Kaotik Sistemlere Fiziksel Örnek: Elektronik Devreler, Periyot Katlama ve Çatallanma Diyagramı
Önceki yazımızda her nonlineer sistemin kaotik olamayacağından ve nonlineer sistemlerimlerin kaotikleşebilmesi için bazı gerekli olan koşullardan, aperiyodiklikten ve başlangıç koşullarındaki meydana gelen ufak değişimlerin öneminden bahsetmiştik. Bu ve bundan sonraki yazılarımızdaysa, kaotik davranışlar sergileyen sistemlere örnekler verip, bunları incelemeye başlayacağız.
İlk Örnek: Nonlineer Elektriksel Sistem
Kaotik sistemlere ilk olarak basit bir elektrik devresi örneği ile başlayacağız. Bu örnekle başlamamızın sebebi ise şudur: Kaotik davranışlar gösteren sistemlerin sadece aşırı uç matematiksel teorilerde değil, gerçek hayatta ve oldukça basit sistemlerde de olduğunu göstermek.
Diyot içeren bir devre ele alacağız. Bu tür devreler aslında televizyonlarda, radyolarda, video oynatıcılarda, vb. cihazlarda oldukça yaygındır. Elektronik devremiz bir sinyal üretecinden, bir indüktörden ve yarı-iletken bir diyottan oluşacak. Tabii bu kavramları es geçmek mümkün değil.
Sırayla tanıyalım:
- Sinyal üreteci (signal generator) bize alternatif akımda yani sinusoidal şekilde elektrik gerilimi ve akımı veren kaynaktır. Büyüklüğü ve genliği zaman göre değişen türde denilebilir.
- İndüktör ise iletken telin sarılmasıyla oluşan devre elemanıdır, bizim bildiğimiz adıyla bobin. Kısaca alternatif akımla çalışan devrelerde, manyetik akıyı değiştirerek akımı oluşturur.
- Diyot ise üzerinden geçen akımı bir yönde geçiren (çok küçük direnç gösteren), diğer yönde ise geçirmeyen (çok büyük direnç gösteren) devre elemanıdır. İleri ve geri yönde kutuplanabilir.
Devremize geri döndüğümüzde, bize kaotikliği yaratacak olan devre elemanı olan bobinin şu özelliğidir: Bobin, üzerinden akım geçirilince Lenz Yasası’na göre, geçen akıma zıt yönde karşı bir akım meydana getirir. Biz bu akıma “indüktans” deriz. Aynı mekanik sistemlerdeki, duran bir cismin harekete karşı gösterdiği “eylemsizlik” gibi...
Bobin, elektrik devresinin davranışının kaotikleşmesi için şu iki özelliği bize sağlar: İlk olarak, önceki yazımızda bahsettiğimiz “serbestlik derecesi” kazandırır. Bobinsiz devredeki akımın davranışı, direkt devredeki potansiyel farklılıklarına sıkıca bağlı olup bundan dolayı devrede kaotik davranışlar meydana gelmez.
Diğer özellik ise şudur: Devredeki gerilim (voltage) ve akım (current) değerleri, bobinle diyotun elektriksel kapasitansına (İng: "electrical capacitance") bağlı olup, özel bir frekansta salınım sağlar. Devredeki diyot ileri yönde (İng: "forward-bias") kutuplanmadan ile geri yönde (İng: "reverse-bias") kutuplanmaya geçiş sırasında, devrenin davranışında çok önemli değişmeler ve dolayısıyla kaotikliğin olma olasılığı ortaya çıkar. İşte biz, tam da buraya odaklanacağız.
Devredeki sinyal üretecimizden çıkan gerilimin zamana bağlı denklemi şudur:
V(t)=V0sin(2πft)\LARGE{V(t)=V_0sin(2\pi ft)}
V0V_0 dediğimiz, üretecin geriliminin maksimum büyüklüğü yani genliğidir. ff, sinyalimizin bir saniyedeki salınım sayısı yani frekansıdır. Genellikle bu ff frekans değeri 20-70 kHz (saniyede 20000 – 70000 salınım) arası değişir. Bir tam salınımın meydana gelmesi için geçen süreye ise “periyot (TT)” denir. Bu değer ise yukarıda devre için 50 mikrosaniye ile 14 mikrosaniye arasında değişmektedir.
Kaosa Giden Yolda, Devre Nasıl Davranır?
Devrenin nasıl çalışacağını ve davranacağını anlamak adına, sistemdeki değişkenleri birer “parametre” olarak tanımlamalıyız. Bizim bu devredeki değişken olarak kullandığımız kontrol parametresi ise, sinyal üretecinden çıkan gerilimin genliği olacaktır. Bu genliği (V0V_0 ) değiştirerek, devredeki diyotun üzerindeki potansiyelin (VdV_d ) ve akımın (ii ) zamana göre değişimini inceleyeceğiz.
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
Üreteçteki giriş geriliminin genliğinin (V0V_0 ) değerini yaklaşık olarak 0.5 Volt olarak ayarladığımızda, diyot ileri yönde kutuplanır ve yarım dalga doğrultucu (İng: "half-wave rectified") olarak davranır. Yani pozitif yöndeki akımları geçirirken, negatif yöndeki akımları geçirmez (Bkz. Şekil 1).
Bu grafiği anlamı şudur: Diyodun üzerindeki gerilim (VdV_d ) , sistemi besleyen üretecin gerilimi (VV) ile aynı periyodikliğe sahiptir. Sinyal geriliminin maksimum olduğu zamanda diyottaki gerilim de maksimum olmaktadır. Biz bu duruma “periyot-1” diyeceğiz.
Peki üretecin geriliminin genliği (V0V_0 ), 1 ile 2 Volt değeri arasında herhangi bir değere ulaştığında, ilk sürprizle karşılaşırız. Diyodun üzerindeki gerilim geri kutuplanmadan dolayı, yukarıdaki giriş gerilimi grafiğinin periyodunun ikiye katlandığını görürüz (Bkz. Şekil-2).
İşte biz bu davranışa “periyot-2” davranışı diyoruz. Yani ilk durumda 2 tane pik gelen yere, şimdi 1 tane pik gelmektedir. Sistem hala periyodik ama iki tür sinüs dalgası barındırıyor. Sistemin “periyot-1” davranışından “periyot-2” davranışına geçisine “periyot – katlama çatallanma diyagramı” (İng: "period-doubling bifurcation") adını veriyoruz.
Çatallanma (İng: "bifurcation") derken iki parçaya bölünmeyi kastediyoruz. Bu olay nonlineer sistemlerdeki davranışı belirleyen parametrelerin bazılarının aniden değişmesi sonucu ortaya çıkar. Dolayısıyla sistem iki bölgeye bölünür: İlk bölge, parametrenin değişmediği bölge, diğeri ise parametrenin değiştiği bölge olarak...
Peki sistemi buna iten ne? Neden bir sistem periyot katlama eğilimi gösterir? Bu duruma fiziğin açıklaması şu: Sistemin aniden değişmesi sebebiyle, değişime karşı bir "tepki" gösterme eğilimi. Bu devrede diyodun ileri kutuplanmasına karşılık, geri kutuplanma eğilimi göstermesi... Önemli nokta ise şu, değişimin aniden olması.
Deneyimize devam edersek, giriş geriliminin genliğini (V0V_0 ) 1-2 Volt’un da yukarısına çıkartırsak diyodun gerilimi için şu grafiği elde ederiz:
Grafikteki piklere baktığımızda, pikler arası mesafeler ilk grafiğe oranla daha da artmıştır. Yani ilk grafik olan “periyot-1” grafiğinde 4 tane pik gelen yere şimdi 1 tane pik gelmektedir. Bu yüzden bu davranışa “periyot-4” davranışı diyoruz.
Devam edelim, giriş gerilimin genlğini (V0V_0 ) daha da arttırırsak ne elde ederiz ? Elde edilecek grafik şu olur (Grafik - 4):
Grafikte oldukça küçük bir üçüncü pik belirir. Bu küçük pik aslında ilk grafik olan “periyot-1” davranşındaki 8 pikin geldiği yere denktir. Yani o zaman bu davranışa da “periyot-8” davranışı denir. Sistem hala periyodiktir. Aperiyodiklik hala gözükmemektedir. Yani pikler belirli düzenlerde birbirlerini tekrarlamaktadır.
Giriş gerilimi küçük miktarlarda arttırılmaya devam edilirse sistem “periyot-16” davranışı gösterip periyodiklik devam eder. Ta ki bir yere kadar... Sistemdeki giriş gerilimi küçük miktarlarda arttırıldığında artık, davranıştaki periyodiklik bozulur ve kaos başlar. Pikler artık periyodiklikten çıkar ve aperiyodiklik baş gösterir (Şekil-5).
Peki gördüğümüz şeyin “gürültü” (İng: "noise") etkisi değil de, kaos olduğundan nasıl emin oluyoruz? Bu konuda yapılan bilgisayar modellemeleri ve hesaplamaları şunu göstermektedir: Eğer ki bu gördüğümüz gürültü etkisi olsaydı, ölçümdeki hassaslık arttıldığında aynı artış kadar piklerde de artış olmalıydı. Bir başka deyişle sistem daha önce izlediği “yol”lardan (İng: "trajectory") tekrar geçmeliydi. Ama bu asla olmuyor. Yani sistem daha önceki yolları tekrar etmiyor. Geçtiği yoldan bir daha geçmiyor. Oldukça ilginç, değil mi?
Çatallanma Diyagramı (Bifurcation Diagram)
Çatallanmanın ne demek olduğunu yukarıda açıklamıştık. Peki bu çatallanma diyagramı, nonlineer sistemin davranışı hakkında bize ne bilgiler veriyor? Yukarıdaki elektrik devresinin çatallanma diyagramını çizdiğimizde ortaya çıkan grafik bu olacaktır:
Sistemdeki kontrol parametresi olan (V0V_0 ) değiştiğinde diyottaki gerilimin (VdV_d ) ve akımın (ii ) zamana göre değişimini aynı anda birlikte çizildiği grafiktir. Yatay eksen diyot gerilimini (VdV_d ), düşey eksen ise diyottaki geçen akımı (ii ) ifade etmektedir.
Grafiği periyot katlama ile bağdaştırdığımızda şu ortaya çıkar. Periyot-1 de (VdV_d ) değerine karşılık gelen tek bir (ii ) akımı görürüz. Periyot-2 davranışına baktığımızda ise (VdV_d ) değerine karşılık iki (ii ) akım değeri görürüz. Periyot-4 davranışında ise tek (VdV_d ) değerine karşılık, dört (ii ) akım değeri görürüz. Bu böyle devam eder (tabii ki bilgisayarınızın işlemci sınırına dek). Sistemin devranışının kaotikleştiği bölgelerde bu akım değerlerinin iyice karmaşıklaşıp, aperiyodikleştiğini, yani asla önceden aldığı değerleri almadığı yeni değerleri görürüz.
Sonuç
Sonuç olarak, eğer özetlersek:
- Sistemin davranışındaki en ufak ani bir değişiklik, sistemin davranışını periyodiklikten aperiyodikliğe götürebilir (periyot-1 ve periyot-2 davranışı gibi).
- İyi tanımlanmış olan bu küçük değişimler, sistemi zaman içinde kaotik davranışa sürükleyebilir.
- Kaos dediğimiz olgu, gürültü (İng: "noise") etkisinden izlediği yolun (İng: "trajectory") çevresindeki davranışa bakılarak kolayca ayırt edilebilir.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 13
- 5
- 3
- 3
- 3
- 3
- 1
- 0
- 0
- 0
- 0
- 0
- R. Hilborn. (2001). Chaos And Nonlinear Dynamics: An Introduction For Scientists And Engineers.. ISBN: 978-0198507239. Yayınevi: Oxford: Oxford University Press..
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 18/12/2024 22:47:18 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8232
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.