Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği

Işığın Doğası: Karacisim Işıması ve Fotoelektrik Etki Nedir? Enerji Seviyeleri Arası Geçişleri Açıklayan Özel Seriler Nelerdir?

Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği
Kuantum Fiziği
Sparkonit.com
Ayşegül Şenyiğit Özdil Editör Ayşegül Şenyiğit Özdil
9 dakika
12,877 Okunma Sayısı
Notlarım
Reklamı Kapat

Gündelik hayatımızdaki olayları ve maddelerin birbirleri ile olan etkileşimlerini açıklarken Klasik Fizik’ten yararlanıyoruz. Başta Newton Hareket Yasaları olmak üzere diğer tüm klasik denklemler ile bunu yapabilmek mümkün. Klasik dünyamızdaki açıklayamadığımız fiziksel fenomenleri anlayabilme çabası Kuantum Mekaniği’nin temellerini atmıştır.

Işık ve atomaltı parçacıkların dünyasını, onların etkileşimlerini ve uydukları yasaları bulmaya yönelik bir çaba olan fiziğin bu alt dalına bir önceki yazımızda giriş yapmıştık. O halde değinmemiz gereken diğer başlıklara ışık ve doğası ile devam edebiliriz.

Işığın Doğası: Fotoelektrik Etki

Kuantum Mekaniği’nin temellerini atan ana olay aslında bu etki olmuştur. Işık ve madde arasındaki etkileşimleri araştıran fizikçiler “karacisim ışıması (blackbody radiation)” üzerine yoğunlaşmışlardır. Kabaca bahsetmek gerekirse üzerine düşen tüm ışığı soğuran ve bu soğurma sonucu etrafına radyasyon yayan cisimlere fizikte “karacisim” denilmektedir. Wilhem Wein tarafından karacisim ışıması çeşitli ölçümler sonucunda, bu ışıma ve ışımanın yoğunluk dağılımı frekansa bağlı olarak ifade edilmiştir. Wein bu çalışması sonucu 1911 yılında Nobel Fizik Ödülü’nü almıştır. Ancak gözlemlenen bu olayın teorik olarak açıklaması yoktu. Işığın neden böyle davrandığına dair bir açıklama çabası içine girilmişti.

Reklamı Kapat

Karacisim Işıması
Karacisim Işıması
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:52 , 2000)
Klasik Fiziğin Açıklayamadığı Olay: Enerji Spektrumu Fenomeni
Klasik Fiziğin Açıklayamadığı Olay: Enerji Spektrumu Fenomeni
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:52 , 2000)

Bu fenomen Max Planck ve Albert Einstein’ın teorik çalışmalarına kadar cevapsız kalmıştı. Planck’ın getirdiği açıklama (postülat) şuydu: Işık aslında kesikli ve kuantize enerji paketçikleri dediğimiz “foton”lardan oluşmaktadır. Fotonun sahip olduğu enerji de doğrudan ışığın frekansıyla ilgilidir:

E=Nhf=ℏωE=Nhf=\hbar\omega (Denklem 1)

EE : Enerji

NN : Kuanta Sayısı

hh : Planck Sabiti

Evrim Ağacı'ndan Mesaj

ω\omega : Açısal Frekans

Fotoelektrik Olay
Fotoelektrik Olay
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:58 , 2000)
Fotoelektrik Olay: Fotonlar ile fotokatottan koparılan elektronlar devrede bir elektrik akımı oluşturur. Ampermetre ile oluşan bu akımı ölçebilmek mümkündür.
Fotoelektrik Olay: Fotonlar ile fotokatottan koparılan elektronlar devrede bir elektrik akımı oluşturur. Ampermetre ile oluşan bu akımı ölçebilmek mümkündür.
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:58 , 2000)
Fotoelektrik Olay: Gerilim - Akım (V - I) Grafikleri
Fotoelektrik Olay: Gerilim - Akım (V - I) Grafikleri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:58 , 2000)

Artık ışığın enerji kuantaları halinde yayıldığını biliyorduk. Peki neydi bu "enerji kuantası"? Einstein’ın bu soruya getirdiği cevabı şuydu:

Burada düşünülecek varsayımlara göre, bir ışık ışını bir noktadan yayıldığında, enerji sürekli artan alanlara sürekli olarak dağıtılmaz, ancak uzaydaki noktalarda lokalize olan sınırlı sayıda enerji miktarından oluşur, bölünebilir ve sadece bir bütün olarak emilebilir veya üretilebilir.

Fizikteki bu gelişmelerin ardından soru soruyu getirdi ve en önemli sorulardan biri olan “Eğer ışık kuantize ise peki ya madde? Onu oluşturan özellikler de kuantize midir? İkisini ayırt edebilmek mümkün mü?” sorusu soruldu. İşte cevap aranılan yeni sorular bunlar olmuştu. Tüm bunlara dair açıklama Niels Bohr’u beklemek zorundaydı.

Bohr’un Teorisi ve Hidrojen Atomu

N. Bohr, hidrojen atomunun deneysel olarak elde edilen spektrumu ile yarı-klasik bir yaklaşımla işin teorik açıklamasını getirmişti. Bu açıklama aslında fizikteki ana yaklaşımdan oldukça farklıydı ve tekrardan fizik camiası hararetlenmişti!

Reklamı Kapat

O sıralar Arthur Haas, 1909 yılında atom fiziğine dair yeni önermeler/teklifler getirmişti. Bunlardan biri de aslında N. Bohr’un Atom Teorisi’ni öngörmekteydi. Her nasılsa dönemin fizikçileri A. Haas’ın çalışmalarını reddedip, Bohr’un açıklamasını övdüler. Ona olan övgü oldukça da yerinde bir övgüydü aslında. Günümüzdeki “Modern Atom Teorisi”nin orjini olan bu teori o dönemde oldukça radikal sayılabilecek fizik açısından bir matematiğe ve içeriğe sahiptir.

Bohr Atom Modeli ve Elektron Yörüngeleri
Bohr Atom Modeli ve Elektron Yörüngeleri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:103 , 2000)

O halde Bohr Atom Teorisi’ni inceleyelim. 1913 yılında bu teorinin uygulaması, hidrojen atomunun hiçbir ışıma (emisyon ve absorbsiyon) yapmadığı durumlar üzerine (İng: "Stationary State") olmuştu. Eğer atomun durumunda bir değişiklik meydana gelirse o zaman bir kesikli enerji ortaya çıkmaktaydı. Bohr’un teorisini biraz daha genişletip, ondan 10 yıl sonrasına dayanan fizikteki gelişmeleri de kullanarak örnekler verebiliriz ki daha iyi anlaşılabilsin.

İşe ilk olarak elektronların “dalga-parçacık” özelliklerini öne süren ve açıklayan Louis de Broglie’nin 1922’deki açıklamasıyla başlayacağız. Bu açıklama “de Broglie Hipotezi” olarak bilinir ve her bir parçacığa eşlik eden λ dalgaboyuna sahip bir “madde dalgası” olduğunu söylemektedir.

λ=hp\LARGE{\lambda =\frac{h}{p}} (Denklem 2)

Reklamı Kapat

λ\lambda : Dalgaboyu

hh : Planck Sabiti

pp : Momentum

Louis de Broglie’nin bu konsepti parçacıkların dalga özelliklerine sahip olduğunu gösteren bir konsepttir. Bundan dolayı da kuantum teorisinin merkezinde yer almaktadır. Klasik dünyada da her bir makroskopik cisme eşlik eden bir dalga bulunmaktadır fakat bu dalganın dalgaboyu oldukça küçüktür ve biz bu dalgaboylarını görebilecek şekilde evrimleşmedik! Bizim gözümüz elektromanyetik spektrumda kabaca 400 nm ile 700 nm arasını görebilmekte, tabii bunda en büyük etken Güneş’in yaydığı ışınların bu dalgaboyu aralığında frekans/şiddet miktarının daha fazla olmasıdır. Gelin asıl konumuza dönelim ve neden bu cisimlere eşlik eden dalgaları göremediğimizi basit bir fiziksel örnekle açıklamaya çalışalım:

100 km/saat hızla hareket eden 1000 kg kütleli bir ortalama arabayı ele alalım. Yukarıdaki denklemde bu değerleri yerine yazarsak, makro cisim olan arabaya eşlik eden dalganın dalgaboyu yaklaşık 10−3810^{-38} metre olacaktır. Yani sıfırın solunda 38 adet sıfır! Bunu ölçebilmek ya da gözlemleyebilmek neredeyse imkansız. Peki atomaltı parçacıklar dünyasında işler ne? Orası da ayrı bir konu. Bu parçacıkların sahip oldukları momentumlar oldukça küçük olduğundan dolayı bu dalgaboylarının uzunluğu büyük olabilmekte, en azından ölçüm yapılabilecek seviyede!

Devam edersek Bohr’un ileri sürdüğü atom teorisine önceki yazılarımızda da değindik ama burada biraz daha açmakta fayda var. Bohr’a göre tıpkı Güneş’in etrafında dolanan gezegenler gibi merkezde proton ve nötrondan oluşan çekirdeğin etrafında elektron dolanmaktadır. Ve bu dolanılan yörüngeler keyfi değillerdir ve sadece belirli boyutları alabilmektedirler. Biraz fizik yapmaya devam edelim ve de Broglie hipotezinden λ\lambda dalgaboyunu çekip çembersel yörüngelere uygulayalım:

Agora Bilim Pazarı
Geleceği Keşfedenler – Dijital Çağın Biyografisi

Steve Jobs Biyografisinin Yazarından

“Yılın En İyi Kitabı” Seçkilerinde
New York Times * Washington Post * Financial Times * Goodreads
Walter Isaacson, dünya çapında yankı yaratan Steve Jobs biyografisinin ardından en az onun kadar ilham verici bir kitapla geri dönüyor.

GELECEĞİ KEŞFEDENLER, makinelerin insanların zihin dünyasına ortak olacağı bir geleceği hayal ederek yola çıkmış ve adım adım içinde yaşadığımız dijital çağı inşa etmiş dâhilerin, yenilikçilerin, hacker’ların, girişimcilerin hikâyesi. Kimdi bu insanlar? Kafaları nasıl çalışıyordu? Tavan arası ya da garajlarına kapanıp her şeyi tek başına yapmış dâhilerden mi bahsediyoruz yoksa onları farklı yapan, yan yana gelip “ortak deha” yaratma becerileri miydi?

Isaacson’un benzersiz öykülendirme becerisi sayesinde sürükleyici bir roman tadında akan kitap, Lord Byron’ın yaklaşık iki yüzyıl önce yaşamış olmasına rağmen ilk yazılımcı kabul edilen kızı Ada Lovelace ile başlıyor ve Charles Babbage, Alan Turing, John von Neumann, Robert Noyce, Bill Gates, Steve Wozniak, Steve Jobs, Larry Page gibi pek çok etkileyici şahsiyetle devam ediyor.

Geleceği Keşfedenler, yaratıcılığın ve dünyayı değiştiren fikirlerin hangi koşullar bir araya geldiğinde yeşerebildiğini ortaya koyan muazzam bir rehber.

Bilgiler ve Uyarılar:

  1. Bu ürün sipariş alındıktan 1-3 gün içinde postalanacaktır.
  2. Lütfen sipariş vermeden önce iade ve ürün değişikliği ile ilgili bilgilendirmemizi okuyunuz.
  3. Bu kampanya, Domingo Yayınevi tarafından Evrim Ağacı okurlarına sunulan fırsatlardan birisidir.
Devamını Göster
₺45.00 ₺55.00
Geleceği Keşfedenler – Dijital Çağın Biyografisi

nλ=2πr\LARGE{n\lambda=2\pi{r}} (Denklem 3)

nn : Baş Kuantum Sayısı (Yörünge)

λ\lambda : Dalgaboyu

rr : Yarıçap

Buradaki r yörüngenin yarıçapı olup n ise pozitif tamsayıdır (n=1,2,3,...n=1, 2, 3, ...). Yukarıdaki, de Broglie dalgaboyunu çembersel yörüngede yerine yazarsak artık elektronların hareket ettiği yörüngelerin yarıçaplarını, nn enerji seviyelerine bağlı olarak ifade etmiş oluruz:

r=nℏp\LARGE{r=n \frac{\hbar}{p}} (Denklem 4)

Şimdi ise hidrojen atomundaki elektron için toplam kinetik ve potansiyel enerjiyi yazarsak:

Reklamı Kapat

E=p22m−e2r\LARGE{E=\frac{p^2}{2m} - \frac{e^2}{r}} (Denklem 5)

denklemini elde ederiz. Burada mm elektronun kütlesi, ee ise elektronun yüküdür. Denklemdeki kinetik enerji terimi ise elektronun yörüngedeki hareketinden, potansiyel enerji ise elektron ile protonun arasındaki elektromanyetik kuvvetlerden kaynaklanır ve “Coulomb Enerjisi” olarak da bilinir. Şimdi ise bu enerji ifadesini, nn baş kuantum sayısına bağlı şekilde yazarsak denklemi kuantize hale getirmiş oluruz. Böylelikle elektron için her bir n. yörüngedeki toplam enerjiyi bulabiliriz:

E=n2ℏ22mr2−e2r\LARGE{E=\frac{n^2 \hbar^2}{2m r^2} - \frac{e^2}{r}} (Denklem 6)

Sıra, FF kuvvetini bulmaya geldi. Klasik Mekanik sayesinde EE enerji ifadesinden FF kuvvetini bulabiliriz. Denge durumundaki parçacık için kuvvet;

F=dEdt=−n2ℏ2mr3+e2r2=0\LARGE{F=\frac{dE}{dt}=-\frac{n^2 \hbar^2}{m r^3} + \frac{e^2}{r^2}=0} (Denklem 7)

bulunur. Buradan yola çıkarak durağan durum (İng: "Stationary State") için elektronun dolandığı yörüngenin yarıçapını hesaplayabiliriz:

Reklamı Kapat

rn=n2ℏ2me2=0.5292n2A˚\LARGE{r_n=\frac{n^2 \hbar^2}{m e^2}=0.5292 n^2 \mathring{A}} (Denklem 8)

A˚\mathring{A} : Angström == 10−1010^{-10} metre

Bulduğumuz bu sonucu (Denklem 6)' da yerine yazarak hidrojen atomundaki bir elektron için enerji değerlerini nn kuantum sayısına bağlı şekilde elde ederiz:

En=−me42ℏ2n2=−13.606n2eV\LARGE{E_n=-\frac{m e^4}{2 \hbar^2 n^2}= - \frac{13.606}{n^2} eV} (Denklem 9)

eVeV : elektronVolt

Planck’ın postülatını Bohr’un atom teorisi ile birleştirerek yarı-klasik metotlarla bile bunu bulabilmek oldukça heyecan verici! Bir de hesaplamaya çalışılan şeylerin boyutlarını işin içine kattığımızda bu heyecan daha da artmakta. Bu sayede atomaltı parçacıkların (elektron vs.) davranışları hakkında bir şeyler söylebilmek mümkün olmaktadır.

Atomdaki Enerji Seviyeleri Arası Geçişler ve Seriler

Şimdi hidrojen atomundaki başlangıç durumu olan n1n_1 seviyesinden bir sonraki durum olan n2n_2 seviyesine geçiş sonrası absorblama (soğurma) şeklinde ortaya çıkan ışığın yani “foton”un enerjisini bulalım. Ayrıca biz biliyoruz ki hiçbir atom ya da elektron uyarılmış halde bulunmak istemez, daima en düşük enerji seviyesinde bulunmak ister. Bunun sonucu olarak da enerji fazlalığını ışık yayarak yani foton salarak spektrumda kendine has dalgaboylarında/renklerde çizgiler gösterir.

Reklamı Kapat

Enerji korunumu gereği bu seviyeler arası enerji farkı yani salınan fotonun enerjisi:

ΔE=En2−En1=ℏωn1n2=me42ℏ2(1n12−1n22)\Delta E = E_{n2} - E_{n1} = \hbar \omega_{n1n2} = \frac{m e^4}{2 \hbar^2} (\frac{1}{{n_1}^2 } - \frac{1}{{n_2}^2 }) (Denklem 10)

şeklinde yazılıp hesaplanabilir. Bu geçişler Bohr’un teorisindeki gibi gerçekleşir ve her bir n enerji seviyesi arası geçişler atom fiziğinde “simetri ve geçiş kuralları”na uyacak şekilde meydana gelir. Yani keyfi değil! (Bu konu başka bir yazımızın konusu olsun.)

Bu enerji seviyeleri arası geçişlerin özel isimleri var ve en çok bilinen seriler sırayla şu şekildedir:

• Lyman Serileri

• Balmer Serileri

• Paschen Serileri

Tüm bunları hidrojenin atomik spektrası olarak görselleştirirsek alttaki grafik elde edilir.

Enerji Seviyeleri Arası Geçişler ve Seriler
Enerji Seviyeleri Arası Geçişler ve Seriler
Introductory Quantum Mechanics with MATLAB (J. Chelikowsky, Sayfa:8, 2019 )
Hidrojen, Helyum ve Lityum atomları için bazı enerji seviyeleri geçişleri
Hidrojen, Helyum ve Lityum atomları için bazı enerji seviyeleri geçişleri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:108 , 2000)

Lyman Serileri

Bu seri ikinci ve daha yüksek enerji seviyelerinden (n≥2n ≥ 2 ), ilk enerji seviyesi olan n=1 n=1 seviyesine geçişleri kapsamaktadır. Elektron bu yüksek seviyelerden ilk seviyeye geçiş yaparken elektromanyetik spektrumda morötesi bölgede foton salar. Hidrojen benzeri atomlar için de bu geçişler mümkün olabilmektedir. Örneğin uranyum atomu ve onun bir ürünü olan U92+U^{92^+} iyonu için gereken enerji miktarı 10 GeV’tan büyük olmalıdır (Giga-elektronvolt). Uranyumun diğer ürünü olan U91+U^{91^+} iyonuna ait Lyman Serileri enerji cinsinden 100 keV (kilo-elektronvolt) civarındadır.

Reklamı Kapat

Titanyum atomundaki müonik geçişlerin Lyman Serileri
Titanyum atomundaki müonik geçişlerin Lyman Serileri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:111 , 2000)

Balmer Serileri

Enerji seviyesi olarak üçüncü ve daha yüksek enerji seviyelerinden (n≥3n ≥ 3 ), ikinci enerji seviyesine geçişleri kapsayan serilerdir. Salınan fotonun dalgaboyu elektromanyetik spektrumda “görünür bölge” de yer almaktadır. Yaklaşık 400 nm ile 700 nm arasındadır. Çoğumuz bunu hidrojenin karakteristik spektrumu olarak da bilmektedir.

Hidrojen benzeri uranyum atomunun U91+U^{91^+} iyonu için Balmer serisi enerji değerleri 15 keV ile 35 keV arasındadır.

Yüksek Spektral Çözünürlükteki Hα Çizgisinin Balmer Serisi
Yüksek Spektral Çözünürlükteki Hα Çizgisinin Balmer Serisi
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:114 , 2000)

Paschen Serileri

Bu serileri enerji seviyesi dört ve üzeri olan yörüngelerden (n≥4n ≥ 4 ), üçüncü enerji seviyesine geçişlerde gözlemleriz. Salınan fotonların ortalama dalgaboyları 1000 nm ile 2000 nm arasında yer alır.

Sonuç olarak kuantum fiziğinin temeli olan bu deneyleri ve teorileri anlamak oldukça önemlidir çünkü tüm bunları anlama çabası aslında fiziğin tüm enstrümanlarına hakim olmayı ve bunları ustalıkla kullanabilmeyi gerektirir. En önemli köşe taşlarından biri olan hidrojen atomu, uygulama olarak oldukça zarif ve bir o kadar da bilgi açısından dolu! Yazımızı şu sözle bitirmek tüm çabamızı özetleyecektir. O halde,

...Hidrojeni anlamak, tüm fiziği anlamaktır aslında... - V. Weisskopf
Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Umut Verici! 2
  • Muhteşem! 2
  • Tebrikler! 0
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • J. Chelikowsky. (2019). Introductory Quantum Mechanics With Matlab. ISBN: 978-3-527-40926-6. Yayınevi: Wiley - VCH.
  • H. Haken, et al. (2000). The Physics Of Atoms And Quanta. ISBN: 9783540672746. Yayınevi: Springer.

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 26/10/2021 10:50:05 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8998

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Size Özel
İçerikler
Instagram
Onkoloji
Kozmoloji
Sıvı
Taksonomi
Bakteri
Yavru
Canlılık Ve Cansızlık Arasındaki Farklar
Hayvan Davranışları
Sars-Cov-2 (Covid19 Koronavirüs Salgını)
Yapay
Yapay Seçilim
Metal
Editör Seçkisi
Sahtebilim
Gelişim
Sars Virüsü
Kuvvet
Kimya Tarihi
Foton
Virüs
Bebek
Wuhan
Kan Hastalıkları
Factchecking
Balina
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Sizi Takip Ediyor

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın