Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği

Işığın Doğası: Karacisim Işıması ve Fotoelektrik Etki Nedir? Enerji Seviyeleri Arası Geçişleri Açıklayan Özel Seriler Nelerdir?

9 dakika
40,453
Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği Sparkonit.com
Kuantum Fiziği
Evrim Ağacı Akademi: Kuantum Fiziği Yazı Dizisi

Bu yazı, Kuantum Fiziği yazı dizisinin 3 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Kuantum Mekaniği Nedir? Atom Altı Parçacıkların Dünyası, Evren'i Daha İyi Anlamamızı Sağlayabilir mi?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Gündelik hayatımızdaki olayları ve maddelerin birbirleri ile olan etkileşimlerini açıklarken Klasik Fizik’ten yararlanıyoruz. Başta Newton Hareket Yasaları olmak üzere diğer tüm klasik denklemler ile bunu yapabilmek mümkün. Klasik dünyamızdaki açıklayamadığımız fiziksel fenomenleri anlayabilme çabası Kuantum Mekaniği’nin temellerini atmıştır.

Işık ve atomaltı parçacıkların dünyasını, onların etkileşimlerini ve uydukları yasaları bulmaya yönelik bir çaba olan fiziğin bu alt dalına bir önceki yazımızda giriş yapmıştık. O halde değinmemiz gereken diğer başlıklara ışık ve doğası ile devam edebiliriz.

Işığın Doğası: Fotoelektrik Etki

Kuantum Mekaniği’nin temellerini atan ana olay aslında bu etki olmuştur. Işık ve madde arasındaki etkileşimleri araştıran fizikçiler “karacisim ışıması (blackbody radiation)” üzerine yoğunlaşmışlardır. Kabaca bahsetmek gerekirse üzerine düşen tüm ışığı soğuran ve bu soğurma sonucu etrafına radyasyon yayan cisimlere fizikte “karacisim” denilmektedir. Wilhem Wein tarafından karacisim ışıması çeşitli ölçümler sonucunda, bu ışıma ve ışımanın yoğunluk dağılımı frekansa bağlı olarak ifade edilmiştir. Wein bu çalışması sonucu 1911 yılında Nobel Fizik Ödülü’nü almıştır. Ancak gözlemlenen bu olayın teorik olarak açıklaması yoktu. Işığın neden böyle davrandığına dair bir açıklama çabası içine girilmişti.

Tüm Reklamları Kapat

Karacisim Işıması
Karacisim Işıması
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:52 , 2000)
Klasik Fiziğin Açıklayamadığı Olay: Enerji Spektrumu Fenomeni
Klasik Fiziğin Açıklayamadığı Olay: Enerji Spektrumu Fenomeni
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:52 , 2000)

Bu fenomen Max Planck ve Albert Einstein’ın teorik çalışmalarına kadar cevapsız kalmıştı. Planck’ın getirdiği açıklama (postülat) şuydu: Işık aslında kesikli ve kuantize enerji paketçikleri dediğimiz “foton”lardan oluşmaktadır. Fotonun sahip olduğu enerji de doğrudan ışığın frekansıyla ilgilidir:

E=Nhf=ℏωE=Nhf=\hbar\omega (Denklem 1)

EE : Enerji

NN : Kuanta Sayısı

Tüm Reklamları Kapat

hh : Planck Sabiti

ω\omega : Açısal Frekans

Fotoelektrik Olay
Fotoelektrik Olay
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:58 , 2000)
Fotoelektrik Olay: Fotonlar ile fotokatottan koparılan elektronlar devrede bir elektrik akımı oluşturur. Ampermetre ile oluşan bu akımı ölçebilmek mümkündür.
Fotoelektrik Olay: Fotonlar ile fotokatottan koparılan elektronlar devrede bir elektrik akımı oluşturur. Ampermetre ile oluşan bu akımı ölçebilmek mümkündür.
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:58 , 2000)
Fotoelektrik Olay: Gerilim - Akım (V - I) Grafikleri
Fotoelektrik Olay: Gerilim - Akım (V - I) Grafikleri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:58 , 2000)

Artık ışığın enerji kuantaları halinde yayıldığını biliyorduk. Peki neydi bu "enerji kuantası"? Einstein’ın bu soruya getirdiği cevabı şuydu:

Burada düşünülecek varsayımlara göre, bir ışık ışını bir noktadan yayıldığında, enerji sürekli artan alanlara sürekli olarak dağıtılmaz, ancak uzaydaki noktalarda lokalize olan sınırlı sayıda enerji miktarından oluşur, bölünebilir ve sadece bir bütün olarak emilebilir veya üretilebilir.

Fizikteki bu gelişmelerin ardından soru soruyu getirdi ve en önemli sorulardan biri olan “Eğer ışık kuantize ise peki ya madde? Onu oluşturan özellikler de kuantize midir? İkisini ayırt edebilmek mümkün mü?” sorusu soruldu. İşte cevap aranılan yeni sorular bunlar olmuştu. Tüm bunlara dair açıklama Niels Bohr’u beklemek zorundaydı.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

Bohr’un Teorisi ve Hidrojen Atomu

N. Bohr, hidrojen atomunun deneysel olarak elde edilen spektrumu ile yarı-klasik bir yaklaşımla işin teorik açıklamasını getirmişti. Bu açıklama aslında fizikteki ana yaklaşımdan oldukça farklıydı ve tekrardan fizik camiası hararetlenmişti!

O sıralar Arthur Haas, 1909 yılında atom fiziğine dair yeni önermeler/teklifler getirmişti. Bunlardan biri de aslında N. Bohr’un Atom Teorisi’ni öngörmekteydi. Her nasılsa dönemin fizikçileri A. Haas’ın çalışmalarını reddedip, Bohr’un açıklamasını övdüler. Ona olan övgü oldukça da yerinde bir övgüydü aslında. Günümüzdeki “Modern Atom Teorisi”nin orjini olan bu teori o dönemde oldukça radikal sayılabilecek fizik açısından bir matematiğe ve içeriğe sahiptir.

Bohr Atom Modeli ve Elektron Yörüngeleri
Bohr Atom Modeli ve Elektron Yörüngeleri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:103 , 2000)

O halde Bohr Atom Teorisi’ni inceleyelim. 1913 yılında bu teorinin uygulaması, hidrojen atomunun hiçbir ışıma (emisyon ve absorbsiyon) yapmadığı durumlar üzerine (İng: "Stationary State") olmuştu. Eğer atomun durumunda bir değişiklik meydana gelirse o zaman bir kesikli enerji ortaya çıkmaktaydı. Bohr’un teorisini biraz daha genişletip, ondan 10 yıl sonrasına dayanan fizikteki gelişmeleri de kullanarak örnekler verebiliriz ki daha iyi anlaşılabilsin.

İşe ilk olarak elektronların “dalga-parçacık” özelliklerini öne süren ve açıklayan Louis de Broglie’nin 1922’deki açıklamasıyla başlayacağız. Bu açıklama “de Broglie Hipotezi” olarak bilinir ve her bir parçacığa eşlik eden λ dalgaboyuna sahip bir “madde dalgası” olduğunu söylemektedir.

λ=hp\LARGE{\lambda =\frac{h}{p}} (Denklem 2)

λ\lambda : Dalgaboyu

Tüm Reklamları Kapat

hh : Planck Sabiti

pp : Momentum

Louis de Broglie’nin bu konsepti parçacıkların dalga özelliklerine sahip olduğunu gösteren bir konsepttir. Bundan dolayı da kuantum teorisinin merkezinde yer almaktadır. Klasik dünyada da her bir makroskopik cisme eşlik eden bir dalga bulunmaktadır fakat bu dalganın dalgaboyu oldukça küçüktür ve biz bu dalgaboylarını görebilecek şekilde evrimleşmedik! Bizim gözümüz elektromanyetik spektrumda kabaca 400 nm ile 700 nm arasını görebilmekte, tabii bunda en büyük etken Güneş’in yaydığı ışınların bu dalgaboyu aralığında frekans/şiddet miktarının daha fazla olmasıdır. Gelin asıl konumuza dönelim ve neden bu cisimlere eşlik eden dalgaları göremediğimizi basit bir fiziksel örnekle açıklamaya çalışalım:

Tüm Reklamları Kapat

100 km/saat hızla hareket eden 1000 kg kütleli bir ortalama arabayı ele alalım. Yukarıdaki denklemde bu değerleri yerine yazarsak, makro cisim olan arabaya eşlik eden dalganın dalgaboyu yaklaşık 10−3810^{-38} metre olacaktır. Yani sıfırın solunda 38 adet sıfır! Bunu ölçebilmek ya da gözlemleyebilmek neredeyse imkansız. Peki atomaltı parçacıklar dünyasında işler ne? Orası da ayrı bir konu. Bu parçacıkların sahip oldukları momentumlar oldukça küçük olduğundan dolayı bu dalgaboylarının uzunluğu büyük olabilmekte, en azından ölçüm yapılabilecek seviyede!

Devam edersek Bohr’un ileri sürdüğü atom teorisine önceki yazılarımızda da değindik ama burada biraz daha açmakta fayda var. Bohr’a göre tıpkı Güneş’in etrafında dolanan gezegenler gibi merkezde proton ve nötrondan oluşan çekirdeğin etrafında elektron dolanmaktadır. Ve bu dolanılan yörüngeler keyfi değillerdir ve sadece belirli boyutları alabilmektedirler. Biraz fizik yapmaya devam edelim ve de Broglie hipotezinden λ\lambda dalgaboyunu çekip çembersel yörüngelere uygulayalım:

nλ=2πr\LARGE{n\lambda=2\pi{r}} (Denklem 3)

nn : Baş Kuantum Sayısı (Yörünge)

Tüm Reklamları Kapat

Agora Bilim Pazarı
Great Expectations (Charles Dickens)

Great Expectations is the thirteenth novel by Charles Dickens and his penultimate completed novel. It depicts the education of an orphan nicknamed Pip (the book is a bildungsroman, a coming-of-age story). It is Dickens’s second novel, after David Copperfield, to be fully narrated in the first person. The novel was first published as a serial in Dickens’s weekly periodical All the Year Round, from 1 December 1860 to August 1861. In October 1861, Chapman and Hall published the novel in three volumes. The novel is set in Kent and London in the early to mid-19th century and contains some of Dickens’s most celebrated scenes, starting in a graveyard, where the young Pip is accosted by the escaped convict Abel Magwitch. Great Expectations is full of extreme imagery – poverty, prison ships and chains, and fights to the death – and has a colourful cast of characters who have entered popular culture. These include the eccentric Miss Havisham, the beautiful but cold Estella, and Joe, the unsophisticated and kind blacksmith. Dickens’s themes include wealth and poverty, love and rejection, and the eventual triumph of good over evil. Great Expectations, which is popular both with readers and literary critics, has been translated into many languages and adapted numerous times into various media.

Warning: Unlike most of the books in our store, this book is in English.
Uyarı: Agora Bilim Pazarı’ndaki diğer birçok kitabın aksine, bu kitap İngilizcedir.

Devamını Göster
₺370.00
Great Expectations (Charles Dickens)

λ\lambda : Dalgaboyu

rr : Yarıçap

Buradaki r yörüngenin yarıçapı olup n ise pozitif tamsayıdır (n=1,2,3,...n=1, 2, 3, ...). Yukarıdaki, de Broglie dalgaboyunu çembersel yörüngede yerine yazarsak artık elektronların hareket ettiği yörüngelerin yarıçaplarını, nn enerji seviyelerine bağlı olarak ifade etmiş oluruz:

r=nℏp\LARGE{r=n \frac{\hbar}{p}} (Denklem 4)

Şimdi ise hidrojen atomundaki elektron için toplam kinetik ve potansiyel enerjiyi yazarsak:

E=p22m−e2r\LARGE{E=\frac{p^2}{2m} - \frac{e^2}{r}} (Denklem 5)

denklemini elde ederiz. Burada mm elektronun kütlesi, ee ise elektronun yüküdür. Denklemdeki kinetik enerji terimi ise elektronun yörüngedeki hareketinden, potansiyel enerji ise elektron ile protonun arasındaki elektromanyetik kuvvetlerden kaynaklanır ve “Coulomb Enerjisi” olarak da bilinir. Şimdi ise bu enerji ifadesini, nn baş kuantum sayısına bağlı şekilde yazarsak denklemi kuantize hale getirmiş oluruz. Böylelikle elektron için her bir n. yörüngedeki toplam enerjiyi bulabiliriz:

E=n2ℏ22mr2−e2r\LARGE{E=\frac{n^2 \hbar^2}{2m r^2} - \frac{e^2}{r}} (Denklem 6)

Sıra, FF kuvvetini bulmaya geldi. Klasik Mekanik sayesinde EE enerji ifadesinden FF kuvvetini bulabiliriz. Denge durumundaki parçacık için kuvvet;

F=dEdt=−n2ℏ2mr3+e2r2=0\LARGE{F=\frac{dE}{dt}=-\frac{n^2 \hbar^2}{m r^3} + \frac{e^2}{r^2}=0} (Denklem 7)

Tüm Reklamları Kapat

bulunur. Buradan yola çıkarak durağan durum (İng: "Stationary State") için elektronun dolandığı yörüngenin yarıçapını hesaplayabiliriz:

rn=n2ℏ2me2=0.5292n2A˚\LARGE{r_n=\frac{n^2 \hbar^2}{m e^2}=0.5292 n^2 \mathring{A}} (Denklem 8)

A˚\mathring{A} : Angström == 10−1010^{-10} metre

Bulduğumuz bu sonucu (Denklem 6)' da yerine yazarak hidrojen atomundaki bir elektron için enerji değerlerini nn kuantum sayısına bağlı şekilde elde ederiz:

Tüm Reklamları Kapat

En=−me42ℏ2n2=−13.606n2eV\LARGE{E_n=-\frac{m e^4}{2 \hbar^2 n^2}= - \frac{13.606}{n^2} eV} (Denklem 9)

eVeV : elektronVolt

Planck’ın postülatını Bohr’un atom teorisi ile birleştirerek yarı-klasik metotlarla bile bunu bulabilmek oldukça heyecan verici! Bir de hesaplamaya çalışılan şeylerin boyutlarını işin içine kattığımızda bu heyecan daha da artmakta. Bu sayede atomaltı parçacıkların (elektron vs.) davranışları hakkında bir şeyler söylebilmek mümkün olmaktadır.

Atomdaki Enerji Seviyeleri Arası Geçişler ve Seriler

Şimdi hidrojen atomundaki başlangıç durumu olan n1n_1 seviyesinden bir sonraki durum olan n2n_2 seviyesine geçiş sonrası absorblama (soğurma) şeklinde ortaya çıkan ışığın yani “foton”un enerjisini bulalım. Ayrıca biz biliyoruz ki hiçbir atom ya da elektron uyarılmış halde bulunmak istemez, daima en düşük enerji seviyesinde bulunmak ister. Bunun sonucu olarak da enerji fazlalığını ışık yayarak yani foton salarak spektrumda kendine has dalgaboylarında/renklerde çizgiler gösterir.

Tüm Reklamları Kapat

Enerji korunumu gereği bu seviyeler arası enerji farkı yani salınan fotonun enerjisi:

ΔE=En2−En1=ℏωn1n2=me42ℏ2(1n12−1n22)\Delta E = E_{n2} - E_{n1} = \hbar \omega_{n1n2} = \frac{m e^4}{2 \hbar^2} (\frac{1}{{n_1}^2 } - \frac{1}{{n_2}^2 }) (Denklem 10)

şeklinde yazılıp hesaplanabilir. Bu geçişler Bohr’un teorisindeki gibi gerçekleşir ve her bir n enerji seviyesi arası geçişler atom fiziğinde “simetri ve geçiş kuralları”na uyacak şekilde meydana gelir. Yani keyfi değil! (Bu konu başka bir yazımızın konusu olsun.)

Bu enerji seviyeleri arası geçişlerin özel isimleri var ve en çok bilinen seriler sırayla şu şekildedir:

Tüm Reklamları Kapat

• Lyman Serileri

• Balmer Serileri

• Paschen Serileri

Tüm bunları hidrojenin atomik spektrası olarak görselleştirirsek alttaki grafik elde edilir.

Tüm Reklamları Kapat

Enerji Seviyeleri Arası Geçişler ve Seriler
Enerji Seviyeleri Arası Geçişler ve Seriler
Introductory Quantum Mechanics with MATLAB (J. Chelikowsky, Sayfa:8, 2019 )
Hidrojen, Helyum ve Lityum atomları için bazı enerji seviyeleri geçişleri
Hidrojen, Helyum ve Lityum atomları için bazı enerji seviyeleri geçişleri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:108 , 2000)

Lyman Serileri

Bu seri ikinci ve daha yüksek enerji seviyelerinden (n≥2n ≥ 2 ), ilk enerji seviyesi olan n=1 n=1 seviyesine geçişleri kapsamaktadır. Elektron bu yüksek seviyelerden ilk seviyeye geçiş yaparken elektromanyetik spektrumda morötesi bölgede foton salar. Hidrojen benzeri atomlar için de bu geçişler mümkün olabilmektedir. Örneğin uranyum atomu ve onun bir ürünü olan U92+U^{92^+} iyonu için gereken enerji miktarı 10 GeV’tan büyük olmalıdır (Giga-elektronvolt). Uranyumun diğer ürünü olan U91+U^{91^+} iyonuna ait Lyman Serileri enerji cinsinden 100 keV (kilo-elektronvolt) civarındadır.

Titanyum atomundaki müonik geçişlerin Lyman Serileri
Titanyum atomundaki müonik geçişlerin Lyman Serileri
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:111 , 2000)

Balmer Serileri

Enerji seviyesi olarak üçüncü ve daha yüksek enerji seviyelerinden (n≥3n ≥ 3 ), ikinci enerji seviyesine geçişleri kapsayan serilerdir. Salınan fotonun dalgaboyu elektromanyetik spektrumda “görünür bölge” de yer almaktadır. Yaklaşık 400 nm ile 700 nm arasındadır. Çoğumuz bunu hidrojenin karakteristik spektrumu olarak da bilmektedir.

Hidrojen benzeri uranyum atomunun U91+U^{91^+} iyonu için Balmer serisi enerji değerleri 15 keV ile 35 keV arasındadır.

Yüksek Spektral Çözünürlükteki Hα Çizgisinin Balmer Serisi
Yüksek Spektral Çözünürlükteki Hα Çizgisinin Balmer Serisi
The Physics of Atoms and Quanta (Wolf & Brewer, Sayfa:114 , 2000)

Paschen Serileri

Bu serileri enerji seviyesi dört ve üzeri olan yörüngelerden (n≥4n ≥ 4 ), üçüncü enerji seviyesine geçişlerde gözlemleriz. Salınan fotonların ortalama dalgaboyları 1000 nm ile 2000 nm arasında yer alır.

Sonuç olarak kuantum fiziğinin temeli olan bu deneyleri ve teorileri anlamak oldukça önemlidir çünkü tüm bunları anlama çabası aslında fiziğin tüm enstrümanlarına hakim olmayı ve bunları ustalıkla kullanabilmeyi gerektirir. En önemli köşe taşlarından biri olan hidrojen atomu, uygulama olarak oldukça zarif ve bir o kadar da bilgi açısından dolu! Yazımızı şu sözle bitirmek tüm çabamızı özetleyecektir. O halde,

...Hidrojeni anlamak, tüm fiziği anlamaktır aslında... - V. Weisskopf
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Kuantum Fiziği Yazı Dizisi

Bu yazı, Kuantum Fiziği yazı dizisinin 3 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Kuantum Mekaniği Nedir? Atom Altı Parçacıkların Dünyası, Evren'i Daha İyi Anlamamızı Sağlayabilir mi?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
48
1
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 7
  • Tebrikler! 4
  • İnanılmaz 3
  • Umut Verici! 3
  • Bilim Budur! 2
  • Mmm... Çok sapyoseksüel! 1
  • Güldürdü 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • J. Chelikowsky. (2019). Introductory Quantum Mechanics With Matlab. ISBN: 978-3-527-40926-6. Yayınevi: Wiley - VCH.
  • H. Haken, et al. (2000). The Physics Of Atoms And Quanta. ISBN: 9783540672746. Yayınevi: Springer.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/01/2025 04:28:27 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8998

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Evcil Hayvanlar
Ses Kaydı
Sağlık Bakanlığı
Veri
İnternet
Evrenin Genişlemesi
Proton
Teyit
Tutarlılık
Endokrin Sistemi
Saç
Regülasyon
Fizyoloji
Cinsellik
Eczacılık
Devir
Genom
Kadın Doğum
Küresel
Sivrisinek
İnsan Evrimi
Evrim Kuramı
Sendrom
Diyet
Zooloji
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
A. Kocabaldır, et al. Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği. (15 Temmuz 2020). Alındığı Tarih: 21 Ocak 2025. Alındığı Yer: https://evrimagaci.org/s/8998
Kocabaldır, A., Özdil, A. Ş. (2020, July 15). Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği. Evrim Ağacı. Retrieved January 21, 2025. from https://evrimagaci.org/s/8998
A. Kocabaldır, et al. “Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, 15 Jul. 2020, https://evrimagaci.org/s/8998.
Kocabaldır, Anıl. Özdil, Ayşegül Şenyiğit. “Kuantum Mekaniği: Bohr Atom Modeli ve Hidrojen Atomunun Fiziği.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, July 15, 2020. https://evrimagaci.org/s/8998.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close