Tüm Dinamiklikleriyle Kara Delikler - II

Bu yazının içerik özgünlüğü henüz kategorize edilmemiştir. Eğer merak ediyorsanız ve/veya belirtilmesini istiyorsanız, gözden geçirmemiz ve içerik özgünlüğünü belirlememiz için [email protected] üzerinden bize ulaşabilirsiniz.

2.Bir Kara Delik Nasıl Oluşur?

Her kara deliğin kökeni aynı mıdır; aynı kaynaktan mı gelirler; aynı şekilde mi yok olurlar? Bu başlık altında, bunları tartışacağız. Oluşumlarına göre kara delikler, üçe ayrılırlar. Bu kara delik tipleri, yıldızsal kara delikler, ilksel kara delikler, orta kütleli kara delikler ve süper-kütleli kara deliklerdir. Esasında bu kara delikleri ayıran, kütleleridir. Kütlesi fazla olan kara deliğin, uzayı daha fazla eğdiği, bir gerçektir. Bundan yola çıkarak da bu grupları değerlendirebiliriz.

Yıldızsal kara delikler

Tür adlarından da anlaşılabileceği gibi, yıldızlarla bir yönden (köken yönünden) ilişkili kara deliklerdir. Bir yıldız, hayatı boyunca çekirdeğinde, hidrojen gibi hafif elementlerin, demir gibi ağır elementlere dönüştürüldüğü füzyon reaksiyonlarına ev sahipliği yapar. Bir yıldıza baktığımızda, yıldızın devasa kütlesi ve bunun sonucu oluşan kütleçekim kuvveti sebebiyle, merkeze doğru; yani kendi üstüne çökmesini bekleriz. Fakat, örneğin Güneş'in 4 milyar yıldır bu şekilde çökmeden, dengede kaldığını bildiğimize göre, buradan, ''Yıldızın içinde bu kütle çekim kuvvetini dengeleyen karşı bir kuvvet olmalı.'' sonucu çıkarıyoruz. Bu kuvvet de temel olarak, yıldızın merkezinde gerçekleşen füzyon reaksiyonları sonucu açığa çıkan enerjinin sürekli var olmasını sağladığı, dışa doğru basınç kuvveti. Yani yıldızın içinde, basınç ve kütleçekim kuvvetinin bir dengesi söz konusu. İşte yıldızın çekirdeğindeki füzyon reaksiyonları için gereken girdiler (hafif elementler) tamamen ağır elementlere dönüştüğünde, yıldızın kütleçekimi, artık kendini gösteremeyen füzyon reaksiyonlarının dışa doğru basıncına baskın gelir ve yıldız kendi üzerine çöker. Birçok yıldız için bu çöküşün sonu, beyaz cüce denilen bir yıldız kalıntısıdır. Buradan yola çıkarak, daha fazla kütledeki beyaz cücelerin, daha da güçlü bir gravitasyonel kuvete sahip olacağını söyleyebiliriz. Güneş'imizin kütlesinin 1,4 katı, hint astrofizikçi, Subrahmanyan Chandrasekhar anısına, ''Chandrasekhar limiti'' olarak bilinir. Çünkü kütle, bu kritik baraja ulaştığında, kütleçekimi, iç basıncı alt eder ve çöküş başlar. Ancak bir limit daha vardır; bu da kara deliklerin oluşumu için bilinen limittir: 15 Güneş kütlesi. Şimdi kısaca yıldızların hayatlarını nasıl sonlandırdıklarına şöyle bir göz atalım:

-Kütlesi, Güneş'in kütlesinden küçük olan yıldız; ömrünün sonunda ''yavaş çekimsel büzülme'' ile büzülerek, kahverengi ya da kara cüceye dönüşür.

-Kütlesi 1 Güneş kütlesi ile 5 Güneş kütlesi arasında bulunan yıldız ise ömrünün sonunda, ''orta çekirdek büzülmesi'' ile ortalama 7000 km yarıçapında, yaklaşık 10.000.000 g/cm³ yoğunluğunda bir beyaz cüce oluşturur.

-Kütlesi, 5 Güneş kütlesi ile 15 Güneş kütlesi arasında bulunan yıldız, ömrünün sonunda ''hızlı çekirdek büzülmesi'' ile yaklaşık 20 km yarıçapında, 3*10^14 g/cm³ yoğunluğunda bir nötron yıldızına dönüşür.

-Ve son olarak, kütlesi 15 Güneş kütlesinden büyük olan yıldızlar, ömürlerini tamamladıklarında, ''çok hızlı çekirdek büzülmesi'' geçirerek, yaklaşık 4 km yarıçapında, 10^16 g/cm³ yoğunluğunda bir kara delik oluşturur.

Eğer bir yıldız, evriminin son aşamasında bir kara deliğe dönüşmüşse, kara deliği algılamamız olanaksızdır. Çünkü, kara delikten madde veya fotonun kaçabilmesi için kaçma hızının, ışığın boşluktaki hızından büyük olması gerekir. Işığın, boşluktaki hızından (yaklaşık 299.792 km/sn) daha büyük hızların varlığı, deneysel veya gözlemsel olarak henüz doğrulanamamıştır. Gökbilimciler, yıldızlara, gökadalara, yıldız çevrelerindeki gezegenlere ilişkin bilgileri bu cisimlerden gelen fotonları çözümleyerek elde ediyor. Bir kara delik varsayalım; nesnel olarak o cisim bizim evrenimizde, ancak, ''Kara deliğe düşen madde, foton artık bir başka evrendedir.'' betimlemesiyle, bizim evrenimizin ''dışı'' anlatılmıyor; ''O madde veya fotona ilişkin bilgi, artık bize ulaşamaz; bu sebeple o bilgi artık evrenimizde yoktur.'' denmek isteniyor. Peki o zaman kara deliklerin varlıklarını gözlemsel olarak nasıl anlayabiliriz? Kara delik bize ışık, bilgi göndermiyorsa, metafizik bir kavram olmaktan öteye nasıl geçebilir?

Eğer kara delik, bir çift yıldız sisteminin bileşenlerinden birisi veya galaksilerin çekirdeğindeyse durum biraz farklı hale gelir. Bugünkü fizik bilgimizle büyük boyutlarda enerjinin, özgür duruma geçen çekimsel potansiyel enerjide yattığını biliyoruz. Bazı çift yıldız sistemlerinde ortaya çıkan X-ışınlarının kaynağını ancak, bir kütleçekimsel potansiyel enerjinin açığa çıkmasıyla açıklayabiliyoruz. Bu da bizi çok ama çok güçlü bir çekim alanı varsayımına götürüyor. Çift yıldız sistemlerindeki bileşenlerden birinin çevresinde, bir ''toplanma diski''nin varlığına ilişkin gözlemler bulunuyor. Bu gözlemsel verilerden yola çıkarak, kara deliğin, komşu yıldızdan madde kopardığı, kopan maddenin kara deliğe düşmeden önce, bir toplanma diski oluşturduğunu anlıyoruz. Kara deliğin kendisinden olmasa da çevresindeki bu diskten bilgi elde edebiliyoruz.

Burada yazımıza ara veriyoruz; dizimizin gelecek yazısında, diğer kara delik türlerine değineceğiz. Kara delikler hakkında söylenecek çok şey var! Faydalı olması dileğiyle, sevgiler.

Tüm Dinamiklikleriyle Kara Delikler - I

Tüm Dinamiklikleriyle Kara Delikler - III

Yazar

Emre Oral

Emre Oral

Yazar

Katkı Sağlayanlar

Çağrı Mert Bakırcı

Çağrı Mert Bakırcı

Editör

Evrim Ağacı'nın kurucusu ve idari sorumlusudur. Popüler bilim yazarı ve anlatıcısıdır. Doktorasını Texas Tech Üniversitesi'nden almıştır. Araştırma konuları evrimsel robotik, yapay zeka ve teorik/matematiksel evrimdir.

Konuyla Alakalı İçerikler

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim