Nabla (Del) Operatörü: Değişen Sistemlerin Gradyan, Diverjans ve Rotasyon Gibi Özelliklerini Nasıl Ölçeriz?
Lise fizik derslerinde skaler büyüklük ile vektörel büyüklük arasındaki farkı öğrenmiş olabilirsiniz: Skaler büyüklükler, sadece büyüklüğü olan sayılardır. Mesela 10 kilogram kütle veya saatte 5 kilometre hız gibi... Vektörel büyüklüklerse, bir hızı ve yönü olan sayılardır: Yere doğru 50 Newton kuvvet veya doğuya doğru saatte 5 kilometre hız gibi...
Elektromanyetizmada söz konusu olan elektrik ve manyetik alanlar skaler değil, vektörel büyüklükler olduğu için, sadece sayısal büyüklüklerini değil, yönlerini de dikkate alarak matematiksel ve fiziksel analiz yapmak durumundayız. Bu tür çalışmalara vektör kalkülüsü veya vektör matematiği denmektedir.
Vektör matematiğinde karşımıza sıkça çıkan unsurlardan biri ∇\nabla (okunuşu: "del" veya "nabla") operatörüdür. Bir operatör, matematikte belli bir fonksiyonu veya işlemi temsil eden işaretlerdir. Mesela kalkülüsün kalbinde yer alan türev işleminden söz ederken, diferansiyel operatörü dediğimiz ddt\frac{d}{dt} işaretini kullanırız. Bu işaret, kendi başına pek bir şey yapmaz; sadece ondan sonra gelecek şeylerin türevle ilişkili olduğuna işaret eder.
Benzer şekilde, integral hesaplarında karşımıza çıkan meşhur Volterra operatörü de ∫\int işaretiyle temsil edilir. Bu işaretin kendisi, yapılacak işlemle ilgili bilgiler verebilir, mesela 0'dan 100'e sınırlı bir integral alınıyorsa ∫0100\int_0^{100} şeklinde gösterilebilir; ama nihayetinde bu işaret, sadece ne tür bir işlemden söz ettiğimizi anlatmamızı sağlar. Türev ve integrali basitleştirilmiş bir şekilde öğrenmek için bu yazımızı okuyabilirsiniz.
İşte ∇\nabla da bunlar gibi bir operatördür. Eğer tek boyutlu bir olguyla ilgili işlem yaparken bu operatör kullanılırsa, anlamı ddt\frac{d}{dt} ile aynıdır, dümdüz türev anlamına gelir. Mesela y=x2y=x^2 gibi bir fonksiyona ∇\nabla operatörünü uygulayacak olursanız, ∇y\nabla{y} ile ddty\frac{d}{dt}{y} aynı anlama gelir. Bu durumda ∇y=2x\nabla{y}=2x olur.
Ama eğer elektrik veya manyetik alan gibi bir "alan" üzerine, yani 2 veya daha fazla boyutlu bir sisteme uygulanacak olursa, o zaman da en nihayetinde bir türev operatörü olarak iş görür ama 3 farklı şeyden biri anlamına gelir. Bunlara tek tek bakalım.
Gradyan Nedir?
Eğer sistem vektörel değil de skalerse, gradyan anlamına gelir. Gradyan, bilimde çok büyük öneme sahip bir kavramdır; çünkü kademeli olarak değişen sistemlerin değişim oranını ölçmemizi sağlar. Örneğin türlerin kademeli bir şekilde değişimi, bir gradyana karşılık gelir. Denizin, derinliğe bağlı olarak karanlıklaşma miktarı bir gradyandır. Gradyanlar, bilimde her yerde karşımıza çıkar.
∇\nabla operatörünün yaptığı şey ise, işte skaler olan bir alanın, en hızlı/sert değiştiği yeri hesaplamaktır. (Navier-Stokes Denklemleri'nde karşımıza çıkan vektörel alanlarda da bazen bu anlamda kullanılabilir; ama bunu şimdilik görmezden gelebilirsiniz.) Basitçe hatırlamanız gereken, eğer işlem yaptığınız sistem skalerse, ∇\nabla operatörünün o alanın en hızlı veya sert şekilde değiştiği noktanın hesaplanmasında kullanıldığıdır.
- Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?
- Doğanın Henüz Bilmediğimiz 5. Temel Kuvvetinin İzleri: Kuantum Parçacığının Tuhaf Davranışı, Mevcut Fizik Anlayışımızı Değiştirebilir!
- Kuantum Dalgalanması ve Büyük Patlama: Evren Hiçlikten ve Kendiliğinden Var Olmuş Olabilir mi?
Bu durumda sembol, karşımıza bir sabit ile bir arada çıkar. Örneğin, ff bir sabit ise (mesela f=3f=3 ise), gradyan hesabı yapılacağı zaman ∇f\nabla{f} şeklinde yazılabilir. Bu durumda, skaler bir büyüklük olduğundan, bunun gradyan olduğunu biliriz. Ama illâ bunun bir gradyan hesabı olduğunu vurgulamak isterseniz, ∇f\nabla{f} yerine gradf\text{grad}{f} de yazabilirsiniz.
Bu operatörle 3 boyutlu bir skaler alanda karşılaştığınızda, şu şekilde açabilirsiniz:
∇f=gradf=∂f∂xex⃗+∂f∂yey⃗+∂f∂zez⃗\nabla{f}=\text{grad}{f}=\frac{\partial{f}}{\partial{x}}\vec{e_x}+\frac{\partial{f}}{\partial{y}}\vec{e_y}+\frac{\partial{f}}{\partial{z}}\vec{e_z}
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
Burada karşımıza çıkan ∂f∂xex⃗\frac{\partial{f}}{\partial{x}}\vec{e_x} gibi terimlerdeki ∂\partial işareti de bir diğer operatördür ve yine "türev" anlamına gelir; ancak "kısmî türev" gibi daha spesifik bir anlamı vardır. Buradaki "kısmî" sözcüğünden kasıt, 3 boyutun 3'ünde birden değil de sadece 1'inde türev alındığını belirtmektir. Ama tabii ki her bir terim, farklı bir boyutta türev alarak bunları birleştirir ve böylece 3 boyutta da türev alınmış olur ve ∇\nabla operatörü, dediği şeyi ("türev alma işlemini") yerine getirmiş olur.
Türev alma işlemi sonucunda, işlem skaler bir alana uygulanıyor olsa bile, bir vektör elde edilir. Yani sonucun bir büyüklüğü ve yönü vardır. İşte işlem sonucunda elde edilen ex⃗\vec{e_x} gibi terimler, alınan türevin sonucunun işaret ettiği yönü, 3 boyutta birden (xx ekseninde ex⃗\vec{e_x}, yy ekseninde ey⃗\vec{e_y} ve zz ekseninde ez⃗\vec{e_z}) belirtir. Bu vektörün yönü, her zaman, o skaler alanın en hızlı veya sert şekilde değiştiği yere doğrudur ve büyüklüğü de o noktadaki maksimum değişim oranına eşittir. Eğer türevle ilgili yazımızı okursanız, burada yaptığımızın "değişim matematiği" olduğunu daha iyi kavrayabilirsiniz.
Diverjans Nedir?
Eğer üzerinde çalıştığınız sistem bir önceki durumda olduğu gibi skaler bir alan değil de vektörel bir alansa, o zaman ∇\nabla operatörü diverjans adı verilen bir diğer özelliği ölçer.
Diverjans da gradyan gibi bir sistem özelliğidir. Bunu anlamak için, akan bir nehri düşünün (ki akan bir nehir, bir vektör alanıdır; her bir su tanesinin bir hızı ve yönü vardır): Nehir, doğduğu yerden çıkıp, ulaştığı denize kadar akma halindedir. İşte akış halindeki bu nehrin herhangi bir kısmında (mesela tam ortasında), neredeyse sonsuz küçüklükte bir alana (veya hacme) odaklandığınızı hayal edin. Ufacık bir küre düşünün. Bu kürenin nehrin doğduğu yere bakan (oraya dönük) tarafından su girişi olur, nehrin denize açıldığı yöne bakan tarafındansa su çıkışı olur, öyle değil mi? Yani o hacme giren ve çıkan belli bir su vardır. İşte diverjans, odaklandığınız bu nokta etrafındaki ufacık hacimdeki su tanelerinin hızının giriş-çıkış miktarını ölçer: Eğer giren suyun hızı çıkandan yüksekse, diverjans negatif olur; düşükse diverjans pozitif olur.
Diverjansı gradyandan ayırmak için, sadece ∇\nabla yerine ∇⋅\nabla\cdot işaretini kullarnırız. Buradaki ⋅\cdot işareti, vektör alanı üzerine uygulanan bu işlemin skaler bir fonksiyon vereceğine işaret eder. Ama aklınızda tutmanız gereken, ∇⋅\nabla\cdot işaretini gördüğünüzde, gradyan veya bir diğer işlem değil, diverjans işlemi yapıldığıdır. Ama illâ bunun bir diverjans hesabı olduğunu vurgulamak isterseniz, ∇⋅f⃗\nabla\cdot{\vec{f}} yerine divf⃗\text{div}{\vec{f}} de yazabilirsiniz. Burada ff'in artık bir skaler alan değil, vektör alan olduğunu, dolayısıyla f⃗\vec{f} olarak yazıldığını vurgulamak isteriz.
Eğer diverjans işlemini v⃗(x,y,z)\vec{v}(x,y,z) şeklinde ifade edilen ve az önce anlattığımız gibi v⃗(x,y,z)=vxex⃗+vyey⃗+vzez⃗\vec{v}(x,y,z)=v_x\vec{e_x}+v_y\vec{e_y}+v_z\vec{e_z} şeklinde de ifade edebileceğimiz bir vektör üzerine uygulayacak olursak, şöyle bir işlem yapmış oluruz:
∇⋅v⃗=divf=∂vx∂x+∂vy∂y+∂vz∂z\nabla\cdot{\vec{v}}=\text{div}{f}=\frac{\partial{v_x}}{\partial{x}}+\frac{\partial{v_y}}{\partial{y}}+\frac{\partial{v_z}}{\partial{z}}
Burada vektöre uygulanan diverjans sonucunda elde edilen 3 terimin hiçbirinin vektörel olmadığına, hepsinin skaler olduğuna dikkatinizi çekeriz (üzerlerinde ok işareti olmaması, onların vektörel değil, skaler olduğunu göstermektedir). Çünkü diverjans sonucunda elde edilen sayı, skaler bir sayıdır, bir yönü yoktur. Genel olarak diverjansı, bir vektör alanının yöneldiği yöndeki artış miktarı olarak düşünebilirsiniz; ama daha isabetli tanımı, bir alanın bir noktaya yakınsama veya ıraksama eğilimini sayısal olarak ölçen bir araçtır.
Curl (Rotasyonel) Nedir?
Eğer ∇\nabla operatörünü skaler alanlara uygularsak gradyan, vektörel alanlara uygularsak diverjans özelliğini verdiğini anladıysanız, nasıl olur da üçüncü bir anlama geliyor olabileceğini merak edebilirsiniz. Başka ne kaldı ki?
Vektörel alanlar üzerine yapılan ⋅\cdot işleminin skaler bir büyüklük verdiğini söylemiştik. Ama bu, bir vektör alanına yapabileceğiniz tek işlem değildir. Bir diğer işlem, ×\times işlemidir. Bunların her ikisi de çarpım işlemidir (tıpkı 2×3=62\times3=6 gibi); ancak çarptığınız şeyler 22 ve 33 gibi skaler sayılar değil de, vektörler ise, o zaman 2 farklı çarpımdan söz edebilirsiniz: vektörler arası skaler çarpım (⋅\cdot) ve vektörler arası vektörel çarpım (×\times). Bunların yapılış biçimleri farklı; ama burada bu detaya girmeyeceğiz. Sadece iki farklı çarpım türü olduğunu ve skaler olanda sonucun tek bir sayı olarak çıktığını, vektörel çarpımda ise sonucun bir vektör olduğunu bilmeniz yeterli. Bu durumda, tıpkı ∇⋅\nabla\cdot operatörü gibi, ∇×\nabla\times operatörü de tanımlayabiliriz. İşte bize ∇\nabla operatörünün 3. anlamını verecek olan işlem de bu!
∇×\nabla\times operatörü, bir vektörün rotasyonelini (İng: "curl") veren bir işlemdir. Bu karmaşık gibi gelen terimler, özünde bir vektör alanının yine çok küçük bir hacim içinde ne kadar "döndüğünü" gösterir. Bir uçağın arkasında bıraktığı havada oluşan türbülansı hayal edin. Ya da bir havuzun dibindeki tıpayı açınca oluşan girdabı. İki durumda da akışkanlar (uçak örneğinde hava, havuz örneğinde su), dönerek akar. İşte ∇×\nabla\times operatörü, bu dönüşün miktarını ve yönünü (yani "rotasyonelini") veren bir işlemdir. Eğer bunun bir rotasyonel (curl) hesabı olduğunu vurgulamak isterseniz, ∇×f⃗\nabla\times{\vec{f}} yerine curlf⃗\text{curl}{\vec{f}} de yazabilirsiniz.
Eğer bir vektörün rotasyoneli sıfır çıkıyorsa, o vektör alanı dönmüyor demektir. Burada dikkat edilmesi gereken bir detay, aslında dönmekte olan bir vektör alana çok fazla "zoom" yaparsanız, o küçük alanda/hacimde olan akışın dönmüyormuş gibi gelebileceğidir. Bu nedenle görsel olarak hayal ederken hataya düşebilirsiniz; ancak matematiksel işlem, bu tür bir hataya düşmeyecektir. En küçük hacimde/alanda bile, eğer ki bir dönme varsa, rotasyonel işlemi onu tespit edecektir.
Eğer curl işlemini v⃗(x,y,z)\vec{v}(x,y,z) şeklinde ifade edilen ve az önce anlattığımız gibi v⃗(x,y,z)=vxex⃗+vyey⃗+vzez⃗\vec{v}(x,y,z)=v_x\vec{e_x}+v_y\vec{e_y}+v_z\vec{e_z} şeklinde de ifade edebileceğimiz bir vektör üzerine uygulayacak olursak, şöyle bir işlem yapmış oluruz:
∇×v⃗=curlv⃗=(∂vz∂y−∂vy∂z)ex⃗+(∂vx∂z−∂vz∂x)ey⃗+(∂vy∂x−∂vx∂y)ez⃗\nabla\times{\vec{v}}=\text{curl}{\vec{v}}=(\frac{\partial{v_z}}{\partial{y}}-\frac{\partial{v_y}}{\partial{z}})\vec{e_x}+(\frac{\partial{v_x}}{\partial{z}}-\frac{\partial{v_z}}{\partial{x}})\vec{e_y}+(\frac{\partial{v_y}}{\partial{x}}-\frac{\partial{v_x}}{\partial{y}})\vec{e_z}
Görebileceğiniz gibi bu, diğer ikisinden biraz daha "büyük" bir işlemdir; ancak en nihayetinde yapılan son derece basittir: Alanımızı tanımlayan vektörün çeşitli yönlerde türevlerini alırız ve nihayetinde bir diğer vektör elde ederiz. "Bir vektörün rotasyoneli" adını verdiğimiz bu yeni vektör, bir vektör alanı içinde alınacak herhangi bir noktanın ne düzeyde ve ne yönde dönmeye zorlandığını bildirir.
Nehir örneğimizi ele alalım. Nehir, doğduğu yerden aktığı yere kadar birçok yerde kıvrılacaktır (menderes yapacaktır). Bu kıvrım yerlerindeki sürtünmeden ötürü su molekülleri yön değiştirmeye zorlanacaktır; sonuçta su molekülleri, akışın yönünü takip eder ve akış da yön değiştirdiği için, o moleküller de dönmeye zorlanır. Şimdi, diyelim ki nehrin yine herhangi bir noktasını ele aldığınız ve oraya ufak bir rüzgar gülü (ya da "su gülü") koydunuz. Bu su gülü, iki yöne de dönebilir yapıda olsun. İşte o "su gülünün" dönme yönü ve hızı, rotasyonel (curl) ile belirlenir.
Önemli Kurallar ve Uyarılar
∇\nabla operatörü birçok durumda bir vektör gibi hayal edilebilir; çünkü bir vektör operatörüdür ve büyük oranda bir vektör gibi çalışır. Ancak en nihayetinde onun bir "operatör" olduğu unutulmamalıdır, çünkü her durumda bir vektör gibi hayal edilecek olursa, hatalı çıkarımlara neden olabilir. Örneğin ∇\nabla olan her yere (genelde) bir vektör konulabilir; ancak vektör olan her yere ∇\nabla konulamaz. Aşağıdaki denklik iddiasını ele alalım:
(u⃗⋅v⃗)≡(v⃗⋅u⃗)f(\vec{u}\cdot\vec{v})\equiv(\vec{v}\cdot\vec{u})f
Eğer burada u⃗\vec{u} yerine ∇\nabla koymaya kalkacak olursanız, işlemleri yaptığınızda denklemin sol tarafı ile sağ tarafının denk olmadığını görürsünüz. Yani:
(∇⃗⋅v⃗)≠(v⃗⋅∇⃗)f(\vec{\nabla}\cdot\vec{v})\ne(\vec{v}\cdot\vec{\nabla})f
Bu nedenle ∇\nabla operatörünün kendi özelliklerini ve kurallarını bilmek en iyisi olacaktır. Özellikle de vektör kalkülüsünde faydalı olabilecek bazı kuralları şöyle sıralayabiliriz:
∇(fg)=f∇g+g∇f\nabla(fg)=f\nabla{g}+g\nabla{f}
∇(u⃗⋅v⃗)=u⃗×(∇×v⃗)+v⃗×(∇×y⃗)+(u⃗⋅∇)v⃗+(v⃗⋅∇)u⃗\nabla(\vec{u}\cdot{\vec{v}})=\vec{u}\times(\nabla\times\vec{v})+\vec{v}\times(\nabla\times\vec{y})+(\vec{u}\cdot\nabla)\vec{v}+(\vec{v}\cdot\nabla)\vec{u}
∇⋅(fv⃗)=f(∇⋅v⃗)+v⃗⋅(∇f)\nabla\cdot(f\vec{v})=f(\nabla\cdot\vec{v})+\vec{v}\cdot(\nabla{f})
∇⋅(u⃗×v⃗)=v⃗⋅(∇×u⃗)−u⃗⋅(∇×v⃗)\nabla\cdot(\vec{u}\times\vec{v})=\vec{v}\cdot(\nabla\times\vec{u})-\vec{u}\cdot(\nabla\times\vec{v})
∇×(fv⃗)=(∇f)×v⃗+f(∇×v⃗)\nabla\times(f\vec{v})=(\nabla{f})\times\vec{v}+f(\nabla\times\vec{v})
∇×(u⃗×v⃗)=u⃗(∇⋅v⃗)−v⃗(∇⋅u⃗)+(v⃗⋅∇)u⃗−(u⃗⋅∇)v⃗\nabla\times(\vec{u}\times\vec{v})=\vec{u}(\nabla\cdot\vec{v})-\vec{v}(\nabla\cdot\vec{u})+(\vec{v}\cdot\nabla)\vec{u}-(\vec{u}\cdot\nabla)\vec{v}
Sonuç
Burada ele aldığımız operatörlerin her birinin matematikte ve fizikte çok geniş bir kullanım alanı vardır ve bağlama göre anlamları da çeşitli şekillerde değişebilir. Benzer şekilde, ∇\nabla operatörü ile ilişkili olabilen Δ\Delta operatörü, Hessian matrisi, tensör türevi gibi birçok ek konuya da girilebilir. Biz burada olabildiğince fiziksel tanımları çerçevesinde kaldık; ancak bu temel üzerine kaynaklarımızdan ve ileri okuma önerilerimizden ilerleyerek daha fazlasını inşa edebilirsiniz. Bunların hepsinin bir arada kullanıldığı bir örnek görmek için buradaki yazımızı okuyabilirsiniz.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 11
- 5
- 4
- 3
- 2
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- K. F. Riley, et al. (2006). Mathematical Methods For Physics And Engineering: A Comprehensive Guide. ISBN: 9780521861533. Yayınevi: Cambridge University Press.
- G. B. Arfken, et al. (2005). Mathematical Methods For Physicists. ISBN: 9780080470696. Yayınevi: Academic Press.
- H. M. Schey. (1996). Div, Grad, Curl, & All That: An Informal Text On Vector Calculus. ISBN: 9780393969979. Yayınevi: W. W. Norton & Company.
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/12/2024 21:30:51 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/10653
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.