Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Hayvanların Davranışları İçin Sinir Sistemi Gerekmiyor; Biyomekanik Etkileşimler Yeterli!

11 dakika
1,952
Hayvanların Davranışları İçin Sinir Sistemi Gerekmiyor; Biyomekanik Etkileşimler Yeterli! Quanta Magazine
Tüm Reklamları Kapat

Trichoplax adhaerens adlı basit bir hayvan, hiçbir nöron ya da kas demetinden faydalanmaksızın çevre uyaranlara çeviklikle, neredeyse amaçlı bir edayla yanıt veriyor ve hareket ediyor. Yeni bir araştırma, bu hayvanın kamçılarında gerçekleşen biyomekanik etkileşimlerin bu hareketleri açıklamakta yeterli olduğunu gösteriyor. Biyofizikçi Manu Prakash, on yıl önce bir çalışma arkadaşının laboratuarında bu hayvanla tanıştığı anı çok net bir biçimde hatırlıyor:

Mikroskopun altındaki bu hayvan (Trichoplax adhaerens) ilk bakışta çok önemli görünmüyordu. Yirmi mikron kalınlığında ve birkaç milimetre çapında, her şeyden öte bir amipe benzeyen çok hücreli bir balondu. Ne kafası, ne de kuyruğu vardı; binlerce kamçıdan oluşan alt kısmına verilen "yapışkan kıllı plaka" ismi Latince tür ve cins ismine de ilham olmuştu.

Placozoa sınıfına tabi bu tuhaf deniz canlısının Prakash'ın ilgisini bu denli çekmesinin sebebi ne evrim ağacının bir dalını kendi başına kapsaması, ne de hayvanlar aleminde bilinen en küçük genoma sahip olmasıydı. Prakash'ın ilgisini çeken şey, bunlardan öte Trichoplax'ın barındırdığı milyonlarca hücrenin nasıl bu denli çevik ve verimli bir şekilde hareket ettiğiydi. Nihayetinde bir organizmanın bu kadar çevik ve verimli hareket edebilmesi için nöronlara ve kaslara sahip olması gerekirdi. Ancak Trichoplax'ta ne nöron vardı, ne de kas.

Bu gizemi aydınlatmak için Prakash, o zamanlar Stanford Üniversitesi'nde kendi doktora öğrencisi olan Matthew Storm Bull ile bir araştırma ekibi kurdu. Bu ekibin amacı, nöromüsküler sistemlerin nasıl evrimleştiğini ve erken dönem çok hücreli canlıların nöronlar olmaksızın nasıl hareket ettiğini, yemek bulduğunu ve çoğaldığını açıklamayı hedefleyen bir araştırmanın ana öznesi olarak bu hayvanı kullanmaktı. Prakash, bunu "sinirsiz sinirbilim" olarak adlandırıyor.

Tüm Reklamları Kapat

Arxiv.org sunucularına 2021'de eşzamanlı olarak yüklenen, yüzden fazla sayfa uzunluğunda üç önbaskı makalede Prakash ve Bull, Trichoplax'ın davranışlarının tamamen fizik ve dinamik sistemler kullanılarak açıklanabileceğini raporladılar. Makalelerine göre tek bir kamçı seviyesinde başlayan mekanik etkileşimler katlanarak milyonlarca hücreye yayılıyor, daha büyük yapılara erişiyor ve hayvanın koordine hareketlerini sağlıyordu. Bir başka deyişle hayvan, hareket etmeyi "seçmiyordu"; bunun yerine kamçıları yalnızca hareket ediyor ve hayvan tıpkı bir sinir sistemi ile yönetiliyormuş gibi hareket ediyordu. Öyle ki araştırmacılar kamçıların hareket dinamiklerinde nöronal faaliyetlerin genel kanıtı olarak değerlendirilen kimi unsurlar dahi gözlemlediler.

Youtube

Mekanik etkileşimlerin nasıl inanılmaz boyutlarda karmaşık hareketlere yol açabileceğini gösteren, sinir sistemlerinin evriminden önce nasıl sistemlerin varolduğuna ışık tutan bu çalışma, hayvan davranışlarında sinir sistemlerinin rolüne dair yeni bir araştırma kapısı aralıyor ve makinelerin tasarımlarına ilham oluyor.

Basit ve Karmaşık Arasındaki Çizgi

Yumuşak robotik ve aktif madde olarak bilinen alanlarda yapılan araştırmalar, "doğru" mekanik dinamiklerin merkezi bir kontrol olmaksızın karmaşık davranışlar oluşturmak için yeterli olduğunu gösteriyor. Hatta tek hücreli canlılar dahi nöron ya da kasların yardımı olmadan insanı şaşırtacak derecede karmaşık davranışlarda bulunabiliyor, cıvık mantar ve zenobotlar gibi kolektif sistemler çatısı altında birleşebiliyorlar.

Peki bu davranışlar çok hücreli boyutlarda da gözlemlenebilir mi? Bu soru bağlamında Trichoplax, ideal bir çalışma konusu olarak karşımıza çıkmaktadır. Zira bu hayvanlar en ince detayına kadar araştırılabilecek basitlikte olmalarına karşın araştırmaların yine de bir anlam ifade edeceği, yeni keşiflere yol açacağı kadar karmaşıktır. Prakash bu konuyu şu sözlerle aydınlatıyor:

Tüm Reklamları Kapat

[Onu] gözlemlediğinizde yalnızca bir dans izliyorsunuz. Ancak bu dans inanılmaz bir karışıklıkta... Organizma dönüyor ve yüzeyler arasında hareket ediyor. Kimi alglerin üzerine kapanıyor ve [onları] hapsederek tüketiyor. İkiye bölünerek çoğalıyor.

İngiltere'deki Exeter Üniversitesi'nde araştırmacı olan ve kamçı hareketleri üzerine çalışan Kirsty Wan ise şunları söylüyor:

Böyle bir organizma, bir ucunda omurgalılar gibi oldukça karmaşık canlıların, diğer ucunda yeni 'karmaşıklaşmaya başlamış' tek hücreli ökaryotların olduğu bir spektrumun tam ortasında yer alır.

Prakash ve Bull için bu alan, spektrumun tam ortası çalışmaları için ideal bir alan teşkil etmekteydi. Ekip, çalışmalarının ilk safhasında Trichoplax'ın yüksek hızlarda hareket eden kamçılarının hareketlerini yakalamak amacıyla özel mikroskoplar tasarladı. Trichoplax'ı yanlardan ve alttan görüntüleyebilen bu mikroskoplar ile araştırmacılar, mikroskopun görüş alanında küçük bir kıvılcım olarak beliren ve bir saniyeden daha az bir sürede kaybolan milyonlarca kamçının hareketini saatlerce gözlemlediler. Kamçıların sergilediği karmaşık örüntülerin nasıl gerçekleştiğini bilmeyen, ancak kamçılar arasında bir uzun-mesafe iletişim aracılığıyla mümkün olabileceğini düşünen araştırmacılar 2021 yılında bulgularını yayınladılar.

Otopilotta Yürümek

Araştırmacıların kamçılara ve Trichoplax'a dair ilk tahminleri hayvanın yüzeyde süzüldüğü, substrat ile ince bir sıvı katmanı ile ayrıldığı yönündeydi. Nihayetinde kamçılar bakterilerin ve diğer organizmaların suda kendini itmek ya da hücre çeperleri içinde mukozayı hareket ettirmek amacıyla kullandığı şeylerdi. Ancak araştırmacılar mikroskop ile bu hayvanı gözlemlediklerinde hayvanın yüzmediğini, yürüdüğünü gözlemlediler. Wan bu konu hakkında şunları söylüyor:

Bazı tek hücreli organizmaların sürünmek için kamçı kullandığı bilinse de bu denli koordine bir yürüme faaliyeti bu kadar karmaşık bir organizmada daha önce hiç gözlemlenmemişti. Kamçılar [burada] itme amacıyla kullanılmıyor; bunun yerine sürtünme, yapışma ve birçok ilgi çekici katı mekaniğinden faydalanıldığını görüyoruz.
Quanta Magazine

Bu bilgi ışığında Prakash, Bull ve Stanford'da makine mühendisliği bölümünde eğitim gören doktora öğrencisi Laurel Kroo kamçıların yürüme biçimini aydınlatmak amacıyla her bir kamçı ucunun yüzey üzerindeki davranışlarını takip ettiler. Bu inceleme kamçıların üç şekilde hareket ettiğini gösterdi;

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

  1. Kayma: Kamçının yüzeye tam olarak basmadan hareket etmesi,
  2. Yürüme: Kamçının yüzeye kısa bir süreliğine yapışıp kalkması,
  3. Bekleme: Kamçının yüzeye yapışıp kalması.

Araştırmacılar, tasarladıkları modellerde yürüme faaliyetinin kamçıların hareketinin ve yüzeye yapışmaları ile kazandıkları enerjinin doğal bir sonucu olduğunu; kamçıların yönü, yüksekliği ve adım sıklığı çerçevesinde belirlenen bu iki parametrenin dengeli bir ifadesi ile yürüme faaliyetinin meydana geldiğini, her bir kamçının bir bacak gibi yapışıp kalktığını; bu dengenin bozulması halinde ise kamçıların kaydığını ya da beklediğini bulguladılar. Georgia Teknoloji Enstitüsü'nde görevli bir biyofizikçi olan Simon Sponberg bu konuyu şu şekilde açıklıyor:

Genellikle böyle bir unsur gözlemlediğimizde içsel, saat tiktakına benzer bir mekanizmanın "Tamam, şimdi yürü, dur, şimdi yürü, şimdi dur." gibi bir sinyal verdiğini düşünürüz. Ancak bu çalışmada böyle bir şey gözlemlemiyoruz. Kamçılar böyle yürümüyor; [onlara] "Yürü, yürü, yürü." diyen bir sinyal yok. Bunun yerine 'yürüyen, yürüyen, yürüyen' mekanik etkileşimler var.

Bunun da ötesinde Trichoplax'ın yürüme faaliyeti belirli koşullar altında sinyallerin dağıldığı ve büyüdüğü uyarılabilen bir sistem olarak da modellenebilir. Bu türde sistemlerin klasik bir örneği nöronlardır. Küçük voltaj değişimleri nöronların ateşlenmesine sebep olur; voltaj belli bir seviyeyi aşarsa uyarılmış nöron sistemin geri kalanını uyarır. Aynı fenomen kamçılarda da gözlemlenmektedir. Yapılan kimi deneylerde -voltaj yerine- eğimde yapılan değişiklikler eğimin yapıldığı bölgedeki kamçılarda görece büyük hareketlenmelere sebep olmuş; organizmanın yönünü değiştirmesini ya da bekler halden yürür hale geçmesini sağlamıştır.

Prakash, Bull ve Kroo'nun kamçı modelleri nöronlardaki eylem potansiyeli modellerine de büyük oranda uymaktadır.

Sürü Hareketi

Bu matematiksel modelleme ile Prakash ve Bull, her bir kamçının yüzey ile etkileşimi ekseninde yaşanan doku bazında yükseklik dalgalanmalarının komşu kamçıları ve hücreleri çekmek suretiyle nasıl etkilediğine odaklanarak tek bir bağımsız hareketin senkronize ve tutarlı bir harekete nasıl dönüştüğünü bulguladı.

Prakash'ın deyimiyle "elastiklik ve hareket arasındaki bu dansın" modellemesi, kamçıların substrat ve birbirini çeken hücreler arasındaki mekanik etkileşimin organizma boyunca büyük bir hızla bilgi aktardığını ortaya çıkardı. Yalnızca bir bölgenin uyarılması doku boyunca dalga dalga aktarılan bir bilgi trafiğine yol açmaktaydı. Bu fenomeni Prakash şu sözlerle niteliyor:

Yürüyen kamçı fiziğinde milyonlarca defa katlanarak büyüyen bu elastiklik ve gerginlik uyumlu davranışların kendiliğinden meydana gelmesini sağlıyor.

Bununla beraber senkronize uyum örüntüleri karmaşık olabilir. Kimi noktalarda sistemin faaliyeti kamçıların tek bir nokta etrafında hareket ettiği girdaplara, kimi noktalarda kamçıların göz açıp kapayıncaya kadar yön değiştirmesine sebep oluyor.

Tüm Reklamları Kapat

Prakash Pacific Grove - California'da Trichoplax ararken
Prakash Pacific Grove - California'da Trichoplax ararken
Quanta Magazine

Bu çevik sürü hareketinin özellikle dikkat çekici olduğunu vurgulayan, Max Planck Karmaşık Sistemlerin Fiziği Enstitüsünde görevli fizikçi Ricard Alert bu sürü hareketinin genellikle su gibi hareket eden sistemlerde gözlemlendiğinin altını çiziyor. Örneğin kuşlar ve balıklar sürüleri içinde yer değiştirebilirler; ancak böylesi bir yer değiştirme Trichoplax için mümkün değildir; zira kamçıları yerleri belli hücrelere ait bileşenlerdir. Bundan ötürü Trichoplax "katı bir sürü" olarak hareket etmektedir.

Bunların yanında Prakash ve Bull, deneylerinde Trichoplax'ın maruz bırakıldığı kimi uyaranlardan sonra kamçılar vasıtasıyla sisteme taşınan enerji organizmanın davranışında bir değişikliğe sebep olmak yerine kaybolduğunu gözlemleyerek bilginin seçici olarak iletildiğini de bulguladılar. Konu hakkında Sponberg şunları söylüyor:

Biz ise bunu beyinlerimizle yapıyoruz. Bir durumu gözlerimizle inceleyerek diyoruz ki "Bunu ya yoksaymalıyım, ya da bir şey yapmalıyım."

Nihai olarak Prakash ve Bull, Trichoplax'ın ne zaman bir yerin etrafında döneceğini, asimetrik daireler çizeceğini, düz yürüyeceğini, birden sola döneceğini ve hatta ne zaman bölüneceğini açıklayan bir dizi mekanik kural yazabileceklerini keşfettiler. Prakash konu hakkında şunları söylüyor:

Tüm Reklamları Kapat

Hayvanın hareketleri gerçekten bu basit mekanik özellikler çerçevesinde kodlanmış.

Prakash bu dönme ve sürünme dinamiklerini "koş ve dokun" stratejisinin bir parçası ollarak değerlendiriyor. Bu strateji ekseninde organizma, çevrede yiyecek ya da başka bir kaynak bulduğunda kamçıları sıralı hale geliyor ve kaynağa doğru koşuyor. Kaynağı tükettiğinde ise girdap devinimine girip yeni bir rota belirliyor. Konu hakkında Barselona'da bulunan sistem biyolojisi profesoru Pompeu Fabra şunları söylüyor:

Eğer takip çalışmalar bunu doğrularsa moleküler yapı ile doku, doku ile organizma, organizma ile ekoloji arasında son derece heyecan verici köprüler kurulacak.

Birçok akademisyen için bu çalışmayı özel ve ilgi çekici kılan özellik de bu. Zira biyolojik sistemlere getirilen fizik temelli yaklaşımlar gözlemlenen fenomenlerin karmaşıklığını temel düzeyde açıklayabilirler; hayvan davranışı düzeyinde değil. Fizik temelli bir yaklaşımla bir hayvanın davranışlarını tamamıyla açıklamak büyük bir başarıdır ve oldukça nadirdir. Daha da büyük bir başarı ise açıklanan bu mekanikler kapsamında nöron dinamiklerinin bağlı olduğu ilkelerin de aydınlatılmasıdır. Sponberg bu konu hakkında şunları söylüyor:

Modem tamamıyla mekanik olmasına karşın bir bütün olarak bu sistemin nöromekanik sistemlerde gözlemlediğimiz birçok özelliğe sahip olduğunu görüyoruz. Bu sistem de tıpkı nöromekanik sistemler gibi uyarılabilirlik temeline dayanıyor ve hassaslık ve stabillik arasında bir dengede bulunuyor. Dahası, karmaşık kolektif davranışlar da gösterebiliyor. Mekanik sistemlerle bunun ötesinde ne başarılabilir?

Bu çalışma nörobilimcilerin nöral aktivite ve davranış arasındaki bağlantıyı nasıl değerlendirdiklerine yönelik kimi çıkarımlar da barındırıyor. Zira bazı basit davranışların yalnızca mekanik etkileşimler çerçevesinde açıklanabilmesi nörobilimcilerin bir hayvanın biyofiziksel özellikleri ile sinir sistemi arasındaki bağlantısını daha dikkatli incelemesini gerektirecektir. Böylelikle sinir sisteminin biyofiziksel unsurlardan nasıl faydalandığı aydınlatılabilir.

Çok Hücreliliğe Doğru Bir Adım

Trichoplax'ın incelenmesi kas ve sinir sistemi gibi daha karmaşık kontrol mekanizmalarının evriminde ne gibi unsurların etkili olduğuna tutabilir. Zira Trichoplax, sergilediği çeviklik gibi organizma çapında davranışlarla, sinir sistemi faaliyetlerine benzerliğiyle ve karmaşık çok hücreliliğe geçiş olarak değerlendirilebilecek özellikleriyle araştırmacılar tarafından "canlı bir fosil" olarak değerlendiriliyor.

Tüm Reklamları Kapat

Prakash, Bull ve çalışma arkadaşları Trichoplax'ın öğrenme dahil olmak üzere diğer davranışları sergileyip sergileyemeyeceğini konu aldıkları, "Trichplax farklı çevre bağlamlarında neler yapabilir? Biyokimyasını araştırmak farklı açıklamalara kapı aralayabilir mi?" sorularını sordukları çalışmalarının yanı sıra keşfettikleri kimi ilkeleri "algı makineleri" adını verdikleri, mekanik özelliklerden faydalanarak merkezi bir kontrol olmaksızın kimi akıllı malzemeler ile belirli görevleri başarabilen robotik sistemler inşa ediyor. Prakash'ın laboratuvarında görevli öğrencilerden birisi olan Kroo, "aktif köpük" adını verdiği viskoelastik bir malzemeden yapılmış, mısır nişastası gibi Newton uyumsuz sıvılara bırakıldığında kendini itebilen bir robotik yüzme aracı dahi üretti. Peleg, şöyle soruyor:

Ne kadar ileri gitmek istiyorsun? Sadece bu tür mekanik ağlardan bir beyin inşa edebilir misin?

Prakash, bunun on yıllarca sürecek bir maceranın sadece ilk bölümü olduğunu düşünüyor. Sözlerini şöyle bitiriyor:

Bu hayvanı anlamak, benim için gerçekten 30-40 yıllık bir yolculuk olacak. Biz, ilk on yılımızı tamamladık. Bu, bir çağın bitişi ve bir diğerinin başlangıcı.
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Özetini Oku
29
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

İçerikle İlgili Sorular
Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 6
  • Bilim Budur! 3
  • Mmm... Çok sapyoseksüel! 3
  • Muhteşem! 1
  • İnanılmaz 1
  • Merak Uyandırıcı! 1
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  1. Çeviri Kaynağı: Quanta Magazine | Arşiv Bağlantısı
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 03/12/2024 17:13:17 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/11622

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Elektromanyetizma
Solunum
Konuşma
Şempanze
Evrimleşme
Tür
Video
Darwin
Lgbt
Ekoloji
Carl Sagan
Kozmik Mikrodalga Arkaplan Işıması (Cmb)
Kalıtım
Temel
Patlama
Bilgisayar
Tarih
Sağlık Bilimleri
Bilişsel
Güve
Yangın
Dalga
Yüzey
Viral Enfeksiyon
Bebek Doğumu
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
J. Cepelewicz, et al. Hayvanların Davranışları İçin Sinir Sistemi Gerekmiyor; Biyomekanik Etkileşimler Yeterli!. (6 Nisan 2022). Alındığı Tarih: 3 Aralık 2024. Alındığı Yer: https://evrimagaci.org/s/11622
Cepelewicz, J., Karagözoğlu, M. (2022, April 06). Hayvanların Davranışları İçin Sinir Sistemi Gerekmiyor; Biyomekanik Etkileşimler Yeterli!. Evrim Ağacı. Retrieved December 03, 2024. from https://evrimagaci.org/s/11622
J. Cepelewicz, et al. “Hayvanların Davranışları İçin Sinir Sistemi Gerekmiyor; Biyomekanik Etkileşimler Yeterli!.” Edited by Mert Karagözoğlu. Translated by Mert Karagözoğlu, Evrim Ağacı, 06 Apr. 2022, https://evrimagaci.org/s/11622.
Cepelewicz, Jordana. Karagözoğlu, Mert. “Hayvanların Davranışları İçin Sinir Sistemi Gerekmiyor; Biyomekanik Etkileşimler Yeterli!.” Edited by Mert Karagözoğlu. Translated by Mert Karagözoğlu. Evrim Ağacı, April 06, 2022. https://evrimagaci.org/s/11622.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close