Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

How Can Rockets Fly in the Vacuum of Space?

11 dakika
25
How Can Rockets Fly in the Vacuum of Space?
  • Blog Yazısı
Blog Yazısı
Tüm Reklamları Kapat

Rockets are marvelous machines. Our generation is lucky to be able to witness rocket flights frequently, even if most of us have to follow new flights via live streams.

But have you ever considered how these rockets fly? How can rockets weighing tens of thousands of pounds overcome the grueling gravity of the Earth, both in our atmosphere and in the vacuum of space? How can they reach incredible velocities such as 27,000 kilometers per hour, or 17,000 miles per hour?

In this post, we will explore the basic principles behind the flight of these enormous and complex machines.

Tüm Reklamları Kapat

Timelapse shot of SpaceX's flight to the International Space Station. The route of the rocket towards orbit appears in an elegant style.
Timelapse shot of SpaceX's flight to the International Space Station. The route of the rocket towards orbit appears in an elegant style.
SpaceX

Newton's 3rd Law: Law of Action-Reaction

All rocket engines work according to Newton's 3rd Law, or the "Action-Reaction Principle". This law states that every force in the universe must have an equal and opposite reaction.

For instance, when you're standing, your weight due to the gravitational pull of our planet applies a force onto the Earth via your feet. If the Earth did not apply on you an equal and opposite reaction force, it would not be possible for you to stand still - and you would keep moving to the center of the Earth.

Another example is the Earth-Moon system. As our Earth pulls on its natural satellite (the Moon), the Moon also pulls our planet with the same force but with an opposing direction. Of course, since the mass of the Earth is much larger than the Moon's, the effect of this force on these two objects differ: The force applied on the Earth, even if it is exactly the same amount with the force applied on the Moon, does very little to our planet: For instance, it generates the tides - and it perturbs the orbit of our planet, but that's about it. On the other hand, that same amount of force applied on the Moon causes our satellite to stick to an orbit around the Earth.

Same thing is also true for you and the Earth: The force you apply is the exact same amount to the force that the Earth applies to you. But when you jump, you fall back on the Earth and the Earth does not fall on you. Because that force, regardless of its magnitude, has a much bigger impact on a small object like yourself than its impact on a humongous object like the Earth.

Tüm Reklamları Kapat

However, just to be clear, technically, the Moon does not orbit the Earth - but the Moon-Earth system orbits around a common center of gravity, which is known as the barycenter. This point is determined by the masses of the two objects in the system and is always closer to the more massive one.

The barycenter of the Earth-Moon system lies inside the radius of the Earth; therefore to an outside observer it looks like the Moon is orbiting around the Earth, instead of both object revolving around a common center.

In fact, as shown above, the barycenter of the Moon-Earth system lies inside the radius of the Earth and hence, it would appear to an outside observer that the Moon is orbiting around the Earth and not the other way around. The only effect that a detail-oriented observer would see is that the Earth does not follow a perfectly straight trajectory along its elliptical orbit, but it sways around the orbit like a drunk man trying to walk:

This is obviously an exaggeration to show the swaying of the Earth due to the pull of the Moon. Objects are not to scale.

We are now ready to explore how rocket engines also adhere to this principle.

How Do Rockets Work?

The most common type of rockets involve an fuel tank that feeds liquid fuel to the engines to power the rocket. This fuel is mixed at a certain rate and pumped into the engine at a very high velocity. The flames that we can observe under a rocket is the fuel being burned by the engines. These flames will become important shortly.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

As the fuel mixture combusts, the reaction gases exit the nozzle of the rocket at extremely high temperatures (3200°C or 5792°F) and insane velocities (~3,000 m/s, or ~6710 mph). This speed is needed for the rocket to be able to propel forward and overcome gravity.

Flame beam photo taken with a special camera (HIDyRS-X) of a rocket engine for NASA testing for its SLS (Space Launch System)
Flame beam photo taken with a special camera (HIDyRS-X) of a rocket engine for NASA testing for its SLS (Space Launch System)
NASA

Due to the Newton's 3rd Law as explained above, as the "rocket system" (fuel tank, combustion chamber, etc.) applies a force on the exit gases, these gases apply an equal but opposite force on the rocket system. Since these gases are so lightweight, the combustion reaction causes them to fly out of the nozzle at incredible velocities. Even if individual gas particles are small, they are huge in numbers and every single one of those molecules push the rocket in the opposite direction.

Since the rocket is much heavier than the gases, a huge amount of inertia must be overcome by these shooting gases. This is why the rocket does not go as fast as the small molecules, but as the rocket roars, the rocket starts moving very slowly at first, but with a steady acceleration, allowing it to speed up as seconds pass.

This basic principle is so strong and reliable, that Saturn V, the most powerful rocket that has ever flown, was able to provide 34.5 million Newtons of thrust - an equivalent of 34,226 Boeing 747s!

A detailed image of the famous Saturn V rocket engine and the turbo pump that sustains this engine.
A detailed image of the famous Saturn V rocket engine and the turbo pump that sustains this engine.
Steven F.

As the rocket roars with fuels combusting, the pumps inside rocket engine (especially the "turbo pump", which is considered the "heart" of rocket engine) pumps fuel to the engine at very high velocities - and the pressure of the burnt fuel is also vital. In order to keep the rocket going, these huge pumps burn approximately 250 kg of fuel per second in Space X's Falcon 9 rocket and 788 kg of fuel per second in NASA's legendary Saturn V rocket.

How Can Rockets Fly in the Vacuum of Space?

This is a great time to talk about (and hopefully, correct) a common misunderstanding about how rockets fly. It is generally thought that rockets fly like how helicopters or most propelled systems (like drones) do, i.e. by pushing the air that they interact with. It is true that a helicopter needs air to push down so that it can generate lift in the opposite direction. But if this was true for our rockets, then none of our rockets could fly in space, since there are no molecules to push against to. In fact, Robbert Goddard, the (Western) father of modern rockets was ridiculed by the New York Times for proposing that machines could fly in the vacuum of space too - which eventually led to an apology by the newspaper, decades after the original article.

Tüm Reklamları Kapat

As we mentioned above, a rocket does not fly thanks to the atmospheric air pushed in the opposite direction. Instead, a rocket can fly thanks to the rocket pushing its burnt fuel out of its nozzle. In other words, a rocket generates its own gases to push against to, using chemical reactions (and converting liquids to high-velocity gases). So it is not like a person crouching down to jump even stronger - in that case, the person gains velocity by applying Newton's 3rd law onto the Earth (the ground). A rocket's flight is more similar to a newly rising technology called "flyboards", where water or air is pushed at insane velocities to lift a person off of ground. In this case, the gases coming out of the jetpack allows the person to gain velocity in the opposite direction and lift off:

This is also how astronaut jetpacks work - by pushing internally pressurized air out of a nozzle to generate force in the opposite direction:

Thus, rocket engines can create thrust by pushing the gas that they create by burning their fuels, regardless of whether there is an atmosphere or not.

Tüm Reklamları Kapat

In fact, rockets work even more efficiently in the vacuum of space than they do here in Earth's atmosphere, since space is devoid of factors like other gases in front of the rocket which creates a drag force and slows the rocket's acceleration down. It is hard to grasp at first, but in fact, it is a more difficult process to overcome the drag forces generated in the atmosphere than to overcome the gravitational pull of the Earth. This is why Apollo missions (such as Apollo 17 shown below) could lift off the surface of the Moon with seemingly very little effort. The Moon has a gravity that is only 1/6th of the Earth's (which is still a sizeable gravity), but it has close to zero air resistance due to a lack of atmosphere:

Conservation of Momentum

If you wanted to have a slightly more mathematical/physical understanding of how rockets work, let's freshen up your high school memories of learning about the conservation of momentum, i.e. the 1st Law of Motion (or Newton's 1st Law). Yes, in case you were wondering, rockets must follow all 3 laws of Newton and each law gives us a different insight about the flight of a rocket. We will skip it here, but briefly, Newton's 2nd Law tells us how forces cause accelaration and that acceleration is what causes the rocket to speed up (remember, F=maF=ma).

Momentum, or more specifically, linear momentum (p⃗\vec{p}) in this context, is a property of all objects in the Universe and it is calculated by multiplying the velocity (v⃗\vec{v}) of an object with its mass (mm), as follows:

p⃗=mv⃗\LARGE{\vec{p}=m\vec{v}}

Tüm Reklamları Kapat

Agora Bilim Pazarı
Matematik Olimpiyatlarına Hazırlık Geometri - 3
  • Boyut: 18 X 22,5
  • Sayfa Sayısı: 336
  • Basım: 1
  • ISBN No: 9786053552185
Devamını Göster
₺497.00
Matematik Olimpiyatlarına Hazırlık Geometri - 3

Newton's 1st Law states that, among other things, this momentum must be conserved at all times. This can be interpreted in that famous way: "An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force."

So if there is no force to act upon an object, there should be no change in the velocity or direction of that object. But if there is a force on acting on an object, there must be a change in velocity and/or direction of that object.

In Pool Balls

Think about a game of billiards: Let's say there are two balls at rest. Since both velocities of these balls are zero, then the net momentum of this system is zero.

Now, when we apply a force to the white ball through the pool cue, we have now added force to the system, therefore changing the velocity of the first ball, and therefore changing the momentum of that ball. As the ball moves toward the second ball we are aiming at, this first ball has a momentum of mv⃗m\vec{v}, throughout its motion. The moment it makes impact with the second ball, this momentum needs to be conserved. As a result, if the first ball comes to a full stop after the impact, than the totality of its momentum (mv⃗m\vec{v}) must have been transferred to the second ball. Since the second ball also have a mass of mm, then it must have a velocity of v⃗\vec{v}, which is exactly equal to the velocity of the incoming (first) ball.

The conservation of the momentum in the collision of billiard balls with each other. The white ball moves in a specific velocity before the collision and has a momentum equal to its "mass x velocity". The yellow ball is staying still, meaning it has zero momentum. During the collision, the white and yellow ball exert themselves an equal but opposite force on each other and the forces neutralize themselves. Thus, after the collision the yellow ball keeps moving with the momentum that the white has at the first. But the white ball stops and thus momentum conserved in the system.
The conservation of the momentum in the collision of billiard balls with each other. The white ball moves in a specific velocity before the collision and has a momentum equal to its "mass x velocity". The yellow ball is staying still, meaning it has zero momentum. During the collision, the white and yellow ball exert themselves an equal but opposite force on each other and the forces neutralize themselves. Thus, after the collision the yellow ball keeps moving with the momentum that the white has at the first. But the white ball stops and thus momentum conserved in the system.
Pearson Education

In Rockets

Now let's apply the above principles to a stationary, upright rocket. It should be clear by now that the rocket's momentum must be conserved too. As the engine of the rocket burns liquid fuel, many very small molecules are pushed below the engine at incredible speeds in the flames. This creates a downward-directed net momentum which can be calculated by the summation of the mass of each gas molecule multiplied by its velocity with which it is propelled in the flames.

An image that shows conservation of the momentum in rockets. The first system's momentum is zero. With the eruption of the fuel from the engine, a net momentum to the left occurs. To balance this change in momentum, the rocket moves at the same magnitude momentum to the right.
An image that shows conservation of the momentum in rockets. The first system's momentum is zero. With the eruption of the fuel from the engine, a net momentum to the left occurs. To balance this change in momentum, the rocket moves at the same magnitude momentum to the right.
Pearson Prentice Hall

You can think of it this way: A single burnt fuel molecule is maybe quadrillions of times smaller, and hence, less massive than the rocket itself. Since their mass (mm) is so small, regardless of the immense speeds (v⃗\vec{v}) at which they leave the rocket, the momentum (mv⃗m\vec{v}) is still very minuscule. However, there are still quadrillions and quadrillions of these molecules leaving the rocket. Therefore, the summation of their momentum is extremely large, as each molecule's momentum is added on top of each other. And it is this total momentum that needs to be conserved, not just the momentum of a single molecule.

Since our rocket was stationary at first (mv⃗=0m\vec{v}=0), this net momentum must be conserved. To do this, another momentum vector is required. This balancing momentum comes from the rocket, which rises in the opposite direction with the gases. Since the mass of the rocket (mrocketm_{\text{rocket}}) is extremely large, the total force applied to the rocket by the totality of atoms cause a very small velocity (vrocketv_\text{rocket}) at first. But it is a constant force, which slowly speeds the rocket up. And more importantly, that velocity generates an opposing momentum, conserving the net momentum of the system. This is how an enormous rocket can move away from our blue planet with magnificent flames.

Conclusion

Different companies have different rocket designs with unique and propriety systems, but they all operate with the same principles described in this article.

A frame from an ion thrust system
A frame from an ion thrust system
Wonderful Engineering

For instance, more recent technologies such as ion thrust systems ionizes gases with the electrical energy it captures from the Sun. Instead of burning fuel that we see in classic rockets that rely on chemical reactions, the ion thrust system ionizes gases that weigh less than fuel. The rocket uses electromagnetism to push the ions out of the rocket at very high velocities, creating the energy needed to propel the rocket rocket rapidly like a classic rocket engine. Thus, the rocket gains velocity in the opposite direction of the ions.

The ion thrust system shows promise in providing very long-termed thrust than a chemical rocket engine, allowing us to travel faster and longer in space. Although, in its current state the propulsion force is much, much lower than that of classic rocket chemical engines and the technology is not widely utilized in the rocket industry.

Okundu Olarak İşaretle
23
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Raporla
Mantık Hatası Bildir
Yukarı Zıpla
Bu İçerik Size Ne Hissettirdi?
  • Mmm... Çok sapyoseksüel! 1
  • Muhteşem! 0
  • Tebrikler! 0
  • Bilim Budur! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 12/01/2025 06:56:02 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/11441

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Evrimsel Psikoloji
Endokrin Sistemi Hastalıkları
Su Ayısı
Hasta
Modern
Risk
Bilim Felsefesi
Dışkı
Kütleçekimi
Ecza
Bağırsak
Epistemoloji
Çocuklar İçin Bilim
Tüy
Kalori
Kitlesel Yok Oluş
Obezite
Nöron Hücresi
Bilinç
Albert Einstein
Odontoloji
Etimoloji
Jeoloji
Gezegen
Doktor
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close