Hücre Çalışmaları: Elektron ve Işık Mikroskopları Nasıl Kullanılır?
Hücre Teorisi Nedir? Her Hücre Başka Bir Hücreden Mi Meydana Gelir?

-
Özgün
Özgün Nedir?
Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.
- Hücre Biyolojisi
Özet
Hücre en küçük yaşam birimidir. Çoğu hücre çıplak gözle gözlemlenmeyecek kadar küçüktür. Bu nedenle, bilim insanları hücreler üzerine çalışmak için mikroskopları kullanmaktadırlar. Elektron mikroskopları ışık mikroskoplarından daha yüksek büyütme oranı, daha yüksek çözünürlük ve daha fazla detay görme imkânı sağlarlar. Birleştirilmiş hücre teorisi bütün organizmaların bir ya da daha fazla hücreden meydana geldiğini, hücrenin en temel yaşam birimi olduğunu ve hücrelerin var olan hücrelerden meydana geldiğini ifade eder.
Hücre, canlılığın en küçük birimidir. Siz de dahil etrafınızdaki her insan, hayvan veya bitki birer organizma olarak adlandırılır. Hücreler bütün bu organizmaların temel yapı taşlarıdır.
Çok hücreli organizmalarda belirli cinsten hücreler birbirleriyle bağlantı kurarak kas doku, bağ doku ve sinir doku gibi dokuları oluşturur ve ortak işlevler gerçekleştirirler. Bu dokulardan bazıları ise birleşerek mide, kalp ya da beyin gibi organları oluşturur. Dahası, bazı organlar da bir araya gelerek sindirim sistemi, dolaşım sistemi veya sinir sistemi gibi organ sistemlerini meydana getirir. Bunlar gibi birkaç sistemin birlikte çalışmasıyla da organizmalar oluşur.
Birçok farklı hücre türü olsa da tüm hücreler prokaryotik hücreler ve ökaryotik hücreler olmak üzere iki geniş kategoriye ayrılabilir. Hayvan hücreleri, bitki hücreleri, mantarlar ve protistler ökaryotik olarak sınıflandırılır, buna karşın bakteri ve arkeler prokaryotik hücrelerdir. Bir hücrenin prokaryotik ya da ökaryotik olup olmadığını belirlemenin kriterlerinden bahsetmeden önce, biyologların hücreler üzerine nasıl çalıştığını inceleyelim.
Mikroskop
Hücreler çeşitli boyutlara sahiptir. Çoğu hücre tek başına çıplak gözle görülemeyecek kadar çok küçüktür, bu yüzden bilim insanları hücreler üzerine çalışmak için mikroskopları kullanırlar. Hücrelerin mikroskop ile çekilen fotoğraflarına "mikrograf" ismi verilir.
Bir hücrenin boyutunun daha iyi anlaşılması adına şöyle bir karşılaştırma yapılabilir: Ortalama bir insan alyuvar hücresi, bir metrenin yaklaşık sekiz mikrometre (µm) çapındadır; bir toplu iğnenin başı ise bir metrenin yaklaşık iki binde biri (mm) çapındadır. Yani bir toplu iğne başına 250 tane alyuvar hücresi sığabilir.
Işık ve Diseksiyon Mikroskopları
/evrimagaci.org%2Fpublic%2Fcontent_media%2Fcd77af47cddf0a55a6b67311cd827795.jpeg)
Bir ışık mikroskobunda mercekler nesneden yansıyan ışığın doğrultusunu değiştirir. Yani mikroskop lamında yukarı ve sağa bakan bir numune, mikroskopla bakıldığında baş aşağı ve sola bakacak şekilde görünecektir. Benzer bir şekilde eğer lam mikroskoptan bakıldığında sola dönükse gerçek görüntüde sağa, aşağı bakıyorsa gerçek görüntüde yukarı baktığı söylenebilir. Mikroskoplar görüntüyü büyütmek için iki takım mercek kullandığından bu durum meydana gelmektedir. Işığın mercekler boyunca kırılmasından ötürü sistem ters bir görüntü oluşturur. (Dürbün ve diseksiyon mikroskobu da benzer bir şekilde çalışsa da son görüntüyü düzgün oluşturan ek bir büyütme sistemi bulundururlar.)
Işık mikroskopları genellikle üniversitelerin lisans laboratuvarlarında görüntüyü yaklaşık 400 kez büyütmek için kullanılır. Bu mikroskoplarda görünür ışığın merceklerden geçip kırılması gözlemciye numuneyi görme şansı verir. Işık mikroskopları yaşayan organizmaları görüntülemek için avantajlıdır ancak tekil hücreleri çoğu zaman gösteremezler. Yani bu mikroskoplar özel boyalar ile renklendirilmezlerse hücre bileşenlerini ayırt edemez. Ancak çoğu hücre renklendirme kullanıldığında ölecektir.
Mikroskoplarda en önemli iki parametre büyütme oranı ve çözünürlüktür. Büyütme oranı bir objenin büyütülme derecesidir. Çözünürlük ise birbirine komşu olan iki yapının birbirinden ayrı olarak gözle fark edilebilmesidir. Çözünürlük arttıkça, birbirine yakın iki nesne daha detaylı ve berrak şekilde görünecektir. Genellikle prokaryotik hücrelere gibi küçük hücreler üzerine çalışmak için yağa daldırılmış mercekler kullanıldığında büyütme oranı 1000 kat artar. Işık numuneye aşağıdan gelip gözlemcinin gözüne odaklandığından, numune ışık mikroskobu ile görüntülenebilir. Bu nedenle ışığın numuneden geçebilmesi için numune ince ya da yarı saydam olmalıdır.
Laboratuvarlarda kullanılan ikinci tip mikroskoplar ise diseksiyon mikroskoplarıdır. Bu mikroskoplar ışık mikroskoplarından daha düşük bir büyütme oranına sahiptir (nesnenin 20 ila 80 katı) ancak numunenin üç boyutlu bir görüntüsünü sağlayabilirler. Kesiti kalın nesneler birçok farklı bileşen odakta olacak biçimde gözlemlenebilir. Işık mikroskopları gibi çoğu modern diseksiyon mikroskobu da ayrıca binoküler; yani iki gözlü, dürbünlüdür. Bu da iki gözün her biri için farklı bir mercek sistemi olduğu anlamına gelir. Mercek sistemleri belirli bir mesafeyle birbirlerinden ayrıdırlar. Bu da görüntüyü el ile ayarlayabilmeyi kolaylaştırır ve görüntüye derinlik sağlar. Diseksiyon mikroskopları görüntüyü düzeltme işlevi yapan bir merceğe daha sahiptir ve bu şekilde çıplak göze görünen görüntü mikroskopta ters görünmez. Diseksiyon mikroskobu altındaki bir örneğin aydınlanması tipik olarak yukarıdan sağlanır, ancak bazen alttan da aydınlatılabilir.
Elektron Mikroskopları
/evrimagaci.org%2Fpublic%2Fcontent_media%2Ff6a8cab28b8c9e9b40a9f3cbeebc9d8b.jpeg)
Işık mikroskoplarının aksine elektron mikroskopları, ışık ışını yerine elektron ışını kullanır. Bu sadece daha yüksek büyütme oranı sağlamakla kalmaz, ayrıca daha yüksek bir çözünürlük de sağlar. Bir hücrenin elektron mikroskobu altında gözlemlenmesi için hazırlanması hücrenin ölümüne sebep olacaktır. Bu nedenle canlı hücreler bu tip mikroskoplar altında gözlemlenemez. Ek olarak elektron ışını en iyi boşlukta hareket eder ki bu da canlı materyallerin incelenmesini imkânsız hale getirir. Bir taramalı elektron mikroskobunda, bir elektron demeti bir hücrenin yüzeyi boyunca ileri geri hareket ederek hücre yüzeyi özelliklerinin ayrıntılarını yansıma yoluyla gösterir.
Bu teknikte hücreler ve diğer yapılar genellikle altın gibi bir metalle kaplanmaktadır. Bir transmisyon elektron mikroskobunda, elektron ışını hücre içinden geçer ve böylece hücre içi yapılar detaylı olarak görülebilir. Tahmin edebileceğiniz gibi, elektron mikroskopları ışık mikroskoplarından önemli ölçüde daha büyük ve pahalıdır.
Bu Alanda Bir Kariyer: Sitoteknologluk
Pap Smear tıbbi testini duydunuz mu? Rahim kanseri teşhisi için kullanılan bu testte, bir doktor hastanın serviksinden örnek hücre alır ve sitoteknoloğun hücreyi renklendirerek rahim ağzı kanserine ya da mikrobiyal bir enfeksiyona işaret edebilecek herhangi bir belirtiyi incelediği tıbbi laboratuvara yollar.
Sitoteknologlar hücreyi mikroskobik incelemelerle ya da başka laboratuvar testleriyle inceleyen profesyonellerdir. Hücresel değişimlerin normal sınırlar içerisinde olup olmadığını belirlemede uzmanlaşmışlardır. Sadece servikal hücrelere odaklanmazlar, bütün organlardan alınmış numunelerle çalışabilirler. Anormal bir durum fark ettiklerinde klinik bir teşhis yapabilen patologlara danışmaktadırlar. Sitoteknologlar insanların hayatının kurtarılmasında önemli bir rol oynar. Anormallikler erken teşhis edildiğinde bir hastanın tedavisi erken başlayabilir, ki bu tedavinin başarı şansını arttırmaktadır.
/evrimagaci.org%2Fpublic%2Fcontent_media%2F5ce044eedf7e2a8afde81ec1c3511840.jpeg)
Hücre Teorisi ve Mikroskoplar
Günümüzde kullanılan mikroskoplar; 1600’lerde mercek oluşturmada oldukça yetenekli Alman bir mağaza sahibi olan Antony van Leeuwenhoek tarafından kullanılanlardan çok daha karmaşık yapıdadırlar. Günümüzde antik sayılabilecek merceklerden kaynaklanan kısıtlamalara rağmen, van Leeuwenhoek prostistlerin (bir tür tek hücreli organizma) ve spermlerin hareketlerini gözlemlemiş ve bunları "hayvan partikülleri" (İng. "animalcules") olarak adlandırmıştır.
Micrographia adlı 1665 tarihli bir yayında, bilim insan Robert Hooke mercekle gözlemlediği mantar dokusundaki kutumsu odacıklara "hücre" adını verdi. 1970’lerde van Leeuwenhoek bakteri ve protazoaları keşfetti. Mikroskop yapısı ve merceklerdeki sonraki gelişmeler diğer bilim insanlarının hücre içerisindeki farklı bileşenleri gözlemlemesine olanak tanıdı. 1830’ların sonlarına doğru, botanikçi Matthias Schleiden ve zoolog Theodor Schwann dokuları çalışıyordu ve birleştirilmiş bir hücre teorisi ortaya attılar. Bugün hâlâ geçerliliğini koruyan teori bütün organizmaların bir ya da daha çok hücreden meydana geldiğini ifade ediyordu:
Hücre en küçük yaşam birimidir ve bütün hücreler var olan bir hücreden meydana gelmiştir.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- Libre Texts, et al. How Cells Are Studied. (21 Eylül 2021). Alındığı Tarih: 27 Aralık 2022. Alındığı Yer: Libre Texts | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 27/01/2023 00:13:42 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13715
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.