Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Garry Kasparov ile Yapay Zeka ve Otomasyon Üzerine

Garry Kasparov ile Yapay Zeka ve Otomasyon Üzerine Ted Thai - The LIFE Picture Collection/Gett
Dünya satranç ustası Gary Kasparov 1997’de IBM tarafından geliştirilen Deep Blue bilgisayarı tarafından satrançta alt edildi.
24 dakika
10,666
  • Çalışma Ekonomisi
  • Makina Öğrenmesi
Evrim Ağacı Akademi: Yapay Zeka Uzmanları ve Görüşleri Yazı Dizisi

Bu yazı, Yapay Zeka Uzmanları ve Görüşleri yazı dizisinin 2. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al

Yapay zekanın ve akıllı makinelerin insanları işsiz bırakacağı ve ekonomiyi kökünden sarsacağı senaryosu, aşağı yukarı elli senedir dinlediğimiz bir hikaye. Bu elli senenin önemli bir kısmı boyunca bu senaryo kimileri için bilimkurgu, kimileri içinse “oldu/olacak” şeklinde, pratikte görünür önemli bir karşılığı olmadan kaldı.

Eğer teknoloji haberlerini takip ediyorsanız, son birkaç yılda bu durumun biraz değişmeye başladığını fark etmişsinizdir. Özellikle 2012’den beri geliştirilen yeni yöntemler ve bunların son 10 senede toplanılan devasa boyuttaki veri ile bir araya getirilmesi, “gerçekten akıllı makineler” konseptini bilimkurgu olmaktan çıkarıp belki de ilk defa, ciddi bir meseleye dönüştürüyor. Peki, bu noktaya nasıl gelindi? 2012’den beri yaşanan gelişmelerin, geçen asrın gelişmelerinden farkı ne? Yoksa şu an konuya duyulan ilgi de, yapay zekanın popülerlik kazandığı daha önceki dönemlerde de olduğu gibi, şişirilmiş ve yakında sönecek bir heyecandan mı ibaret?

Tüm Reklamları Kapat

2019'un Ocak ayında (26-29 Ocak), bu sürecin gelişimini ve yukarıdaki soruların cevaplarını, beklenmedik bir isimden, bir satranç efsanesinden duyma şansına eriştik. İsviçre’deki Lozan Federal Teknoloji Enstitüsü’nde (EPFL) düzenlenen Uygulamalı Makine Öğrenimi Günleri’nin bir akşamı, Garry Kasparov ile Özel Bir Gece isimli etkinliğe ayrılmıştı.

Garry Kasparov EPFL'in (Ecole Polytechnique Federale de Lausanne) Kongre Merkezi'nde sahnedeyken.
Garry Kasparov EPFL'in (Ecole Polytechnique Federale de Lausanne) Kongre Merkezi'nde sahnedeyken.
Applied Machine Learning Days

Hafızaları tazeleyelim: Kasparov’un -bol bol bilet satacak popüler bir isim olmanın yanında- bu etkinlikte ne işi vardı? Evet, 1997’de IBM tarafından geliştirilen Deep Blue bilgisayarı tarafından alt edildi. Evet, bunu yaşayan ilk dünya satranç şampiyonuydu. Evet, bu olaydan sonra, satranç kariyeri bir daha eskisi gibi bir görkeme ulaşamamıştı. Peki bu hikayenin önemi nedir? Kasparov’un deneyimleri, satranç hakkındaki bilgisi, bize yapay zeka ve onun etkileyeceği bir gelecek hakkında kayda değer bir öngörü verebilir mi? Bu sorunun cevabı herkesin kendi takdirine kalmış. Biz, aşağıda, Kasparov’un konuşmasından öne çıkan temaları sizin için derlemeye ve kilit argümanlarını, kendi düşüncelerimizi de katarak sunmaya çalıştık.

Tüm Reklamları Kapat

İnsan-Makine Etkileşiminin "Altın Çağı"

Etkinlik akşamı gecikmeli bir şekilde sahneye çıkan Garry Kasparov, pek çok kişinin beklediğinden oldukça farklı bir insandı. Seyircilerin çoğu, karşısında ciddi, ağırbaşlı ve hafiften “inek” mizaçlı birini bekliyordu. Tabii bu normaldi, bizim onu tanıdığımız fotoğrafları çoğunlukla Deep Blue tarafından alt edilmeden önceki -zayıf ve genç olduğu- dönemdendi. Sahnedeki esprili ve karizmatik Kasparov, o günleri özlemle anıyordu.

Düzinelerce bilgisayar ile aynı anda oynayıp, hepsini alt edebildiğim günler... İnsan-makine etkileşiminin altın çağıydı. Makineler zayıftı ve benim saçlarım gürdü.

Bunu söylerken 1985’te Hamburg’da düzenlenen bir etkinlikten -o zamanın dünya şampiyonu olan Anatoly Karpov’u yenerek onun ünvanını devralmasından birkaç ay öncesinden- bahsediyordu. Bu etkinlikte Kasparov, otuz iki bilgisayar ile paralel olarak oynamış ve hepsini alt etmişti.

Bunda şaşılacak bir şey yoktu... Eğer hepsini alt edemeseydim, esas o zaman insanlar bunun bir şaka olduğunu zannedeceklerdi.
Kasparov,
Kasparov, "insan-makine etkileşiminin altın çağı"nda 32 bilgisayara karşı aynı anda oynarken.
Hun on Chess

On iki sene sonra ise, Kasparov’u yenmek için Deep Blue adlı tek bir bilgisayar yeterli olacaktı.

Evrim Ağacı'ndan Mesaj

Bir bilgisayarın Dünya Satranç Şampiyonunu ilk defa alt ettiği günün, en azından 2019’dan bakınca, pek bir önemi bulunmuyor. Kasparov yenildikten sonra robotlar dünyayı ele geçirmedi, ya da süperbilgisayarları şirketlerin başına atamaya başlamadık. Dürüst olmak gerekirse, o zamanın en etkileyici robotlarından biri olan ASIMO hala karton kutularla örtülmüş 12 yaşındaki bir çocuk gibi hareket ediyordu ve bilgisayarların insanlarla anlamlı diyaloglar kurmasına bile daha yıllar vardı.

Bu biraz enteresan, çünkü tarih boyunca satranç, insan aklının ve yaratıcılığının en ileri noktalarından biri olarak görüldü. Bilgisayar biliminin “kurucu babaları” olan Alan Turing, Alfred Binet, Claude Shannon, Norbert Weiner gibi biliminsanları da bu düşünceyi paylaşıyorlardı. Bu isimler, satrancı makine zekası için çok önemli, hatta belki de belirleyici bir test olarak görüyorlardı. Hatta Alfred Binet, satranç oyuncularının beyinlerini inceleyerek insan zekasının sırlarını çözebileceğini düşünecek kadar ileri gitmişti. Onlar için, ne zaman bir makine satrançta bir insanı yenebilirse, o zaman insanlar ile aynı seviyede bir zekadan söz edilebilirdi.

Bilim insanlarının o günlerin bilgisi ve öngörüsüyle böyle düşünmeleri anlaşılabilir. Söz gelimi, Claude Shannon’un hesabına göre, satrançta on üzeri kırk altı farklı hamle bulunuyordu. Bu kadar fazla olasılığa sahip olan bir oyunu, bir makinenin, tüm olasılıkların tüm sonuçlarını tek tek hesaplayarak (bir başka deyişle, “kaba kuvvet” kullanarak) oynamasının mümkün olmadığını düşündüler. Shannon, bilgisayarları bu özelliklerine göre ikiye ayırmıştı: Kaba kuvvet kullanan, sadece basit algoritmalara ve hesaplama kapasitesine dayanan (pratik) bilgisayarlara Tip A bilgisayarlar; beyin gibi çalışan, mantıksal olarak insan gibi düşünen (hipotetik) bilgisayarlara Tip B bilgisayarlar demişti. Satrançta insanı alt edecek bilgisayar Tip B olmalı, zeki olmalı, insanın düşünme tarzını taklit etmeliydi.

Garry Kasparov, Deep Blue'ya karşı.
Garry Kasparov, Deep Blue'ya karşı.
The Atlantic

Yarım yüzyıl sonra, bilgisayar biliminin heyecanla beklediği o an geldi. Kasparov ile IBM’in bilgisayarı Deep Blue, 11 Mayıs 1997 günü karşı karşıya geldiler. Kasparov, “sadece tarihsel doğruluk sebebiyle,” bu maçın rövanş maçı olduğunu ve ilk oyunu kendisinin kazandığını vurguluyor. Aynı zamanda, maçın bazı açılardan sıkıntı olduğunu iddia ediyor.

En önemli sorun, Deep Blue’nun birkaç defa çökmüş olması. Bilgisayarı yeniden başlattığınızda eski durumu döndürmeniz mümkün değil. Makinenin kendi oyununu oynadığından tamamen emin olmak için, kesintisiz bir hamleler dizisine sahip olmanız lazım.

Bunun yanında, kendi hataları olduğunu da inkar etmiyor.

Tüm Reklamları Kapat

Rahattım, maçı ciddiye almıyordum, iyi hazırlanmamıştım. IBM araştırmacılarının [1996’da Kasparov’un galibiyetiyle sonuçlanan ilk maçtan sonra] bu kadar kayda değer iyileştirmelerle gelmelerini beklemiyordum.

Maçın sonucunu artık tarihi bir olay olarak hepimiz biliyoruz: Altı oyunun ikisi Deep Blue’nun, biri Kasparov’un galibiyetiyle sonuçlandı, diğerleri berabere bitti. Böylece, Deep Blue bir Dünya Satranç Şampiyonunu yenen ilk makine olmayı başardı.

Peki bilgisayar biliminin yukarıda bahsettiğimiz kurucuları haklı ise neden 2019’da, satrançta dünya şampiyonunun alt edilmesinden yirmi yıl sonra bile, zeki makinelerin zihinsel becerileri hala bu kadar kısıtlı? Bu, 1950’lerde konu ile ilgili ortaya atılan düşüncelerde -özellikle Shannon’ın Tip A/B bilgisayarlar üzerine düşüncelerinde- yanılgılar olduğunu göstermektedir. Öncelikle, Kasparov’u yenen Deep Blue, Shannon’ın beklediği gibi, insan gibi düşünen bir Tip B bilgisayar değildi. Tam tersine, doğrudan kaba kuvvet kullanıyordu. Deep Blue, oyundaki durumları ve yapılabilecek muhtemel hamleleri, bir ağaç olarak ifade edip, alfa-beta budaması adlı görece basit bir arama algoritması ile yapılabilecek en optimum hamleleri yapıyordu. Diğer bilgisayarlardan en büyük farkı, özel bir amaçla üretilmesi ve onlardan çok daha fazla hesaplama gücüne sahip olmasıydı. Bunun yarattığı avantajı görebilirsiniz: Bilgisayarın ne kadar fazla hafızası ya da işlem gücü varsa, o kadar çok sayıda hamleyi dikkate almak, ağaçta o kadar derine gitmek (bir başka deyişle oyunda o kadar ilerisini görmek) mümkün olacaktır.

“İşte buydu,” diye dalga geçiyor Kasparov, Deep Blue ile arasındaki maçın uyandırdığı yankıyı hatırlarken. "Yapay zekanın şafağı! Alan Turing’in, Claude Shannon’ın, Norbert Weiner’in, tüm kurucu babaların hayalini kurduğu an! Ve... Bu yapay zeka değildi. Aptaldı. Olsa olsa çalar saatiniz kadar zekiydi. Sadece daha büyük ve daha pahalıydı, ama zeki değildi. Zeki olması da gerekmiyordu. Tek yapması gereken, insandan daha az hata yapmaktı."

Kasparov, yirminci yüzyılın ortasında bilgisayar bilimi henüz emeklerken, bilim insanlarının satrancın zorluğunu bu kadar abartmasını; şu anda elimizde olan terabaytlarca hafıza ve hesaplama gücünü beklememelerine bağlıyor. Shannon ve diğerleri, bugün Moore Yasası olarak bildiğimiz, bir çipte birim alana düşen hesaplama gücünün her sene ikiye katlandığı gerçeğinden bihaberdiler. Kasparov şöyle söylüyor:

Tüm Reklamları Kapat

Kurucu babalar, bu dahiler, çok temel bir yanılgıya düştüler. Makinelerin, satrançta üstün gelmeleri için, insan düşünce tarzını taklit etmeleri gerektiğini düşündüler. Hataları burada: Makineler, insanlarla aynı algoritmayı izlemeden de belli becerilerde onlardan daha başarılı olabilirler.

Bu, teknolojinin tarihinde ilk defa gördüğümüz bir şey de değil.

Uçaklar kanatlarını çırpmadan ama yeryüzündeki her kuştan daha hızlı uçabiliyor. Tekerlek diye bir şeyin doğada karşılığı bile yok... Biz insanlar, makinelerin mükemmel olmalarını bekliyoruz. Bunu beklememeliyiz, çünkü doğada mükemmel diye bir şey yoktur. Makinelerin tek yapmaları gereken, daha iyi olmak.

Şunun farkına vardık ki, bir makinenin Go’da, pokerde, StarCraft’ta, DOTA’da, satrançta insandan daha başarılı olması için mükemmel olması gerekmiyor. İnsanlardan daha az hata yapması yeterli. Biz insanız, en iyilerimiz bile hata yapar. Makineler, nihayetinde bizden daha az hata yaparak bizim önümüze geçebilirler, geçecekler. Bu, makine oyunu ‘çözdüğü’ için olmayacak. Çünkü makinenin, ne yaptığını anlaması gerekmiyor. Önemli olan tek şey, sonuçlar.

Garry Kasparov, bu cümleleri ile sadece satrancı değil, aynı zamanda insan zekasını da çıkarıldığı doğa-üstü seviyeden indirerek; tartışmayı dünyevi bir düzeye çekiyor. Bunun yanında, bizim de Evrim Ağacı’nda sıklıkla vurguladığımız bir noktaya parmak basıyor: Bizler, insan zekasının biricik ve özel olduğuna inanmayı çok seviyoruz; çünkü bildiğimiz kadarı ile, bütün evrende doğayı bu kadar başarılı bir şekilde kontrol altına alabilen, evrenin işleyişi hakkında bu düzeyde bir anlayışa sahip olan, tüm gezegene yayılan karmaşık ve birleşik bir toplum oluşturabilen tek varlık biziz. Bütün bunları sağlayan özelliklerimizin başında da problem çözme yeteneklerimiz geliyor. Ancak bazen unutuyoruz ki problem çözme becerilerimiz, tıpkı diğer pek çok psikolojik mekanizmamız gibi, türümüzün evrimsel süreçte karşılaştığı sorunların üstesinden gelmesini sağlayan adaptasyonlardır. Bu adaptasyonlar, insan türünün evrimsel tarihine göre şekillenmiş mekanizmalardır. Problem çözme mekanizmalarımızın benzersiz ve eşsiz olduğunu (ya da olmaları gerektiğini) söyleyemeyiz; beynimizin tam olarak nasıl çalıştığını anlamadan önce pek çok problemi başarıyla çözebilen bilgisayar programları yazabilmemiz de bunun kanıtı. İnsanın satranç oynaması, ya da kutuları büyükten küçüğe sıralaması, ya da belli görevleri en hızlı tamamlanacak şekilde belli kişilere dağıtması... Bizim bu problemleri çözme yöntemimiz, onların çözülebilecekleri binlerce yoldan sadece biri.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Resimli Başyapıtlar: Faust

Resimli Başyapıtlar: Faust 

Johann Wolfgang Goethe

Mantığı elden bırakmadan tanrısal bilginin ve deneyimin peşindeki bir adamın çok, çok eski hikayesini anlatır Faust. Bu arayış sırasında ortaya çıkan trajik sonuçların tasvirleri hem Goethe’nin büyük dehasının kanıtı, hem de edebiyattaki en önemli başarılardan biridir.

Johann Wolfgang Goethe’nin, dünya edebiyatının en büyük başyapıtlarından biri kabul edilen ve otuz yılda kaleme aldığı muazzam eseri Faust’a şimdi Harry Clarke’ın 1925 yılında yaptığı muhteşem resimler eşlik ediyor.

Goethe hayatının sonlarına doğru Faust’un, fikirleri ve bu fikirleri temsil eden karakterlerle olayları konu eden ikinci bölümünü yazsa da, insanların ruhunu ve aklını asıl ele geçiren şiirsel yoğunluğuyla ilk bölümdür. Romantik bir hayal gücünün eseri  bu bölüm yaşayan karakterlerin duyguları, düşünceleri ve arzularıyla dopdoluydu ve pek çok başka sanat eserine de öncülük etti.

“Ruhun içine sarıldığı,

Kendini beğenmişliği kahrolsun.

Duyularımızı bırakmayan görünüşün,

Körleştiriciliği kahrolsun!

Kahrolsun düşlerin ikiyüzlülüğü,

Ünümüz ve adımızın sözde kalıcılığı!

Kahrolsun yaltaklanan mal ve mülk,

Kadın, çocuk, hizmetçi ve kul!

Kahrolsun, hazineler vaat ederek,

Akıl almaz şeyler yaptıran,

Ya da tembel bir zevk için,

Yastığımızı hazırlayan Para Tanrısı!

Üzümlerin uyuşturan sıvısı kahrolsun!

En yüksek aşk, umut, inanç,

Her şeyden önce sabır kahrolsun!”

Devamını Göster
₺55.00
Resimli Başyapıtlar: Faust

İnsan zekasının en önemli yetilerinden birisi -özellikle günümüzdeki bilgisayar teknolojisine kıyasla- daha önce hiç karşılaşmadığı durumlara başarıyla uyum sağlayabilmesidir. (Atalarımızın evrimsel süreçte muhtemelen her gün yeni, beklenmedik bir durumla karşılaştığını varsayarsak, böyle esnek bir bilgi işleme mekanizmasının evrimleşmiş olması şaşırtıcı sayılmaz, değil mi?) Satranç oynayabilmemizin sebebi de aslında bu. Beynimizde, satranç oynamamızı sağlayan özelleşmiş bir mekanizma yok. Satranç, evrimsel süreçte karşımıza çıkan, çözmek üzere adaptasyonlar geliştirdiğimiz problemlerden biri değil, ama yine de insanlar bu kadar karmaşık bir oyunu öğrenip oynayabiliyorlar.

O zaman, bir insan ile bir makinenin satrancı oynama stilleri arasındaki fark nedir? Deep Blue’nun satrancı nasıl oynadığından bahsetmiştik: IBM’in bilgisayarı, olasılıkların ve hamlelerin bir “ağacını” çıkarıyor, bu ağaçta mümkün olduğunca geniş ve derin bir tarama yapıyor ve en uygun hamleyi seçiyor. Burada, ağaçta taranan milyonlarca hamleden bahsediyoruz. Büyük usta olmayan, ayda-yılda bir satranç oynayan normal bir insan ise 4-5 hamleden ötesini nadiren görmeye çalışır. Kararlarının pek çoğunu sezgi ile tecrübenin karışımı ile verir: “Veziri korumaya çalış, şahı açıkta bırakma, mümkünse kendi kalenle rakibin atını takas etme, baştan piyonları ilerletedur ki oyunun sonlarında işine yarasınlar, ama yalnız da bırakma çünkü piyonlar kolay lokma olabilecek taşlar, rakibin böyle bir açılış yapıyorsa şunu yaparsan açılışını bozabilirsin...” Eğer görece sofistike bir stratejiyi uyguluyorsak dahi, bu stratejiyi hamle hamle planlamaktan çok, adım adım gerçekleştirmeye çalışırız. Satrançta her duruma yapılabilecek yüzlerce hamleden ve her hamleye rakibin verebileceği yüzlerce cevaptan oluşan devasa durum uzayında yolumuzu bulmak için tek seçeneğimiz budur. Daha tecrübeli oyuncular bundan fazlasını yapabilse de, bir büyük usta bile ileriyi görme konusunda Deep Blue’nun performansına yaklaşamaz.

İşte bu yüzden Kasparov, Deep Blue’ya karşı kaybettiği rövanş maçının pek çok açıdan tartışmalı olduğunu düşünmesine rağmen, nihayetinde bunun hiçbir önemi olmadığını şu sözlerle ifade ediyor:

Sonuç değişiyor mu? Hayır. İnsan-makine mücadelesinin sonucu zaten belliydi.

Eğer Kasparov 1997’deki rövanş maçını kaybetmeseydi, 1998’de bir başka maçı kaybedecekti. Ya da 1999’da. Ya da 2005’te, 2015’te... Sonuçta, daha önce de dediği gibi, hesaplama gücündeki artış sayesinde makinelerin herhangi bir oyunda ya da herhangi bir görevde insanlardan daha başarılı olması kaçınılmazdır.

“Satrançtaki bu döngüyü her yerde görüyoruz. Makineler için zorlu görünen bir göreve bakıyorsunuz, ve diyorsunuz ki: ‘Bu imkansız.’ İlk başta makineler gülünecek derecede beceriksiz oluyorlar. Sonra, insan ile makinenin kapışabileceği bir fırsat penceresi oluyor, çok küçük bir pencere. Bu noktadan sonra ise makineler sonsuza kadar insanlardan daha iyi olacaktır.”

Garry Kasparov’un konuşmasından bir kare, arkada satrançta dünya şampiyonları ile satranç bilgisayarlarının bir karşılaştırması... Kasparov’un dediği gibi, satrançta makinelerin insanlardan üstün hale gelmeleri sadece bir zaman meselesiydi.
Garry Kasparov’un konuşmasından bir kare, arkada satrançta dünya şampiyonları ile satranç bilgisayarlarının bir karşılaştırması... Kasparov’un dediği gibi, satrançta makinelerin insanlardan üstün hale gelmeleri sadece bir zaman meselesiydi.
Applied Machine Learning Days (EPFL)

Yapay Öğrenme

Deep Blue’nun Kasparov’u yendiği 1997 yılı ile günümüzün yapay zeka programlarının en büyük farkı: Veri. 2012 senesinden sonra, yapay zekanın kollarından biri olan Yapay Öğrenme (Makine Öğrenimi – İngilizce’de Machine Learning) disiplini büyük bir dönüşüm geçirdi. Son altı-yedi yıldır duyduğumuz gelişmelerin pek çoğunun arkasında, bilgisayar biliminin ilk günlerinde ortaya atılan, “antik” denebilecek kadar eski bir fikrin, yapay sinir ağlarının olduğunu söyleyebiliriz.

Pek çok Yapay Öğrenme tekniğinin arkasında basit bir mantık yatar: Bilgisayara girdi olarak örnekler gösterilir, (örneğin, elma ve armut resimleri) bu örneklere vermesi gereken çıktılar belirtilir, (elmalara “elma” de, armutlara “armut” de) ve ardından belli bir optimizasyon yöntemi ile programın girdiler ile istenilen çıktılar arasındaki bağlantıyı bulması, yani “eğitimi” sağlanır. Bu disiplinin tarihinin çoğu boyunca yapay sinir ağları, iyi bir fikir olmalarına rağmen, pratik bir yöntem olarak görülmedi: Karmaşıklıklarından dolayı eğitilmeleri çok uzun sürüyordu ve buldukları bağlantılar genellenebilirlikten uzak, kendilerine sunulan örneklerle sınırlı oluyordu.

Günümüzde ise yapay sinir ağlarının bu dezavantajları çoğunlukla giderilmiş durumda: Standart kişisel bilgisayarlar bile büyük sinir ağlarını kabul edilebilir sürelerde eğitebilecek kadar hızlı bir donanıma sahip. Ama belki de daha önemlisi, araştırmacılar ve şirketler yirmi-otuz sene önce olduğundan çok daha fazla veri toplama imkanına sahipler. (Doğru bildiniz: İnternet ve sosyal medya aracılığıyla.) Daha fazla veri de, eğitim sırasında daha fazla çeşitlilik ve daha genellenebilir sonuçlar demek.

Kısacası, günümüzde makinelerin insanlar tarafından yapılan pek çok beceride hızla daha iyi performans sergilemesinin altında yatan temel faktör, elimizin altında onları eğitmek için kullanılabilecek çok büyük bir veri yığınının olması. Yapay Öğrenme yöntemlerinin, Deep Blue’nun ağaç taramasına kıyasla daha insan-benzeri olduğu söylenebilir.

Ama bu, Garry Kasparov’u etkilemeye yetmiyor:

Tüm Reklamları Kapat

Bugün kullandıklarımız hala Tip A makineler. Yine çoğunlukla kaba kuvvet kullanıyorlar – ‘optimizasyon’ adı altında. Bu makineler, insan tarafından yaratılan veriyi kullanarak daha başarılı oluyorlar. Ama insanların görmeyi bekledikleri, çok daha büyük bir dönüşüm. Sanırım, AlphaGo ile de bu dönüşümün ilk işaretlerini görmeye başlıyoruz.

Kasparov’un bahsettiği AlphaGo’yu birkaç sene öncesinin haberlerinden hatırlayabilirsiniz: Google’ın altındaki DeepMind şirketi tarafından geliştirilen bu Go programı, 2016’da efsane Go oyuncusu Lee Sedol’u mağlup ederek büyük yankı uyandırmış; bu olay Deep Blue’nun Kasparov’u yenmesine benzetilmişti. Kasparov, DeepMind’ın çalışma alanı olarak Go’yu seçmesinin sebebini şu şekilde açıklıyor:

Go, satrançtan çok daha karmaşık bir oyun. Daha ilk hamleden itibaren çok daha fazla seçeneğiniz var. Satrançta işe yarayan görece basit algoritmalar Go’da işe yaramıyor.

AlphaGo, bunun yerine, Yapay Öğrenme yöntemlerini kullanıyordu. Program, insan oyuncuların oynadığı oyunların kayıtlarından oluşan, yaklaşık 30 milyon hamlelik bir veri tabanı ile eğitilmişti. Kasparov şöyle söylüyor:

AlphaGo, 2016’da dünyanın en iyi ve en iyi ikinci Go oyuncularını alt etti. Gerçekten tarihi bir zaferdi.

AlphaGo’nun Lee Sedol’ü yenmesi, halk arasında Deep Blue’nun Garry Kasparov’u yenmesi kadar ses getirmedi belki, ama aslında teknoloji tarihi açısından çok daha önemli bir olaydı. Deep Blue’nun zaferinin altında fazla bir etkileyiciliği olmayan basit arama yöntemleri yatarken, Go’nun karmaşıklığından dolayı AlphaGo böyle numaraları kullanamazdı. Go’da bir dünya şampiyonunun makineye yenilmesi, Kasparov’un da dediği gibi, bir şeylerin değiştiğine işaret ediyordu.

Ama AlphaGo’nun hikayesi burada bitmiyor:

Tüm Reklamları Kapat

AlphaGo, insan Go oyuncularının oyunları ile eğitilmişti. Maçtan sonra, DeepMind ekibinin aklına bir fikir geldi: ‘Neden insan müdahalesi olmadan kendi kendini geliştirebilen bir program yapmıyoruz? Aynı algoritma, aynı yöntem kullanılsın, ancak makine sadece kuralları bilsin. Geri kalan her şeyi kendisi öğrensin.’

Ve bu fikri test etmek için yeni bir program geliştirildi. Şirketin AlphaGo Zero adını verdiği bu program, insanların oynadığı oyunları izleyerek Go’yu öğrenmek yerine, kendi kendine karşı milyonlarca oyun oynadı. Programa Go’nun kuralları haricinde hiçbir ön bilgi verilmedi. Makine, kendi kendine oynadığı oyunlarla bir veritabanı yaratarak, eğitimini bu veritabanından gerçekleştirdi. Sonra, AlphaGo Zero ile AlphaGo karşı karşıya geldi. Sonuç: 100 oyunun 100’ünü de AlphaGo Zero kazadı. Kasparov’un deyimiyle, AlphaGo Zero, AlphaGo’yu parçaladı.

Bu gerçekten şaşırtıcıydı: Fark ettik ki, insan verisi, on yıllardır topladığımız bütün bilgiler, aslında bizi kısıtlıyor olabilir.
Lee Sedol, AlphaGo'ya karşı... Yüz ifadeleri Kasparov ile ne kadar benziyor, değil mi?
Lee Sedol, AlphaGo'ya karşı... Yüz ifadeleri Kasparov ile ne kadar benziyor, değil mi?
Inverse

Bunun arkasından DeepMind, AlphaGo Zero’nun satranç versiyonunu denemeye karar verdi. AlphaZero adlı bu program, tıpkı Go versiyonu gibi, kendi kendine karşı milyonlarca oyun oynayarak satrancı öğrendi. AlphaZero, dört buçuk saatte, kendi kendine karşı altmış milyon oyun oynadı.

AlphaZero’nun ilk oyunları çok anlamsızdı. Ama sonra kendi verisini oluşturmaya devam etti ve kendi satranç algoritmasını geliştirdi. Eğitimi bitince, AlphaZero’yu, [günümüzdeki en iyi satranç programlarından olan] Stockfish’in karşısına koydular. 100 maçın 28’ini AlphaZero kazandı, geri kalan 72’sinde berabere kaldılar. Stockfish bir oyun bile alamadı. Ancak esas ilginç olan, AlphaZero’nun bu oyunları nasıl oynadığıydı.

Biz, kuvvetli satranç programlarının tüm hamlelerini dikkatlice hesaplamalarını, tüm olasılıkları gözden geçirmelerini, temkinli ve hiçbir şeyi şansa bırakmadan oynamalarını; böyle bir oyunun da oldukça sıkıcı ve yavaş olmasını bekleriz.

AlphaZero, bu beklentilerimizi tamamen boşa çıkararak bambaşka bir şekilde oynadı. Fedakarlıklarla dolu, çok agresif bir oyun sergiledi... Tabii, bu cümleyi kurarken psikolojik bir yanılgıya düşüyorum: Bir makine agresif oynamaz, bir makine fedakarlık yapmaz, makineler bu kavramları bilmez! Sadece olasılıklara bakar. AlphaZero ne yaptı biliyor musunuz? Kendisi için altmış milyon oyunluk bir veritabanı oluşturdu, sonra oyundaki karmaşık bağlantıları görmeye başladı: Hamleler, taşların önemi, kazanma ihtimali, değer... Farkına vardı ki, (insanların deyişi ile) fedakarlıklar yaparak, nihayetinde daha fazla değer kazanabilirdi. Bakın, bu makineler için karşılaştırması çok güç bir şey. Ama AlphaZero yine de bunları görmeyi başardı.

Daha ilginci ise şuydu:

Tüm Reklamları Kapat

Oyunun kayıtlarına baktığınızda görüyorsunuz ki, AlphaZero, Stockfish’e kıyasla ortalama bir – bir buçuk hamle ilerisini görerek oynuyordu. Stockfish ileriyi görmek için saniyede altı milyon pozisyonu inceliyordu... AlphaZero ise sadece altmış bin pozisyona bakıyordu. Buna rağmen, Stockfish’in öngörüsünü aşmayı başardı.

Kasparov, bu gelişmelerin sadece oyunlarla sınırlı kalmadığının da altını çiziyor ve örnek olarak, otonom araçları veriyor:

Geçtiğimiz mayısta Tesla’nın verdiği bir iş ilanı, video oyunu ve sanal gerçeklik tasarımcıları arıyordu. Gördüğünüz gibi, Tesla da aynı yolu izliyor. Sanal olarak, araçların karşılaşabileceği mümkün olduğunca fazla durumu simüle etmeye çalışıyorlar.

Çünkü neden olmasın: Trafiği öğrenmek için, otonom araçların dolandığı sanal bir şehirden daha iyi bir ortam olabilir mi?

Kasparov’a göre bütün bunlar – Deep Blue’dan AlphaZero’ya, ya da AlphaGo’dan AlphaGo Zero’ya geçişimiz, ya da Tesla’nın aklındaki yeni eğitim yöntemleri – yeni bir şeyler gördüğümüze işaret ediyor: “Yapay zeka dönüşümünün başlangıcını yaşıyoruz.”

Kasparov,
Kasparov, "insan-makine etkileşiminin karanlık çağı"nda.
The Telegraph

Kasparov’un Fikri

Peki bu durumda, insanları ne bekliyor? Kendimizle özdeşleştirdiğimiz ve bugüne kadar makinelerin yapamayacağını düşündüğümüz beceriler yavaş yavaş onların eline geçtikçe ne olacak? Optimistlerin en sık söylediği, insanların makinelerle çalışmaya devam edeceğidir: İnsan ile makinelerin becerileri farklıdır, bu yüzden bir görevde birbirlerini tamamlayıcı olacaklardır, öyle değil mi? Anlaşılan bu düşünce, satranç bağlamında Kasparov için de ilk akıla gelen şeydi.

Tüm Reklamları Kapat

[Deep Blue ile yapılan maçtan sonra] moralim bozulmuştu. Ama sonra düşündüm ki, madem onlarla mücadele edemiyoruz, neden onlara katılmıyoruz? İnsanın yaratıcılığını ve sezgisini, makinelerin kaba kuvveti ile birleştirelim. İki tarafın da en iyi yönleri! İşte bu şekilde, yeni bir konsept aklıma geldi: İnsan ve makine, insan ve makineye karşı. Teorik olarak mükemmel bir oyun olması lazımdı, değil mi?

Öyle olmadı. Kasparov’un bu yeni fikri ile oynanan oyunlarda görüldü ki, en iyi performansı sergileyenler, en iyi satranç oyuncuları ve en iyi makineler değildi: 

Sorun şu ki, bugünün en iyi satranç programı ile bugünün en iyi satranç oyuncusu arasındaki fark, Usain Bolt ile Ferrari arasındaki fark gibi.

Bu, acı bir gerçeği yüzümüze vuruyor:

Makinenin kararlarının, varsayımlarının çoğuna itiraz etmemeniz gerekiyor.

Yani, dünya şampiyonu olsanız dahi, telefonunuzdaki satranç uygulamasının yanında yeteneğinizin hiçbir anlamı olmayacak. Kasparov’un satranç için gözlemlediği bu gerçek, yavaş yavaş mevcut olan tüm beceriler için geçerli olacak.

Bizler -yani mesleklerinin en tepesinde olan insanlar- makinelerin bizden daha başarılı olduklarını kabul edemiyoruz. Gururumuz el vermiyor. Makinelere bırakmamız gereken konularda mücadele etmeye devam ediyoruz.

Bütün bu tartışmadan, gelecek konusunda iyimser olmak için pek bir sebep olmadığı sonucu çıkarılabilir. Birinci sanayi devriminden günümüze kadar, tarımda ya da endüstride pek çok işin makineler tarafından “yok edildiğini” gördük. Bu işlerin hemen hepsi fiziksel kuvvet, dayanıklılık ve isabetlilik gerektirmekteydi ve makineler de bu konularda eskiden beri insanlardan daha başarılılar. Günümüzde ise makinelerin artık sadece kendileriyle özdeşleştirilen bu “mekanik” işleri değil; daha karmaşık zihinsel beceriler gerektiren, bugüne kadar hep insanlarla özdeşleştirilmiş olan, beyaz-yaka sınıfına giren işleri de tehdit ettiklerini görüyoruz. Eskiden beri becerebildikleri mavi-yaka işler ile birlikte düşünüldüğünde, yakın gelecekte dünya üzerinde mevcut olan hemen hemen tüm mesleklerin makineler tarafından yapılabileceği sonucu çıkıyor. Bu durumda, iyimser fütüristlerin favori argümanı olan “Sanayi Devrimi’nde de pek çok iş yok edildi ancak yerine yenileri geldi” tesellisi ne kadar geçerli olacak? Yakın gelecekte makinelerin bakımını makineler yapınca, makineleri bilgisayar programları tasarlamaya başlayınca, makineleri üreten şirketleri bilgisayarlar yönetmeye başlayınca, insanlar hangi yeni iş sahalarına yönelebilecek? 

Tüm Reklamları Kapat

Resim bir açıdan böyle görünüyor. Ancak öbür taraftan, “makinelerin becerebildiği işler” yelpazesinin bu kadar genişlemesi, bizi, bu işleri yeniden tanımlamaya zorluyor. Bugüne kadar kullandığımız “tekrara dayalı, fiziksel kuvvet ya da yüksek hesaplama gücü gerektiren işler” tanımı geçerliliğini kaybetti belki; ama hala insan gibi düşünebilen, genelleyebilen, sezgisel öngörülerde bulunabilen, gerçek anlamda akıl yürütebilen bir bilgisayarı görmüyor olmamız, makinelerin becerilerinin sınırlarının hala tanımlanabilir olduğuna işaret etmektedir.

Kasparov, bu tanımın temelinde “sorular” olduğunu düşünüyor.

Bütün bu gelişmeler, eğer doğru bakmayı bilirsek, bize yeni bir bakış açısı sunmaktadır. Satranç, Go, DOTA, Starcraft... Makinelerin insanlardan daha başarılı olabildikleri bu oyunlara bakarsanız, hepsi hedefleri iyi tanımlanmış, kapalı sistemler.

Bilgisayarlar için belki de en önemli sorun problemin tanımlanmasıdır. Yazılımcı problemi matematiksel terimlere döküp bilgisayara uygun bir şekilde tanımladıktan sonra, bilgisayarın bu problemi çözmesi için gereken tek şey uygun bir çözüm yönteminin (örneğin optimizasyon algoritmasının) seçilmesidir. Video oyunları, masaüstü oyunları, beyaz yaka işler... Bütün bu çerçevelerde elde edilmek istenen nihai sonuç, kolaylıkla matematiksel ifadelere dökülebilir.

Makineler, hedeflerin rahatlıkla tanımlanabildiği bu çerçevelerde insanlardan daha iyi işler çıkarabilir. İnsan yardımı olmasa bile.

Peki bilgisayarlar, bu iyi tanımlanmış kapalı çerçevelerin ötesine geçebilecekler mi? Bir gün muhtemelen evet, ancak bunun yakın gelecekte gerçekleşeceğini düşünmek için herhangi bir neden bulunmamaktadır.

Tüm Reklamları Kapat

"[Picasso’dan alıntı:] ‘Bilgisayarlar kullanışsızdır, size sadece cevapları verirler’. Bir sanatçı olarak Picasso, soruların başlangıç, cevapların ise sonuç olduğunu biliyordu." Bilim insanlarının, sanatçıların, şirket yöneticilerinin, politikacıların, liderlerin verdikleri her kararda, başladıkları her çalışmada çıkış noktaları sorulardır.

Bilgisayarlar soru sorabilirler mi? Tabii ki sorabilirler. Ancak hangi sorunun kayda değer olduğunu, hangi sorunun bir fark yaratabileceğini bilmezler.

Kasparov’un kastettiği şu: Makineler bilimsel bir deneyin verilerini insanlardan daha iyi analiz edebilecek duruma gelebilirler belki; ancak bir araştırmada hangi verinin analiz edilmesi gerektiğini ya da verideki hangi anormalliğin üzerine daha fazla araştırma yapmaya değer olduğunu öngörmeyi yakın gelecekte başaramayacaklardır. Veya, belki şirketlerin finansal yönetimini günümüzün CEO’larından daha başarılı bir şekilde sürdürebilecekler, ancak örneğin Facebook’un dünya devi olmasını sağlayan “İnternetin geleceği ne olacak?” sorusunu sormaktan aciz olacaklardır. Kasparov’un vurguladığı, makinelerin günümüzde ellerindeki, içinde belirsizlik olmayan verinin ötesine bakabilmeleri için daima insanların zihinsel liderliğine ihtiyaçları olacağıdır. Tabii ki daha uzak gelecekte bu ihtiyaçlarının da ortadan kalkmaması için bir sebep yok, ama bahsettiğimiz kadar uzak bir zaman diliminde insan-makine etkileşiminin nasıl bir form alacağını zaten kestirememekteyiz.

Yakın vadede pek çok iş yok olacak, doğru. Ama uygarlığın tarihinde hep böyle olmuştur. İki yüz sene önce nüfusun çoğu tarımda çalışıyordu, yüz yıl önce ise imalatta. Günümüzdeki durumdan tek farkı, yapay zekanın şu anda ilk defa beyaz-yaka işleri tehdit etmesi.

Doğal olarak bu beyaz-yaka işlere, sağlık sektörü, altyapı işleri, yönetim, eğitim, hukuk gibi toplumun hayat standartlarını doğrudan etkileyen pek çok sektör de girmektedir. Kasparov konuyla ilgili şöyle diyor:

İnsanlar, iyi maaş getiren pek çok işin tehlikede olduğunu söylüyor, örneğin radyologlarınkiler gibi. Bu doğru. Ama aynı zamanda, yapay zeka bu süreçleri daha ucuz ve daha hızlı yapacak. Evet, belki Amerika’da yüzlerce, binlerce işi kaybedeceğiz. Ancak bu sayede Afrika'da ve Asya’da yüzbinlerce hayat kurtulacak. Bir tarafta hayatlar, öbür tarafta işler.

Kasparov, beyaz-yaka işlerde makineleşmenin getireceği olumsuz etkileri -hatta ekonomik yıkımı- görmezden gelmiyor, ancak “uygarlık olarak nerede olduğumuzu anlamak için, büyük resmi görmeye çalışmamız gerektiğini” söylüyor.

Tüm Reklamları Kapat

İngiltere'deki teknoloji karşıtı işçileri makineleri parçalarken gösteren bir çizim.
İngiltere'deki teknoloji karşıtı işçileri makineleri parçalarken gösteren bir çizim.
Stuff You Missed in History Class

Ekonomik Yıkım

Kasparov’un kendi satranç kariyerindeki Deep Blue tecrübesinden ve bu tecrübeyi diğer mesleklere yansıtmasından çıkan düşünceleri şu şekilde özetlenebilir: Makineler insanlar ile özdeşleştirilen meslekleri ele geçirmeye başladılar ve bu süreç devam edecek, ancak ne olursa olsun kısa vadede iyi tanımlanmış dar çerçevelerin ötesine geçmeyi başaramayacaklar. Becerileri, şöyle veya böyle yaratıcılık gerektirmeyen, sorgulama gerektirmeyen, tekrar eden işlerle sınırlı kalacak – bu işler zihinsel açıdan karmaşık olsa bile. Bu yüzden Kasparov, insanlar için her zaman yer olacağını belirtiyor: Makinelerden bekleyebileceğimiz tek şey, insanların onlar için tanımladığımız çerçeve içinde en iyi sonuçları vermeleri. Onlardan yaptıkları şeyi anlamalarını, açıklamalarını, kendi kendilerine çerçeveler belirlemelerini, işlerini sorgulamalarını beklemek, en azından yakın gelecekte anlamsız olacaktır.

Ancak bunlar, gelişmiş ülkeleri bekleyen ekonomik yıkımdan korkmamız gerekmediği anlamına gelmemektedir. Kasparov’un bahsettiği, 2016’da ABD’de yapılan bir araştırma, ortalama üzeri bir yaratıcılık gerektiren işlerin oranının sadece %4 olduğunu gösteriyor. (Kasparov konuşmasında herhangi bir referans vermedi, ancak şu yazıdaki araştırmadan bahsettiğini tahmin ediyoruz.)

Maalesef ki nesilleri; tekrarlayan, monoton işleri yapmaları için yetiştirdik. Ama bu işler ölüme mahkum, onlar gitti. Onları kurtarmak için yapılabilecek bir şey yok. Önemli olan süreci yavaşlatmak değil, hızlandırmak. Buradan doğacak ızdırabı belki erteleyebiliriz, ancak bunu yapmak yeni işlerin, yeni karlar getirecek yeni endüstrilerin, yeni fikirlerin üretimini yavaşlatacaktır.

Bir açıdan bakıldığında, Kasparov’un söylediklerinin çok küçük bir kısmı kişisel deneyimin ötesine dayanmaktadır. Öte yandan, bu kişisel deneyim otomasyon teknolojilerinin getireceklerinin öngörülmesinde gerçekten önemli bir kaynaktır. Kasparov’un satranç bağlamında içinden geçtiği sürecin benzerini, bugünün beyaz yakalı çalışanlarının önemli bir kısmının yakın gelecekte yaşayacağı öngörülmektedir. Kim bilir belki de bu satranç ustasının tavsiyelerine kulak vermek ve onları politikalarımıza bugünden entegre etmek, otomasyonun olumsuz toplumsal etkilerinden kaçmakta bize yardımcı olabilir.

Yazarın Notu: Kasparov’un konuşmasından alıntılanan cümlelerin bazıları, yazılı anlatıma uygunluğu ve okunabilirliği sağlamak amacıyla yeniden düzenlenmiş; bu yeniden düzenleme sırasında anlamın değişmemesine özen gösterilmiştir.

doi: 10.47023/ea.bilim.7631

Alıntı Yap
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Yapay Zeka Uzmanları ve Görüşleri Yazı Dizisi

Bu yazı, Yapay Zeka Uzmanları ve Görüşleri yazı dizisinin 2. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
111
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

İçerikle İlgili Sorular
Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Merak Uyandırıcı! 8
  • Tebrikler! 6
  • Umut Verici! 4
  • Mmm... Çok sapyoseksüel! 2
  • Korkutucu! 2
  • Muhteşem! 1
  • Bilim Budur! 1
  • Güldürdü 0
  • İnanılmaz 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
Kaynaklar ve İleri Okuma
  • Garry Kasparov. (Konuşma, 2019). Special Evening With Garry Kasparov (Applied Machine Learning Days 2019 At Ecole Polytechnique Federale De Lausanne).
  • Gil Press. The Brute Force Of Ibm Deep Blue And Google Deepmind. (7 Şubat 2018). Alındığı Tarih: 28 Şubat 2019. Alındığı Yer: Forbes | Arşiv Bağlantısı
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 30/01/2023 07:50:12 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/7631

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Size Özel (Beta)
İçerikler
Sosyal
Savunma
Biyocoğrafya
Bitki
Yüzey
Uzay Aracı
Bitkiler
Yok Oluş
Virüs
Deniz
Covıd-19
Kanat
Eşeyli Üreme
Algı
Seçilim
Astrofotoğrafçılık
Mavi
Beyaz
Küresel
Karbonhidrat
Manyetik Alan
Bilgi Felsefesi
Diş Hekimi
Element
Genel Halk
Plastik
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Z. D. Erden, et al. Garry Kasparov ile Yapay Zeka ve Otomasyon Üzerine. (28 Şubat 2019). Alındığı Tarih: 30 Ocak 2023. Alındığı Yer: https://evrimagaci.org/s/7631 doi: 10.47023/ea.bilim.7631
Erden, Z. D., Özdil, A. Ş. (2019, February 28). Garry Kasparov ile Yapay Zeka ve Otomasyon Üzerine. Evrim Ağacı. Retrieved January 30, 2023. from https://doi.org/10.47023/ea.bilim.7631
Z. D. Erden, et al. “Garry Kasparov ile Yapay Zeka ve Otomasyon Üzerine.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, 28 Feb. 2019, https://doi.org/10.47023/ea.bilim.7631.
Erden, Zeki Doruk. Özdil, Ayşegül Şenyiğit. “Garry Kasparov ile Yapay Zeka ve Otomasyon Üzerine.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, February 28, 2019. https://doi.org/10.47023/ea.bilim.7631.

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Paylaş
Reklamsız Deneyim

Evrim Ağacı'ndaki reklamları, bütçenize uygun bir şekilde, kendi seçtiğiniz bir süre boyunca kapatabilirsiniz. Tek yapmanız gereken, kaç ay boyunca kapatmak istediğinizi aşağıdaki kutuya girip tek seferlik ödemenizi tamamlamak:

10₺/ay
x
ay
= 30
3 Aylık Reklamsız Deneyimi Başlat
Evrim Ağacı'nda ücretsiz üyelik oluşturan ve sitemizi üye girişi yaparak kullanan kullanıcılarımızdaki reklamların %50 daha az olduğunu, Kreosus/Patreon/YouTube destekçilerimizinse sitemizi tamamen reklamsız kullanabildiğini biliyor muydunuz? Size uygun seçeneği aşağıdan seçebilirsiniz:
Evrim Ağacı Destekçilerine Katıl
Zaten Kreosus/Patreon/Youtube Destekçisiyim
Reklamsız Deneyim
Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Moderatöre Bildir

Raporlama sisteminin amacı, platformu uygunsuz biçimde kullananların önüne geçmektir. Lütfen bir içeriği, sadece düşük kaliteli olduğunu veya soruya cevap olmadığını düşündüğünüz raporlamayınız; bu raporlar kabul edilmeyecektir. Bunun yerine daha kaliteli cevapları kendiniz girmeye çalışın veya size sunulan (oylama gibi) diğer araçlar ile daha kaliteli cevaplara teşvik edin. Kalitesiz bulduğunuz içerikleri eleyebileceğiniz, kalitelileri daha ön plana çıkarabileceğiniz yeni araçlar geliştirmekteyiz.

Öncül Ekle
Sonuç Ekle
Mantık Hatası Seç
Soru Sor
Aşağıdaki "Soru" kutusunu sadece soru sormak için kullanınız. Bu kutuya soru formatında olmayan hiçbir cümle girmeyiniz. Sorunuzla ilgili ek bilgiler vermek isterseniz, "Açıklama" kısmına girebilirsiniz. Soru kısmının soru cümlesi haricindeki kullanımları sorunuzun silinmesine ve UP kaybetmenize neden olabilir.
Görsel Ekle
Kurallar
Platform Kuralları
Bu platform, aklınıza takılan soruları sorabilmeniz ve diğerlerinin sorularını yanıtlayabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Gerçekten soru sorun, imâdan ve yüklü sorulardan kaçının.
Sorularınızın amacı nesnel olarak gerçeği öğrenmek veya fikir almak olmalıdır. Şahsi kanaatinizle ilgili mesaj vermek için kullanmayın; yüklü soru sormayın.
2
Bilim kimliğinizi kullanın.
Evrim Ağacı bir bilim platformudur. Dolayısıyla sorular ve cevaplar, bilimsel perspektifi yansıtmalıdır. Geçerli bilimsel kaynaklarla doğrulanamayan bilgiler veya reklamlar silinebilir.
3
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Sahtebilimi desteklemek yasaktır.
Sahtebilim kategorisi altında konuyla ilgili sorular sorabilirsiniz; ancak bilimsel geçerliliği bulunmayan sahtebilim konularını destekleyen sorular veya cevaplar paylaşmayın.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Soru Ara
Aradığınız soruyu bulamadıysanız buraya tıklayarak sorabilirsiniz.
Alıntı Ekle
Eser Ekle
Kurallar
Komünite Kuralları
Bu komünite, fark edildiğinde ufku genişleten tespitler içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Tavsiye Et
Aşağıdaki kutuya, [ESER ADI] isimli [KİTABI/FİLMİ] neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Kurallar
Platform Kuralları
Bu platform; okuduğunuz kitaplara, izlediğiniz filmlere/belgesellere veya takip ettiğiniz YouTube kanallarına yönelik tavsiylerinizi ve/veya yapıcı eleştirel fikirlerinizi girebilmeniz içindir. Tavsiye etmek istediğiniz eseri bulamazsanız, buradan yeni bir kayıt oluşturabilirsiniz. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Önceliğimiz pozitif tavsiyelerdir.
Bu platformu, beğenmediğiniz eserleri yermek için değil, beğendiğiniz eserleri başkalarına tanıtmak için kullanmaya öncelik veriniz. Sadece negatif girdileri olduğu tespit edilenler platformdan geçici veya kalıcı olarak engellenebilirler.
2
Tavsiyenizin içeriği sadece negatif olamaz.
Tavsiye yazdığınız eserleri olabildiğince objektif bir gözlükle anlatmanız beklenmektedir. Dolayısıyla bir eseri beğenmediyseniz bile, tavsiyenizde eserin pozitif taraflarından da bahsetmeniz gerekmektedir.
3
Negatif eleştiriler yapıcı olmak zorundadır.
Eğer tavsiyenizin ana tonu negatif olacaksa, tüm eleştirileriniz yapıcı nitelikte olmak zorundadır. Yapıcı eleştiri kurallarını buradan öğrenebilirsiniz. Yapıcı bir tarafı olmayan veya tamamen yıkıcı içerikte olan eleştiriler silinebilir ve yazarlar geçici veya kalıcı olarak engellenebilirler.
4
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Eser Ara
Aradığınız eseri bulamadıysanız buraya tıklayarak ekleyebilirsiniz.
Tür Ekle
Üst Takson Seç
Kurallar
Komünite Kuralları
Bu platform, yaşamış ve yaşayan bütün türleri filogenetik olarak sınıflandırdığımız ve tanıttığımız Yaşam Ağacı projemize, henüz girilmemiş taksonları girebilmeniz için geliştirdiğimiz bir platformdur. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Takson adlarını doğru yazdığınızdan emin olun.
Taksonların sadece ilk harfleri büyük yazılmalıdır. Latince tür adlarında, cins adının ilk harfi büyük, diğer bütün harfler küçük olmalıdır (Örn: Canis lupus domesticus). Türkçe adlarda da sadece ilk harf büyük yazılmalıdır (Örn: Evcil köpek).
2
Taksonlar arası bağlantıları doğru girin.
Girdiğiniz taksonun üst taksonunu girmeniz zorunludur. Eğer üst takson yoksa, mümkün olduğunca öncelikle üst taksonları girmeye çalışın; sonrasında daha alt taksonları girin.
3
Birden fazla kaynaktan kontrol edin.
Mümkün olduğunca ezbere iş yapmayın, girdiğiniz taksonların isimlerinin birden fazla kaynaktan kontrol edin. Alternatif (sinonim) takson adlarını girmeyi unutmayın.
4
Tekrara düşmeyin.
Aynı taksonu birden fazla defa girmediğinizden emin olun. Otomatik tamamlama sistemimiz size bu konuda yardımcı olacaktır.
5
Mümkünse, takson tanıtım yazısı (Taksonomi yazısı) girin.
Bu araç sadece taksonları sisteme girmek için geliştirilmiştir. Dolayısıyla taksonlara ait minimal bilgiye yer vermektedir. Evrim Ağacı olarak amacımız, taksonlara dair detaylı girdilerle bu projeyi zenginleştirmektir. Girdiğiniz türü daha kapsamlı tanıtmak için Taksonomi yazısı girin.
Gönder
Tür Gözlemi Ekle
Tür Seç
Fotoğraf Ekle
Kurallar
Komünite Kuralları
Bu platform, bizzat gözlediğiniz türlerin fotoğraflarını paylaşabilmeniz için geliştirilmiştir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Net ve anlaşılır görseller yükleyin.
Her zaman bir türü kusursuz netlikte fotoğraflamanız mümkün olmayabilir; ancak buraya yüklediğiniz fotoğraflardaki türlerin özellikle de vücut deseni gibi özelliklerinin rahatlıkla ayırt edilecek kadar net olması gerekmektedir.
2
Özgün olun, telif ihlali yapmayın.
Yüklediğiniz fotoğrafların telif hakları size ait olmalıdır. Başkası tarafından çekilen fotoğrafları yükleyemezsiniz. Wikimedia gibi açık kaynak organizasyonlarda yayınlanan telifsiz fotoğrafları yükleyebilirsiniz.
3
Paylaştığınız fotoğrafların telif hakkını isteyemezsiniz.
Yüklediğiniz fotoğraflar tamamen halka açık bir şekilde, sınırsız ve süresiz kullanım izniyle paylaşılacaktır. Bu fotoğraflar nedeniyle Evrim Ağacı’ndan telif veya ödeme talep etmeniz mümkün olmayacaktır. Kendi fotoğraflarınızı başka yerlerde istediğiniz gibi kullanabilirsiniz.
4
Etik kurallarına uyun.
Yüklediğiniz fotoğrafların uygunsuz olmadığından ve başkalarının haklarını ihlâl etmediğinden emin olun.
5
Takson teşhisini doğru yapın.
Yaptığınız gözlemler, spesifik taksonlarla ilişkilendirilmektedir. Takson teşhisini doğru yapmanız beklenmektedir. Taksonu bilemediğinizde, olabildiğince genel bir taksonla ilişkilendirin; örneğin türü bilmiyorsanız cins ile, cinsi bilmiyorsanız aile ile, aileyi bilmiyorsanız takım ile, vs.
Gönder
Tür Ara
Aradığınız türü bulamadıysanız buraya tıklayarak ekleyebilirsiniz.