Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Rastlantısallığın ve Determinizmin Maddenin Evrimindeki ve Kaos Teorisi'ndeki Rolü

Lineerlik ve Nonlineerlik Nedir? Maddenin Davranışında Meydana Gelen Periyodiklik ve Aperiyodiklik. Sistemin Davranışının Kaotikleşmesi ve Kaosa Giden Yol...

9 dakika
8,237
Rastlantısallığın ve Determinizmin Maddenin Evrimindeki ve Kaos Teorisi'ndeki Rolü
Evrim Ağacı Akademi: Kaos Teorisi Yazı Dizisi

Bu yazı, Kaos Teorisi yazı dizisinin 2. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Kaos Teorisi Nedir? Doğadaki Kaostan Söz Ederken Neyi Kastediyoruz?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

İlk yazımızda Kaos Teorisi’ne giriş yapmıştık. Sistemlerin davranışındaki kaotikliği anlayabilmek için determinizm ve rastlantısallık kavramlarına değinmiştik. Bu yazımızda ise kaotik sistemlerdeki ortak özellik olan nonlineerlik (doğrusal olmama) kavramından, sistemdeki küçük değişikliklerin büyük sonuçlar yaratacağından ve bunların sistemin davranışını periyodiklikten aperiyodikliğe yani kaosa götüreceğinden bahsedeceğiz.

Lineerlik ve Nonlineerlik

Bu iki kavram matematikte ve matematiği dil olarak kullanan temel bilimlerde oldukça fazla öneme sahiptir. Önreğin fizikçiler, doğadaki olayları somutlaştırabilmek ve anlayabilmek için matematikten yararlanırlar. Dolayısıyla sistemin davranışını açıklayan parametreleri denklemlerle ifade ederler. İşte bu kullanılan denklemler ya lineerdir ya da nonlineerdir.

Olayları açıklamak için kullandığımız ortak dil matematik ve geometridir.
Olayları açıklamak için kullandığımız ortak dil matematik ve geometridir.
Pixabay

Herhangi bir sistem düşünelim: Bu sisteme bir “etki” verdiğimizde, sistemden bir “tepki” alırız. Eğer ki sisteme verdiğimiz etkiyi iki katına çıkarttığımızda sistemden aldığımız tepki de iki katına çıkıyorsa sistemin davranışının ve onu açıklayan denklemlerin “lineer” yani “doğrusal” olduğunu söyleyebiliriz.

Tüm Reklamları Kapat

Eğer sisteme verdiğimiz etki iki katına çıkartıldığında sistemden aldığımız tepki iki kat değilse (daha büyük veya daha küçük ise) sistemin davranışı ve onu açıklayan denklemler “nonlineer” yani doğrusal değildir.

Matematik dilinde ifade etmek için bir x değişkeni tanımlayalım:

x=(x1,x2,x3,...,xn)\LARGE{x = (x_1, x_2, x_3, ..., x_n)}

Bu x değişkenini bir fonksiyonda kullanalım:

Tüm Reklamları Kapat

yn=fn(x)\LARGE{y_n = f_n(x)}

n=1,2,3,...\LARGE{n = 1, 2, 3, ...}

Bu tanımladığımız denklem sadece x değişkenine bağlı olup x’in sadece birinci kuvvetini içeriyorsa lineer denklemdir.

Eğer x’in 1'den farklı kuvvetini (x2,x3,xnx^2, x^3, x^n ) ya da başka bir değişkenle çarpımını (x2⋅x3x_2 \cdotp x_3 ) içeriyorsa nonlineer denklemdir.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

Fizikte lineer ve nonlineer denklemleri kullanan sistemlere örnek vererek konuyu biraz daha açalım.

Lineer Sistemlere Bir Örnek: Yay ve Basit Harmonik Hareket

Newton Beşiği ve II. Hareket Yasası
Newton Beşiği ve II. Hareket Yasası
Pixabay

Klasik mekanikte bir cismin hareketi Newton’un İkinci Hareket Yasası ile açıklanır. Bu yasaya göre, kütlesi m olan cisme bir F kuvveti uygulanırsa, cisim kütlesi oranında bir ivme “a” kazanır.

F=m⋅a\LARGE{F = m \cdotp a}

Formüldeki ivmeyi (a), cismin konumu olan x parametresine bağlı yazmak istersek;

a=d2xdt2\LARGE{a = {d^2x \over dt^2}}

olacaktır. O halde formül,

Tüm Reklamları Kapat

F=m⋅a=md2xdt2\LARGE{F =m\cdotp{a} = m{d^2x \over dt^2}}

olacaktır.

Şimdi ise basit harmonik hareketi tanımlayalım: Yay sabiti k olan herhangi bir ideal yay sistemi ele alalım. Yayın ucuna m kütleli bir cisim koyup yayı x kadar sıkıştrdığımızda sistem ilk durumuna, yani denge konumuna dönmek isteyecektir. İşte cismin denge konumundan itibaren yaptığı bu hareket basit harmonik harekettir. Sistemi denge konumuna geri götüren kuvvet ise “Hooke Yasası” dediğimiz yasayla bulunur. Yay sabiti k olan yayda, cismi x kadar sıkıştırdığımızda oluşacak olan F kuvveti

Tüm Reklamları Kapat

F=−k⋅x\LARGE{F = -k \cdotp x}

ile bulunur.

Sistemin zamana bağlı hareket denklemini bulmak için Newton’un Hareket Yasası ile Hooke Yasası’nı birbirlerine eşitlemeliyiz:

md2xdt2=−k⋅x\LARGE{m{d^2x \over dt^2} = -k \cdotp x}

Tüm Reklamları Kapat

Agora Bilim Pazarı
En Güzel Öykünü Yaz

Evet, yapabilirsin!

İşte en iyi öykünü yazmak için ihtiyacın olan HER ŞEY!

Öykünün konusunu seç: Beklediğin ilham bir türlü gelmiyor mu? Rüyalarından kopya çekmeye ne dersin?
Etkileyici karakterler yarat: En kötüler bile her zaman kötü olmayabilir. Hatır sormak için her gün babaannesini arayan zalim bir çete lideri kulağa nasıl geliyor?
Büyüleyici kelimeler kullan: Hatta dilersen kendi kelimelerini yarat.
Ve okuru sersemletecek bir sonla noktayı koy: Harika öyküler harika sonlara ihtiyaç duyar.
Yaratıcılığını parlatacak öneriler, ilham verici fikirler, yazarken kesinlikle uzak durman gereken tuzaklar. Hemen şimdi kalemi eline alıp yazmaya başlaman için gereken her şey bu harika alet çantasında.

İngiltere’de Oxford tarafından basılan ve sadece çocukların değil yetişkinlerin de büyük beğenisini toplayan En Güzel Öykünü Yaz, yakın zamanda pek çok

Devamını Göster
₺170.00
En Güzel Öykünü Yaz
  • Dış Sitelerde Paylaş

d2xdt2=−kmx\LARGE{{d^2x \over dt^2} = -\frac{k}{m} x}

İşte artık sistemin zamana göre hareket denklemini bulmuş olduk. Bu denklemi incelediğimizde sistem sadece x’in birinci kuvvetine (x1=xx^1=x ) bağlıdır (k ve m sabit). Dolayısıyla sistem lineer bir sistemdir.

Şimdi ise bu sistemin lineer olduğunu grafik üzerinde de görelim:

Cismin konuma bağlı kuvvet grafiği
Cismin konuma bağlı kuvvet grafiği
Anıl Kocabaldır - Matlab

Burada yay sistemindeki bir cismin konumu eşit miktarlarda arttırılmıştır. Grafiğe bakınca konumdaki bu eşit artışlar, sistemdeki kuvveti de eşit miktarlarda artırmıştır.

Diğer bir grafiğimiz ise cismin konumuna bağlı ivme grafiğidir:

Cismin konumuna bağlı olarak ivmesindeki değişim grafiği
Cismin konumuna bağlı olarak ivmesindeki değişim grafiği
Anıl Kocabaldır - Matlab

Bu grafik de, aynı şekilde, konumdaki eşit miktarlardaki artışa bağlı olarak ivme büyüklüğünü vermektedir. Sonuç olarak her iki grafik de lineerdir, yani doğrusaldır.

Nonlineer Sistemlere Bir Örnek: Akışkanlardaki Direnç Kuvveti

Nonlineerlik ve Sinüs Dalgası
Nonlineerlik ve Sinüs Dalgası
PLOS One

Bir akışkan ortam içerisinde ilerleyen cisimlere akışkan ortam (hava veya su) tarafından, hareketine zıt yönde bir direnç kuvveti etki eder. Cismin konumu x, akışkan ortama ait katsayı b ise, akışkan ortam tarafından cisme etki eden direnç kuvveti

F=b⋅x2\LARGE{F = b \cdotp x^2}

ile bulunur. Yukarıdaki gibi Newton’un İkinci Hareket Yasası’nı uygularsak;

md2xdt2=b⋅x2\LARGE{m{d^2x \over dt^2} = b \cdotp x^2}

Tüm Reklamları Kapat

d2xdt2=bmx2\LARGE{{d^2x \over dt^2} = \frac{b}{m} x^2}

ifadesi bulunur. Bu şekilde sistemin zamana göre hareket denklemini elde ederiz. Bu denklemi incelediğimizde sistem, x’in ikinci kuvvetine bağlıdır (x2x^2). Dolayısıyla sistem nonlineer bir sistemdir.

Bu nonlineerliği grafiksel olarak inceleyelim:

Cismin konumuna bağlı direnç kuvveti grafiği
Cismin konumuna bağlı direnç kuvveti grafiği
Anıl Kocabaldır - Matlab

Burada ise cismin konumunda meydana gelen eşit artışlar, sisteme etki eden direnç kuvvetinde eşit bir artış meydana getirmemektedir; o halde bu sistem lineer (doğrusal) değil, nonlineer bir sistemdir.

Tüm Reklamları Kapat

Bunu diğer grafiğimizde de görüyoruz:

Cismin konumunda meydana gelen değişikliğe karşılık cismin ivmesi grafiği
Cismin konumunda meydana gelen değişikliğe karşılık cismin ivmesi grafiği
Anıl Kocabaldır - Matlab

Dolayısıyla her iki grafik de bize sistemin nonlineer denklemlerden oluştuğunu ve davranışın nonlineer olduğunu göstermektedir.

Kaos Teorisi’nde Nonlineer Olmanın Önemi

Yukarıda iki örnekte de amacımız sistemlerin ya da cisimlerin zamana bağlı hareket denklemlerini (time evolution equations) çıkarmaktı. İlk örneğimiz olan basit harmonik harekette zamana göre hareket denkleminin lineer; diğer örnek olan akışkanlardaki direnç kuvvetinde ise denklemin nonlineer olduğunu gördük.

Kaos Teorisi’nde zamana bağlı bütün denklemler nonlineerdir. Ama nonlineer denklemlere sahip olan her sistemde kaos gözükmez (Bunun nedenini ileriki yazılarda ele alacağız).

Tüm Reklamları Kapat

Lineer sistemlere geri döndüğümüzde ise bu sistemlerde de kaos gözükmez. Bunu bir örnekle açıklayalım: İlk örneğimiz olan yay sisteminde, sistemin davranışını tanımlayan parametrelerden biri (mesela yay sabiti "k") değiştiğinde sistemin salınımındaki frekans ve genlik değişecektir. Fakat davranışın doğası değişmeyecektir. Sistem hala “Basit Harmonik Hareket” denklemlerine uygun şekilde davranacaktır.

Nonlineer sistemlere geçtiğimizde ise sistemin davranışını tanımlayan parametrelerden herhangi birinde meydana gelecek oldukça küçük bir değişiklik, sistemin zaman içindeki niteliksel ve niceliksel evriminde dramatik ve ani değişiklikler meydana getirecektir. Mesela parametrenin bir değerinde sistem periyodik (yani kendini tekrarlayan) hareketler yaparken, küçücük bir değişim ile sistem aniden tamamen aperiyodik (yani kendini asla tekrarlamayan) hareket yapmaya başlayabilir (Bu tür davranışlara ileriki yazılarda değineceğiz).

Küçük etkilerin sistemde yarattığı aperiyodiklik ve karmaşıklık
Küçük etkilerin sistemde yarattığı aperiyodiklik ve karmaşıklık
Pixabay

Aslında biz bu kaotik ve aperiyodik sistemlere fazla uzak değiliz. Çünkü evrendeki sistemlerin çoğu nonlineer denklemlerle ifade edilmektedir. Havadaki moleküllerin hareketinden gezegenlerin arasında başıboş dolaşan göktaşlarına, elektronik devrelerden sinir hücrelerindeki faaliyetlere, hava durumu tahmininden iklime, borsaya, ekonomiye, doğa olaylarına kadar pek çok sistem hep nonlineer denklemlerle ifade edilmektedir. Aslında bu örnekler bize kaotik sistemlerin azınlıkta değil, bilhassa oldukça fazla sayıda olduğunu göstermektedir.

Atomik boyutta karmaşıklık
Atomik boyutta karmaşıklık
Pixabay

Nonlineerlik Ve Kaos

Artık biliyoruz ki nonlineer sistemlerdeki parametrelerin herhangi birinde meydana gelecek olan en ufak bir değişim, sistemin evriminde oldukça dramatik ve karmaşık değişikliklere sebep olabilmektedir. Ve hatta bu maddenin ya da cismin zaman içindeki evrimi aperiyodikleşmeye, yani bir önceki ile uyuşmayan karakteristikte davranmaya başlamaktadır. İşte biz bu sistemin davranışında meydana gelen karmaşık ve aperiyodik davranışlara kaotik diyoruz. Şimdi ise sistemin davranışını buna iten nedenlere odaklanacağız. Bunun ilk nedeni, ilk yazımızda da belirttiğimiz kavram olan “rastlantısallık” faktörüdür.

Tüm Reklamları Kapat

Kaotik rastlantısallık dediğimiz etkileri, bazı durumlarda, sistemlerin davranışını betimleyen zaman-evrim denklemlerinde belirli bir düzende yazabiliyoruz. Diğer bir deyişle, sistemin davranışını etkileyen faktörleri bazı durumlarda denklemlere katabiliyoruz. Ama unutmayalım ki, bu etkiler de bir başka sisteme ait değişkenler, ve onlar da bir başka sistemin... Bu böyle uzatılabilir. Dolayısıyla bütün etkileri sistemin içerisine bir denklem olarak yazabilmek ve onları hesaplayabilmek “rastlantısallık” kavramından dolayı mümkün olamaz. Dolayısıyla gözden kaçan etkiler olacaktır.

Ama biliyoruz ki gözden kaçırdığımız ve hesaplayamadığımız bu etkiler, sistemin davranışında oldukça fazla öneme sahiptir. Her ne kadar küçük olsalar dahi bu etkiler, maddenin (sistemin) evriminde uzun süreler düşünüldüğünde tahmin edilemeyecek büyük ve ani değişimler yaratmaktadır. Bu değişimler aslında sistemin bir başka özelliği olan deterministik olmasından kaynaklanır. Yani rastlantısallık ve determinizm kavramları aslında çatışan kavramlar değil, birbirlerini besleyen, iç içe geçmiş kavramlardır (şimdilik, "fizikte böyledir" diyelim). Biz bu “rastlantısal” etkilere “gürültü” (noise) diyeceğiz.

Bu "gürültü" kavramıyla aslında fizikte şu kastedilmektedir: Sistemin zaman içindeki evriminde, kontrol dışı olan dış etkilerden dolayı, sistemin davranışı karmaşık (kompleks) bir hal almaya başlar. Bu kontrol dışı etkiler, mesela elektriksel sistemlerdeki ani sıçramalar, mekanik sistemlerdeki titreşimler, termal sistemlerdeki sıcaklık değişimleri gibi faktörler olabilir. Bunların değişimleri de kontrol dışı, yani raslantısal olabilmektedir. (Hepsini kesin olarak bilmek mümkün olmayıp istatistiksel hesaplamalarla sadece ortalama etkilerini kestirebilmek mümkündür.) Bunları düşündüğümüzde ve bir sistemi incelediğimizde sistemin davranışı raslantısal bir hal almaktadır.

Bu gürültü ve kaotik davranışlar sadece fizikte meydana geliyor diye düşünüyorsanız, yanılıyorsunuz. Diğer temel bilimlerde de bu kavram ve bu olay yer almaktadır. Mesela canlı bilimi olan biyoloji bilimine bakalım: Canlı sistemler ya da organizmalar milyarca atom ve molekülün bir araya gelip oluşturduğu karmaşık sistemlerdir. Dolayısıyla bu kadar fazla atomun ve molekülün birbirleri ile “kontrol dışı ve tamamen rastlantısal” olan etkileşimlerini düşündüğümüzde büyük resim daha iyi anlaşılacaktır. Ki bu durum sadece biyoloji ile de sınırlı değildir. Kimya ve diğer mühendislik alanlarını düşünün: Hepsinde ortak özellik, ister canlı olsun ister cansız olsun, milyarlarca alt sistemin (atomların ve moleküllerin) bir araya gelmesi ile oluşan sistemlerdir. Sonuç olarak, bu sistemlerdeki kontrolümüz dışında meydana gelecek değişimlerin ani ve devasa sonuçlar oluşturacağını söylemek zor değil.

Tüm Reklamları Kapat

Bulut oluşumları, iklim ve meteoroloji kaotik sistemlere örnek verilebilir.
Bulut oluşumları, iklim ve meteoroloji kaotik sistemlere örnek verilebilir.
Pixabay

Yukarıda saydığımız bu kontrol dışı etkiler ve salınımlar fizikte teknik olarak birer “serbestlik derecesi” (degree of freedom) olarak adlandırlır. Verdiğimiz örneklerdeki tüm sistemler birden fazla sayıda etkiye, yani “serbestlik derecesi”ne sahip sistemlerdir. İşte bu oldukça fazla sayıdaki serbestlik derecesi bir araya geldiğinde nonlineer sistemlerin davranışı kaotik ve aperiyodik olmaktadır.

Gelecek yazılarımızda ise sistemin zaman içindeki evriminin kaotikleşebilmesi ve aperiyodikleşebilmesi için fazla sayıda serbestlik derecesine gereksinim duyulmadığını, az sayıda serbestlik derecesi ile de kaotikliğin mümkün olabileceğine değineceğiz.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Kaos Teorisi Yazı Dizisi

Bu yazı, Kaos Teorisi yazı dizisinin 2. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Kaos Teorisi Nedir? Doğadaki Kaostan Söz Ederken Neyi Kastediyoruz?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
72
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 20
  • Mmm... Çok sapyoseksüel! 7
  • Merak Uyandırıcı! 5
  • Tebrikler! 4
  • Umut Verici! 4
  • Bilim Budur! 1
  • Güldürdü 1
  • İnanılmaz 1
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • R. C. Hilborn. (2001). Chaos And Nonlinear Dynamics: An Introduction For Scientists And Engineers. ISBN: 978-0198507239. Yayınevi: Oxford University Press.
  • S. Strogatz. (Cornell MAE Lectures, 2020). Nonlinear Dynamics And Chaos. Not: Ders Serisi.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 11/10/2024 05:25:04 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8211

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Teşhis
Deizm
Coğrafya
Gazetecilik
Canlı Cansız
Doğal
Ağız Sağlığı
Çalışma
Sinir Hücresi
Doktor
Venüs
Temel
Kurbağa
Kedi
Video
Jinekoloji
Genom
Santigrat Derece
Tekillik
Mantık Hatası
Sinir Sistemi
Asteroid
Hayatta Kalma
Bakteri
İnsan Türü
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün bilimseverlerle ne paylaşmak istersin?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
A. Kocabaldır, et al. Rastlantısallığın ve Determinizmin Maddenin Evrimindeki ve Kaos Teorisi'ndeki Rolü. (21 Ocak 2020). Alındığı Tarih: 11 Ekim 2024. Alındığı Yer: https://evrimagaci.org/s/8211
Kocabaldır, A., Özdil, A. Ş. (2020, January 21). Rastlantısallığın ve Determinizmin Maddenin Evrimindeki ve Kaos Teorisi'ndeki Rolü. Evrim Ağacı. Retrieved October 11, 2024. from https://evrimagaci.org/s/8211
A. Kocabaldır, et al. “Rastlantısallığın ve Determinizmin Maddenin Evrimindeki ve Kaos Teorisi'ndeki Rolü.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, 21 Jan. 2020, https://evrimagaci.org/s/8211.
Kocabaldır, Anıl. Özdil, Ayşegül Şenyiğit. “Rastlantısallığın ve Determinizmin Maddenin Evrimindeki ve Kaos Teorisi'ndeki Rolü.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, January 21, 2020. https://evrimagaci.org/s/8211.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close