan, çok gelişmiş yapay sinir ağı tabanlı sistemleri almak ve neyi tavsiye ettiklerini ve neden tavsiye ettiklerini açıklamakta pek iyi olmayan onlara kendilerini açıklama yeteneği vermektir. Açıklayamıyorsa sistemden çıkan bir tavsiyeye gerçekten nasıl güvenebilirsiniz?

Bu kara kutu sinir ağı sistemleri içlerindeki milyonlarca parametreyle son derece karmaşıktır. Bu karmaşıklığın üstesinden gelme kısmı, bir sistemi ona iyi açıklamalarla ilgili örnekler vererek eğitme yöntemiyle olabilir. Bu, özellikle sağlık hizmetleri alanında bir bilgisayar tanı koyduğunda veya bir tedavi tavsiye ettiğinde belirginleşir. Makul bir açıklama varsa bir doktorun son kararını vermesine yardımcı olmak için hak ettiği önemi muhtemelen daha uygun bir şekilde verebiliriz.

Alıntı Yap
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Yapay Zekaya Giriş Yazı Dizisi

Bu yazı, Yapay Zekaya Giriş yazı dizisinin 9. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Yapay Zeka Hakkında Bir Rehber: Nedir, Ne Değildir, Ne Olacaktır?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
18
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 14
  • Merak Uyandırıcı! 7
  • Mmm... Çok sapyoseksüel! 5
  • İnanılmaz 5
  • Muhteşem! 2
  • Bilim Budur! 2
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/01/2023 10:48:50 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9939

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Size Özel (Beta)
İçerikler
Sosyal
Böcekler
Antibiyotik
Ergen
Maske Takmak
Canlı
Grip
Ekonomi
Yiyecek
Evrim Teorisi
Koruma
Yeme
Yapay Zeka
İspat Yükü
Yok Oluş
Avrupa
Atom
Kütle
Hekim
Nöron
Sahtebilim
Bakteri
Böcek
Klinik Mikrobiyoloji
Antik
Nükleik Asit
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
L. Greenemeier, et al. Deep Blue'dan 20 Yıl Sonra: Yapay Zeka, Satrancı Fethettikten Beri Nasıl Gelişti?. (12 Ocak 2021). Alındığı Tarih: 28 Ocak 2023. Alındığı Yer: https://evrimagaci.org/s/9939
Greenemeier, L., Emre, F., Bakırcı, Ç. M. (2021, January 12). Deep Blue'dan 20 Yıl Sonra: Yapay Zeka, Satrancı Fethettikten Beri Nasıl Gelişti?. Evrim Ağacı. Retrieved January 28, 2023. from https://evrimagaci.org/s/9939
L. Greenemeier, et al. “Deep Blue'dan 20 Yıl Sonra: Yapay Zeka, Satrancı Fethettikten Beri Nasıl Gelişti?.” Edited by Çağrı Mert Bakırcı. Translated by Feyza Emre, Evrim Ağacı, 12 Jan. 2021, https://evrimagaci.org/s/9939.
Greenemeier, Larry. Emre, Feyza. Bakırcı, Çağrı Mert. “Deep Blue'dan 20 Yıl Sonra: Yapay Zeka, Satrancı Fethettikten Beri Nasıl Gelişti?.” Edited by Çağrı Mert Bakırcı. Translated by Feyza Emre. Evrim Ağacı, January 12, 2021. https://evrimagaci.org/s/9939.

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Paylaş
Reklamsız Deneyim

Evrim Ağacı'ndaki reklamları, bütçenize uygun bir şekilde, kendi seçtiğiniz bir süre boyunca kapatabilirsiniz. Tek yapmanız gereken, kaç ay boyunca kapatmak istediğinizi aşağıdaki kutuya girip tek seferlik ödemenizi tamamlamak:

10₺/ay
x
ay
= 30
3 Aylık Reklamsız Deneyimi Başlat
Evrim Ağacı'nda ücretsiz üyelik oluşturan ve sitemizi üye girişi yaparak kullanan kullanıcılarımızdaki reklamların %50 daha az olduğunu, Kreosus/Patreon/YouTube destekçilerimizinse sitemizi tamamen reklamsız kullanabildiğini biliyor muydunuz? Size uygun seçeneği aşağıdan seçebilirsiniz:
Evrim Ağacı Destekçilerine Katıl
Zaten Kreosus/Patreon/Youtube Destekçisiyim
Reklamsız Deneyim
Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Moderatöre Bildir

Raporlama sisteminin amacı, platformu uygunsuz biçimde kullananların önüne geçmektir. Lütfen bir içeriği, sadece düşük kaliteli olduğunu veya soruya cevap olmadığını düşündüğünüz raporlamayınız; bu raporlar kabul edilmeyecektir. Bunun yerine daha kaliteli cevapları kendiniz girmeye çalışın veya size sunulan (oylama gibi) diğer araçlar ile daha kaliteli cevaplara teşvik edin. Kalitesiz bulduğunuz içerikleri eleyebileceğiniz, kalitelileri daha ön plana çıkarabileceğiniz yeni araçlar geliştirmekteyiz.

Öncül Ekle
Sonuç Ekle
Mantık Hatası Seç
Soru Sor
Aşağıdaki "Soru" kutusunu sadece soru sormak için kullanınız. Bu kutuya soru formatında olmayan hiçbir cümle girmeyiniz. Sorunuzla ilgili ek bilgiler vermek isterseniz, "Açıklama" kısmına girebilirsiniz. Soru kısmının soru cümlesi haricindeki kullanımları sorunuzun silinmesine ve UP kaybetmenize neden olabilir.
Görsel Ekle
Kurallar
Platform Kuralları
Bu platform, aklınıza takılan soruları sorabilmeniz ve diğerlerinin sorularını yanıtlayabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Gerçekten soru sorun, imâdan ve yüklü sorulardan kaçının.
Sorularınızın amacı nesnel olarak gerçeği öğrenmek veya fikir almak olmalıdır. Şahsi kanaatinizle ilgili mesaj vermek için kullanmayın; yüklü soru sormayın.
2
Bilim kimliğinizi kullanın.
Evrim Ağacı bir bilim platformudur. Dolayısıyla sorular ve cevaplar, bilimsel perspektifi yansıtmalıdır. Geçerli bilimsel kaynaklarla doğrulanamayan bilgiler veya reklamlar silinebilir.
3
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Sahtebilimi desteklemek yasaktır.
Sahtebilim kategorisi altında konuyla ilgili sorular sorabilirsiniz; ancak bilimsel geçerliliği bulunmayan sahtebilim konularını destekleyen sorular veya cevaplar paylaşmayın.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Soru Ara
Aradığınız soruyu bulamadıysanız buraya tıklayarak sorabilirsiniz.
Alıntı Ekle
Eser Ekle
Kurallar
Komünite Kuralları
Bu komünite, fark edildiğinde ufku genişleten tespitler içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Tavsiye Et
Aşağıdaki kutuya, [ESER ADI] isimli [KİTABI/FİLMİ] neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Kurallar
Platform Kuralları
Bu platform; okuduğunuz kitaplara, izlediğiniz filmlere/belgesellere veya takip ettiğiniz YouTube kanallarına yönelik tavsiylerinizi ve/veya yapıcı eleştirel fikirlerinizi girebilmeniz içindir. Tavsiye etmek istediğiniz eseri bulamazsanız, buradan yeni bir kayıt oluşturabilirsiniz. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Önceliğimiz pozitif tavsiyelerdir.
Bu platformu, beğenmediğiniz eserleri yermek için değil, beğendiğiniz eserleri başkalarına tanıtmak için kullanmaya öncelik veriniz. Sadece negatif girdileri olduğu tespit edilenler platformdan geçici veya kalıcı olarak engellenebilirler.
2
Tavsiyenizin içeriği sadece negatif olamaz.
Tavsiye yazdığınız eserleri olabildiğince objektif bir gözlükle anlatmanız beklenmektedir. Dolayısıyla bir eseri beğenmediyseniz bile, tavsiyenizde eserin pozitif taraflarından da bahsetmeniz gerekmektedir.
3
Negatif eleştiriler yapıcı olmak zorundadır.
Eğer tavsiyenizin ana tonu negatif olacaksa, tüm eleştirileriniz yapıcı nitelikte olmak zorundadır. Yapıcı eleştiri kurallarını buradan öğrenebilirsiniz. Yapıcı bir tarafı olmayan veya tamamen yıkıcı içerikte olan eleştiriler silinebilir ve yazarlar geçici veya kalıcı olarak engellenebilirler.
4
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Eser Ara
Aradığınız eseri bulamadıysanız buraya tıklayarak ekleyebilirsiniz.
Tür Ekle
Üst Takson Seç
Kurallar
Komünite Kuralları
Bu platform, yaşamış ve yaşayan bütün türleri filogenetik olarak sınıflandırdığımız ve tanıttığımız Yaşam Ağacı projemize, henüz girilmemiş taksonları girebilmeniz için geliştirdiğimiz bir platformdur. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Takson adlarını doğru yazdığınızdan emin olun.
Taksonların sadece ilk harfleri büyük yazılmalıdır. Latince tür adlarında, cins adının ilk harfi büyük, diğer bütün harfler küçük olmalıdır (Örn: Canis lupus domesticus). Türkçe adlarda da sadece ilk harf büyük yazılmalıdır (Örn: Evcil köpek).
2
Taksonlar arası bağlantıları doğru girin.
Girdiğiniz taksonun üst taksonunu girmeniz zorunludur. Eğer üst takson yoksa, mümkün olduğunca öncelikle üst taksonları girmeye çalışın; sonrasında daha alt taksonları girin.
3
Birden fazla kaynaktan kontrol edin.
Mümkün olduğunca ezbere iş yapmayın, girdiğiniz taksonların isimlerinin birden fazla kaynaktan kontrol edin. Alternatif (sinonim) takson adlarını girmeyi unutmayın.
4
Tekrara düşmeyin.
Aynı taksonu birden fazla defa girmediğinizden emin olun. Otomatik tamamlama sistemimiz size bu konuda yardımcı olacaktır.
5
Mümkünse, takson tanıtım yazısı (Taksonomi yazısı) girin.
Bu araç sadece taksonları sisteme girmek için geliştirilmiştir. Dolayısıyla taksonlara ait minimal bilgiye yer vermektedir. Evrim Ağacı olarak amacımız, taksonlara dair detaylı girdilerle bu projeyi zenginleştirmektir. Girdiğiniz türü daha kapsamlı tanıtmak için Taksonomi yazısı girin.
Gönder
Tür Gözlemi Ekle
Tür Seç
Fotoğraf Ekle
Kurallar
Komünite Kuralları
Bu platform, bizzat gözlediğiniz türlerin fotoğraflarını paylaşabilmeniz için geliştirilmiştir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Net ve anlaşılır görseller yükleyin.
Her zaman bir türü kusursuz netlikte fotoğraflamanız mümkün olmayabilir; ancak buraya yüklediğiniz fotoğraflardaki türlerin özellikle de vücut deseni gibi özelliklerinin rahatlıkla ayırt edilecek kadar net olması gerekmektedir.
2
Özgün olun, telif ihlali yapmayın.
Yüklediğiniz fotoğrafların telif hakları size ait olmalıdır. Başkası tarafından çekilen fotoğrafları yükleyemezsiniz. Wikimedia gibi açık kaynak organizasyonlarda yayınlanan telifsiz fotoğrafları yükleyebilirsiniz.
3
Paylaştığınız fotoğrafların telif hakkını isteyemezsiniz.
Yüklediğiniz fotoğraflar tamamen halka açık bir şekilde, sınırsız ve süresiz kullanım izniyle paylaşılacaktır. Bu fotoğraflar nedeniyle Evrim Ağacı’ndan telif veya ödeme talep etmeniz mümkün olmayacaktır. Kendi fotoğraflarınızı başka yerlerde istediğiniz gibi kullanabilirsiniz.
4
Etik kurallarına uyun.
Yüklediğiniz fotoğrafların uygunsuz olmadığından ve başkalarının haklarını ihlâl etmediğinden emin olun.
5
Takson teşhisini doğru yapın.
Yaptığınız gözlemler, spesifik taksonlarla ilişkilendirilmektedir. Takson teşhisini doğru yapmanız beklenmektedir. Taksonu bilemediğinizde, olabildiğince genel bir taksonla ilişkilendirin; örneğin türü bilmiyorsanız cins ile, cinsi bilmiyorsanız aile ile, aileyi bilmiyorsanız takım ile, vs.
Gönder
Tür Ara
Aradığınız türü bulamadıysanız buraya tıklayarak ekleyebilirsiniz.