Paralel Evrenler Teorisi Deneysel Midir?

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Evet, Paralel Evrenler Teorisi'nin deneysel bir boyutu olduğu rahatlıkla söylenebilir. Bu boyut, laboratuvarda paralel evrenler yaratmak şeklinde değildir. Bu boyut, Paralel Evrenler Teorisi'nin mümkün olabileceğini düşündüren kuantum olgularını deneysel olarak test edip, bunların Evren'in oluşumundaki dinamiklere uygulanması sonucu, Büyük Patlama'nın çok sayıda evrenden oluşan bir sistemin ürünü olup olmadığının anlaşılması çabasına yöneliktir. Kozmoloji'deki deneysellik çoğu zaman bu şekilde temel kuantum ve astrofizik olgularının Evren ölçeğinde hesaplanması ve bu öngörülerin deneysel olarak test edilmesinden gelir. Yoksa kastedilen, elbette "yeni evrenler yaratma" veya "Büyük Patlama'ya giderek birden fazla evrenin gerçekten var olup olmadığını gözlemleme" noktasında değildir.

''Paralel Evrenler'' kavramı, fizik denklemlerinin bir yorumu olarak değil, bizzat denklemlerin bir öngörüsü olarak ortaya atılmıştı. Paralel evrenler olgusunda, her gözlemcinin bilinç durumu en az ikiye ayrılır. Kabul edildiğine göre her bir gözlemci iki kez var olacak; her var oluşunda farklı deneyimler edinecektir. Gerçekte yalnızca gözlemci değil; içinde yaşadığı tüm Evren, dünyayı her ölçüşünde, en az iki parçaya ayrılır. Böyle bir parçalanma, yalnız gözlemcilerin ölçümleri nedeniyle değil; genelde kuantum olaylarının makroskopik büyümesi nedeniyle tekrar tekrar oluşur ve bu şekilde oluşan evren dalları, çılgınca dal budak salmaya başlar. Böylece her an, sonsuz sayıda paralel evren oluşur.

Tabii ki bu, teorinin yüzeysel anlatımıdır. Birazcık daha fiziksel perspektiften ele alalım: Bir elektron ile "oynamakta" olduğumuzu varsayalım. Q ve R adlı iki noktada, bu elektronu yakalayabilecek; örneğin artı yüklü iki iyonun oluşturduğu; nano ölçekteki iki "potansiyel çukuru" bulunsun. Potansiyel çukurları, potansiyel enerjinin minimum olduğu yerel bölgelerdir. Eğer bu çukurlardan iki adet varsa, elektron hareketi sırasında ya Q çukuruna ya da R çukuruna kayacaktır. Eğer Q'da yakalanmışsa farklı; R'de yakalanmışsa farklı delta fonksiyonu* formunda bulunacaktır. Delta (dalga) fonksiyonu, Schrödinger Denklemi'ni sağlayan ve parçacığın enerjisi, momentumu gibi bilgileri içinde bulunduran bir fonksiyondur. Bu fonksiyon, potansiyel enerjinin sıfır olduğu alanları ve sonsuz olduğu tekil bir noktayı temsil eder.

Q tuzağını solda, R tuzağını da sağda ele alıp, elektronun Q'ya yakalanmış olduğunu varsayalım. Q'da bulunan elektrona sol taraftan, yönü sola doğru olan bir elektrik alanı uygulayarak, elektronu harekete zorlayalım. Eksi yükler üzerindeki elektrik kuvvet, alana ters yönde olduğundan elektron, R tuzağına doğru harekete geçer. Yani Q dalga fonksiyonundan sıyrılıp, R dalga fonksiyonuna geçiş sürecine girer. Fakat yeterince kısa bir süre sonra, bu geçiş tamamlanamadan, elektrik alanını ortadan kaldıralım. Elektron ''iki arada bir derede'' kalır. Örneğin, R'ye geçişi %36 oranında tamamlanmış olsun; %64 oranında da Q'da kalmış olsun. Kuantum mekaniğinin garipliği, işte burada başlıyor. Sistem, yani örneğimizdeki elektron, bileşik kuantum durumunda iken konumu ölçüldüğünde, ilk elde ölçümün bize Q ve R'nin %64 ve %36 ortalamayla ölçülmüş olasılıklar vermesi beklenebilir. Halbuki sonuç öyle değildir. İki değerden birini rastgele verir. Peki %64 ve %36 olasılıkların anlamı nedir? Şudur: Aynı deney yeterince fazla sayıda tekrarlandığında, ölçümlerin %64 ünde A, %36'sında B'de görünecektir. Kısaca anlamamız gereken, tek ölçümle, ağırlıklı bir ortalama değer bulunamayacağıdır.

Kısaca ''deneysel'' olarak niteleyebilmemizin sebebi, budur. Çünkü bu deney sonucunda, deneysel yöntemlerle temel parçacıkların farklı şekillerde çökebileceği gerçeği gözlenmiş olur. Bu durumda Evren'imizi ifade eden kuantum dalga denklemi, her "an" sayısız farklı olasılıktan birine çökmektedir ve bizim içinde bulunduğumuz Evren'in çöktüğü olasılıklar dışında kalanlar, Evren dışındaki evrenleri temsil ediyor olabilir.

Bu konudaki tartışmaların birçoğu deneysellik ile kesinlik kavramlarını karıştırmaktan kaynaklanmaktadır. Bir kavramın deneysel olması, o kavramla ilgili yapılabilecek bir deneyin, kavramın öngörüsünü doğrulaması gerektiği anlamına gelmez. Çoklu Evrenler Teorisi, belirli kuantum gözlemlerinden ileri gelen bir yorumdur; belki bir hipotez olarak görülebilir. Bu hipotezin deneysel olması bir şeydir, kesinleşmesi başka bir şey. Çoklu Evrenler Teorisi, bu bakımdan deneysel olsa da, henüz kesinliği doğrulanmış bir temele dayanmamaktadır.

Bu konuda söylenmesi gereken bir diğer nokta ise şudur: Çoklu Evrenler Teorisi, kulağa çılgınca bir fantezi gibi geliyor olsa da, fiziksel anlamda önemli bazı sonuçları da doğurmaktadır. Örneğin Çoklu Evrenler Teorisi, rastgele bir şekilde meydana gelen radyoaktif bozunma olgusunu, kuantum fiziğinin tamamen deterministik olan denklemleri ile buluşturmayı başaran en önemli yorumlardan birisidir.

Kaynaklar ve İleri Okuma:

  • Ana Görsel Kaynağı: Geny

Fiziğin 3 Temel Sorunu

Uzayda Oksijen ve Hidrojen Bulunmamasına Rağmen Güneş Nasıl Alev Saçıyor?

Yazar

Emre Oral

Emre Oral

Yazar

Katkı Sağlayanlar

Çağrı Mert Bakırcı

Çağrı Mert Bakırcı

Editör

Evrim Ağacı'nın kurucusu ve idari sorumlusudur. Popüler bilim yazarı ve anlatıcısıdır. Doktorasını Texas Tech Üniversitesi'nden almıştır. Araştırma konuları evrimsel robotik, yapay zeka ve teorik/matematiksel evrimdir.

Konuyla Alakalı İçerikler
  • Anasayfa
  • Gece Modu

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim