Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Evrenin Denklemlerini "Görebilmek": Fizikteki Meşhur Denklemler Neyi Anlatıyor, Gündelik Hayatta Ne Anlama Geliyor?

Denklemler, Sadece Sembollerden İbaret Değildir! Gündelik Örneklerden, Fizikteki Soyut Konulara Kadar Denklemler, Bize Ne Gösteriyor?

Evrenin Denklemlerini "Görebilmek": Fizikteki Meşhur Denklemler Neyi Anlatıyor, Gündelik Hayatta Ne Anlama Geliyor? Pixabay
Denklemler
10 dakika
4,374
  • Ortaöğretim ve Lise
  • Cebirsel Geometri

Evrende görüp görebildiğimiz veya direkt gözlemleyemesek bile çeşitli teknik araçlarla bunu mümkün kıldığımız tüm fiziksel olguları açıklama çabası, fizik bilimi ve diğer formel bilim dallarıyla mümkündür. Bu yazıda biz işin fizik kısmına odaklanalım ve bunlar üzerine biraz düşünelim.

Doğadaki tüm "fenomenler" (yani "olgular") hakkında yapılan gözlemler ve deneyler sonucu, onların uymakta oldukları bir takım kurallar olduğunu bilmekteyiz. Aslında bu kurallar dediğimiz ifadeler, bizim en genel anlamda bildiğimiz doğa yasalarıdır. Bu yasaların dili de matematiktir. Semboller kullanarak doğadaki bu yasaları keşfedebilme, aynı zamanda bunları geleceğe yönelik yeni keşiflerde kullanabilme çabası, aslında tüm fiziğin amacının çok kısa bir özetidir.

Tüm Reklamları Kapat

İşte bu yazımızın tam da konusu, bu denklemlerdir. Çoğu okuyucumuzun (bir zamanlar bizlerin de) bu denklemleri gördüğündeki ilk tepkisi, bilinmezliğin ve karmaşıklığın verdiği korku olacaktır. Şöyle bir açıklama getirmekte fayda var: Yazımızda bu tür bir korkuya veya denklemlerin içeriğini bilmenize gerek olmayacak. Her gruptan okuyucu için hazırlanan bu yazıda, aslında o çok korkulan sembolleri içeren denklemleri “görmeyi” (evet görebilmeyi) hedefledik. Bunu da günlük hayattaki örneklerin olduğu bir takım fizikteki problemler üzerinden yapmayı hedefledik.

Peki neden? Çünkü, fiziğin ve formel olan diğer bütün bilim dallarının ortak dili matematiktir. İşin ilgilileri arasında iletişimi ve evrenselliği, denklemlerin matematik içermesine borçluyuz. Eğer bu dili biliyorsak, işler daha da kolaylaşır ve esas yapmamız gereken iş olan evreni anlama çabasına rahatlıkla yönelebiliriz.

Tüm Reklamları Kapat

Doğayı ve evreni anlama çabası sayesinde günümüz teknolojisine ve Güneş Sistemi’mizin ötesine ulaşabildik! Bundan yüzyıllar, bin yıllar sonra ötesini hayal edebilmek bile mümkün değil; fakat şundan kesinlikle eminiz ki, bu yenilikler ve ilerlemeler de denklemler ve matematiksel araçlarla mümkün olacak! İşte bundan dolayı günlük hayatımızın içerisinde yer alan denklemlerin aslında bize ne “gösterdiğini” ve ne ifade ettiğini ilk örneğimizle başlayarak inceleyelim.

Denklemleri Görebilmek...

1) Motorcu ve Trafik Polisi - Kinematik

Sorumuz şöyle olsun: Hız sınırının 60 km/saat olduğu bir yolda bir motorcu, 72 km/saat sabit hızla hareket etsin. Yol kenarında da duran bir trafik polisi olsun. Polis hız sınırını aşıldığını "Doppler Etkisi" denen bir olaydan faydalanarak tespit etsin ve motorcunun peşine düşsün. Polis aracının ivmesi de (birim zamandaki hız değişimi) a=4m/saniye2a = 4 m/saniye^2 olsun. O halde polis motorcuya kaç metre ve kaç saniye sonra yetişir?

Sorunun içeriği fizikteki kinematik yani Newton Hareket Yasaları’nı içeren denklemler ile ilgili. Dolayısıyla aşağıdaki denklemler ile analitik olarak çözüme ulaşılır. Polis motorcuya 200 metre ve 10 saniye sonra yetişir. Denklemlerin matematiksel ifadesi şu şekildedir:

Evrim Ağacı'ndan Mesaj

x=x0+V0t+12at2x = x_0 + V_0 t + \dfrac{1}{2} a t^2 (Denklem 1)

V2=V02+2a(x−x0)V^2 = {V_0}^2 + 2 a (x - x_0) (Denklem 2)

Peki aslında bu denklemleri görebilsek, neye benzerlerdi? Geometrik olarak nasıl bir anlam taşırlardı? Cevabı için yukarıdaki denklemleri herhangi bir paket program / dil ile işlerseniz, çıktıları şöyle olacaktır:

Motorcu ve Polis Konum Zaman Grafiği
Motorcu ve Polis Konum Zaman Grafiği
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Kırmızı çizgiyle ifade edilen polis arabası, mavi ise motorcuya (veya otomobile) ait çizgilerdir. Grafikten de görüleceği üzere polis, 10 saniye ve 200 metre sonra motorcuya yetişebilecektir.

Peki ikisine ait hız denklemlerinin geometrik açıdan anlamı nedir? O halde bakalım:

Tüm Reklamları Kapat

Motorcu ve Polis Hız-Zaman Grafiği
Motorcu ve Polis Hız-Zaman Grafiği
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Mavi çizginin zamana göre sabit kaldığını (motorcunun hızı sabit ve 72 km/saat = 20 m/saniye), kırmızı çizginin “düzgün olarak arttığını” (polis arabasının hızının eşit zaman aralıklarında eşit miktarda arttığını) görüyoruz.

Olayı şöyle fiziğe bağlayalım: Motorcunun uyduğu denklemler “sabit hızlı denklemler” ile ifade edilirken, polis arabasının uyduğu denklemler “sabit ivmeli / düzgün değişen doğrusal hareket” denklemleri ile anılır. İşte fizikteki bu tanımların esas kökeni, denklemlerin geometrik anlamında saklıdır. Bu ilişkiyi farketmek oldukça heyecan verici!

2) Serbest Düşen Topun Hareketi - Kinematik

Herhangi bir yükseklikten serbest bırakılan (yani ilk hızı olmayan, fırlatılmayan) cisimlerin yerçekimi kuvveti etkisi altında yaptığı hareket türüne fizikte “serbest düşme” denilmektedir. Bu tanımdan sonra örneğimizi verelim: 40 metre yükseklikten serbest bırakılan bir top yere kaç saniyede ulaşır ve yere çarptığı andaki son hızı kaç m/saniye’dir?

Bu sorunun çözümü aşağıdaki atış denklemleriyle analitik olarak süre (t=2.0203t = 2.0203 saniye) ve hız (V=−19.7990V = - 19.7990 m/saniye) bulunur. Hızdaki “-” ifade yön ile ilgili olup, bizim için şu aşamada önemsizdir.

Tüm Reklamları Kapat

V=0−gtV = 0 - gt (Denklem 3)

hmax=V0y22gh_{max} = \dfrac{V_{0y}^2}{2 g} (Denklem 4)

Peki bu denklemlerin geometrik anlamı nedir?

Serbest Düşme Yapan Topun Hız-Zaman Grafiği
Serbest Düşme Yapan Topun Hız-Zaman Grafiği
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Bu grafik bize topun hızının hava sürtünmesinin olmadığı ortamda düzgün bir şekilde (yerçekimi ivmesi g=9.81m/saniye2g=9.81 m/saniye^2) arttığını ve 1.dereceden bir denklem olduğunu göstermektedir. Yani bir çizgi! Hız denkleminin içeriğine bakarsak da bunu doğrulamış oluruz çünkü ifadede herhangi bir terimin kuvveti (t2,tn,n=2,3,...t^2, t^n, n=2,3,... ) yok.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Canlılığın Tarihi: Fosillerden DNA'ya Dört Milyar Yıllık Karnaval

Shubin, olağanüstü yaratıkların öyküleri eşliğinde evrimin kalbindeki sırrı, doğanın icat mekanizmalarını çözümlüyor. Bakterilerden beyinlere, balık akciğerlerinden semenderlerin mermi gibi fırlayan dillerine kadar yaşamın çeşitlilik karnavalını yönlendiren sıradışı araçların şaşılası kökenlerini aydınlatıyor.

–SEAN B. CARROLL, Serengeti Yasaları ve Cesur Dâhiler’in yazarı

Tüylerin hayvanlara uçmada, akciğerler ve bacakların da karada yaşamalarında yardımcı olmak için ortaya çıktığını düşünüyorsanız yalnız değilsiniz, ama tümüyle yanılıyorsunuz.
Milyarlarca yıllık süreçte tarihöncesi balıklar karada yürümek üzere evrimleşirken, sürüngenler uçan kuşlara, primatlar iki ayak üzerinde yürüyen, konuşan, kitap yazan canlılara dönüştüler. Ama hiçbir şey, başladığını zannettiğimiz zamanda başlamadı. Yenilikler zamanın derinliklerine uzanan öncüllere sahiptir. Paleontologlar büyük değişimlerin tam olarak nasıl gerçekleştiğini gösterecek fosillerin peşinde bir yüzyıldan uzun süredir gezegeni dolaşıp duruyorlar.
Ve bugün, inanılmaz bir noktadayız: Tarihöncesi fosillerin yeni DNA teknolojileriyle bir araya gelmesi; dolambaçlı yollar, deneme yanılmalar, tesadüfler ve icatlarla dolu milyarlarca yıllık evrimsel tarihi kavrayışımızda büyük sıçrama yarattı. Yaptığı keşiflerle bu sıçramanın bizzat önemli bir parçası olmuş, dahası bizlere İçimizdeki Balık gibi 21. yüzyılın en güzel bilim kitaplarından birini hediye etmiş ünlü paleontolog Neil Shubin, Canlılığın Tarihi’nde yaşamın muazzam çeşitliliğinin ardındaki sırları anlamak için bizleri yüzyıllara yayılmış bir keşif yolculuğuna çıkarıyor. Yürüyen balıklardan mutant sineklere, denizanalarından insana uzanan, isteseniz uyduramayacağınız hayret verici detaylarla dolu bu yolculuk bizi o büyük sorulardan birinin cevabına bir adım daha yaklaştırıyor: Yaşam kaçınılmaz mıydı, yoksa tüm bunlar sadece bir kazanın sonucu mu?

2021 Goodreads Okur Ödülleri Adayı

Devamını Göster
₺98.00
Canlılığın Tarihi: Fosillerden DNA'ya Dört Milyar Yıllık Karnaval

3) Eğik Atış Yapan Bir Top - Kinematik

Her iki eksende (x ve y ekseni olmak üzere yatay ve düşey doğrultuda) bir ilk hızla atılan cismin hareketi “eğik atış” olarak tanımlanır. Hava sürtünmesinin ihmal edildiği bir ortamda yatayla yaptığı açı (θ=57°\theta = 57 \degree ) ve ilk hızı (V0=27m/saniyeV_0 = 27 m/saniye ) olan bir top maksimum yüksekliğe kaç saniyede çıkar ve bu yükseklik kaç metredir?

Sorunun analitik çözümü için kullanacağımız denklemler yukarıdaki denklemlerdir ve top t=2.345t = 2.345 saniye sonra maksimum yükseklik olan hmax=26.16h_{max} = 26.16 metreye çıkacaktır.

Geometrik olarak incelediğimizde ise şu grafikle karşılaşırız:

Eğik Atış Hareketi Yapan Topun Düşey Eksendeki Konum-Zaman Grafiği
Eğik Atış Hareketi Yapan Topun Düşey Eksendeki Konum-Zaman Grafiği
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Grafikten de görüleceği üzere topun hareketini tanımlayan denklemler ve yörünge paraboliktir. Yani içerisinde herhangi bir değişkenin 2. kuvvetini (V02V_0^2 ) içermektedir.

Peki işin içine topun hareketine karşı bir direnç oluşturan hava direnci dahil olursa ne olur? Hava direnci aşağıdaki denklemle ifade edilir şu grafiklerle karşılaşırız:

F⃗=−cV2V⃗∣V⃗∣\vec{F} = -cV^2 \dfrac{\vec{V}}{|\vec{V}|} (Denklem 5)

Hava Sürtünmeli Ortamda Eğik Atış Hareketi
Hava Sürtünmeli Ortamda Eğik Atış Hareketi
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Hava direncinin etkisi ilk grafikte azmış gibi görünse de ikinci grafiğimiz olan aşağıdaki grafik etkiyi daha net görmemize imkan sağlayacaktır:

Hava Sürtünmeli Ortamda Eğik Atış Yapan Topun Hız-Zaman Grafiği
Hava Sürtünmeli Ortamda Eğik Atış Yapan Topun Hız-Zaman Grafiği
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Fark edileceği üzere t=15t=15. saniyeden sonra topun hızı üstel şekilde azalmakta ve bir süre sonra da sabit değere ulaşıp, hareketine öyle devam etmektedir. Biz bu olaya fizikte “limit hız” diyoruz. Herhangi bir akışkan içinde hareket eden cisimler, akışkan ortamın direnci (burada hava direnci) nedeniyle üzerlerine etki eden net kuvvet 0 olduğunda Newton’un Eylemsizlik Yasası gereği sabit hızlı hareket yaparlar.

4) Gezegenin Güneş Etrafındaki Yörüngesi - Astronomi

Güneş etrafındaki yörüngede dolanan herhangi bir gezegen düşünelim. Gezegenin yörüngesini Newton Hareket Yasaları ve Kepler Yasaları ile eliptik formda bulabilmek mümkün. Bu denklemler şöyle yazılabilir:

F=GMmr2F = G \dfrac{M m}{r^2} (Denklem 6)

Tüm Reklamları Kapat

Fx=md2xdt2F_x = m \dfrac{d^2 x}{{dt^2}} (Denklem 7)

Fy=md2ydt2F_y = m \dfrac{d^2 y}{{dt^2}} (Denklem 8)

Bu denklemleri geometrik olarak incelersek de şu grafiği elde ederiz:

Güneş Etrafında Hareket Eden Gezegenin Yörüngesi
Güneş Etrafında Hareket Eden Gezegenin Yörüngesi
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Denklemlere de baktığımızda eliptik formda olduğunu görebilmek mümkün fakat bunu en net görsel olarak yukarıdaki grafikte görebilmekteyiz. Yaptığımız tek şey gezegenin hareket denklemlerini başlangıç koşullarıyla birlikte bir paket programda çizdirmek.

Tüm Reklamları Kapat

5) Merkür’ün Güneş Etrafındaki Yörüngesi ve Dünya’daki Bir Gözlemcinin Gördüğü - Astronomi

Güneş Sistemi’mizdeki en garip yörüngeye sahip olan Merkür’ün hareket denklemleri şu şekilde tanımlanmaktadır:

x(t)=93cos⁡t+36cos⁡4.15tx(t) = 93 \cos t + 36 \cos 4.15 t (Denklem 9)

y(t)=93sin⁡t+36sin⁡4.15ty(t) = 93 \sin t + 36 \sin 4.15 t (Denklem 10)

İşin içerisindeki “cos” ve “sin” terimleri göze oldukça korkunç ve bir o kadar da karmaşık geliyor. Ama bu denklemleri görselliğe dökersek aslında herşey daha da sadeleşip anlam kazanacaktır. Hatta "cosinüs" ve "sinüs" fonksiyonları da!

Tüm Reklamları Kapat

Merkür'ün Güneş Etrafındaki Yörüngesinin Dünya'daki Gözlemci Tarafından Gözlenen Yörüngesi
Merkür'ün Güneş Etrafındaki Yörüngesinin Dünya'daki Gözlemci Tarafından Gözlenen Yörüngesi
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

İşte Merkür’ün yörüngesinin neden garip olarak adlandırıldığı ortada. Dünya’daki bir gözlemci için tam olarak görülen yörünge bu.

Yukarıdaki örnekler kısmen de olsa gündelik hayatımızda deneyimleyebildiğimiz / görebildiğimiz fiziksel olgulara dairdi. Şimdi ise işi bir tık daha soyutlaştırıp fizikte önemli kavramlardan olan “elektrik alan” ve “manyetik alan” kavramlarına bakacağız.

6) Noktasal Yük ve Elektrik Alan / Elektromanyetizma

Elektrik alan uzaydaki herhangi bir “kaynak yük”ünün etkisiyle ortaya çıkan “Coulomb Kuvveti” nedeniyle, bu kuvvetin yayılabildiği bir kuvvet alanı olarak tanımlanabilir. Oluşan bu alandan dolayı “alan çizgileri” de mevcuttur. Bu elektrik alan çizgileri (detayına fiziksel nedenlerden dolayı girmeyeğimiz nedenlerden dolayı) yoğunluk ve şiddet bakımından ıraksar yani uzaklaşırlar.

Elektrik Alan Çizgileri
Elektrik Alan Çizgileri
D.Griffiths / Introduction to Electrodynamics, 1999

Bu ıraklaşma ise matematiksel olarak “diverjans” kavramı ile tanımlanır. Maxwell Denklemleri’nden biri olan Elektrik Alan ifadesi şu şekildedir:

Tüm Reklamları Kapat

∮E⋅da=∫(∇⋅E)dτ\oint E \cdot da = \int (\nabla \cdot E) d\tau (Denklem 11)

O halde elektrik alanı ve bu ıraklaşmayı görsel olarak görmek istersek şu grafiği elde ederiz:

Noktasal O Yükünden Iraksayan Elektrik Alan Çizgileri
Noktasal O Yükünden Iraksayan Elektrik Alan Çizgileri
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Elektrik alan çizgileri merkezdeki O yükünden giderek şiddet bakımından azalarak uzaklaşmaktadır. Tüm o göze karmaşık gelen denklemin anlatmak istediği zarif ve sade hikaye budur aslında.

7) Manyetik Alan Çizgileri - Elektromanyetizma

Elektrik alan ile manyetik alan aslında bir bütünün iki parçasıdır. En basitinden akım taşıyan bir telin çevresinde oluşan manyetik alanı pusuladaki sapma ile gözlemlemek mümkündür. Dolayısıyla elektriksel yükler etkisi ile manyetik alan oluşmaktadır. Fizikte "Biot-Savart Yasası" ve "Amper Yasası" manyetizmayı açıklayan en genel yasalardır. Aşağıdaki gibi ifade edilirler.

Tüm Reklamları Kapat

B(r)=μ04π∫I⃗xı⃗ı2dlB(r) = \dfrac{\mu_0}{4 \pi} \int \dfrac{\vec{I} x \vec{\imath}}{\imath^2} dl (Denklem 12)

∇⃗xB⃗=μ0J\vec{\nabla} x \vec{B} = \mu_0 J

Akım Taşıyan Telde Oluşan Manyetik Alan ve Sağ El Kuralı
Akım Taşıyan Telde Oluşan Manyetik Alan ve Sağ El Kuralı
D.Griffiths / Introduction to Electrodynamics, 1999

İlk şekle bakıldığında akım taşıyan telin etrafında kapalı bir manyetik alan oluştuğunu ve sağdaki şekille de yönünün vektörel olarak (Bkz: Sağ El Kuralı, Manyetizma) nasıl bulunduğu açıklanmıştır.

Değinmemiz gereken konu ise oluşan manyetik alanın sanki “dönüyormuş” gibi olduğudur. Aslında öyledir ve bunu denklemden de görüleceği üzere matematiksel olarak “rotasyonel” operatörü olarak ifade ediyoruz.

Tüm Reklamları Kapat

O halde her zamanki gibi bu denklemin de geometrik anlamına bakalım:

Manyetik Alan Çizgileri ve Rotasyonel
Manyetik Alan Çizgileri ve Rotasyonel
Matlab/Anıl Kocabaldır (Matlab with Applications to Engineering, Physics and Finance - B.Lopez, 2009)

Grafik bize oluşan manyetik alanın “döndüğünü” ve merkezden uzaklaştıkça şiddetinin azaldığını göstermektedir.

Sonuç

Sonuç olarak toparlarsak, aslında fizikte kullanılan denklemler doğanın birer resmidir, tabii doğru gözle bakabilmeyi başarabilirsek... Bu oldukça önemli bir şey çünkü yaşadığımız evrenin dili matematiktir, bu dilden korkmayıp yeterince iyi öğrenebilirsek (öğrenmenin asla bir sınırı yok ama), gözümüzü korkutan bu olgulardan keyif alabilmek mümkün hale gelecektir.

Matematik esas olarak sabır olayıdır. Belleyerek değil keşfederek anlamak gerekir. - Cahit Arf
Alıntı Yap
Okundu Olarak İşaretle
41
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Bilim Budur! 13
  • Tebrikler! 6
  • İnanılmaz 4
  • Muhteşem! 3
  • Mmm... Çok sapyoseksüel! 2
  • Umut Verici! 1
  • Merak Uyandırıcı! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • D. B. Lopez. (2009). Matlab With Applications To Engineering, Physics And Finance. ISBN: 978-1-4398-0699-9. Yayınevi: CRC Press.
  • D.J. Griffiths. (1999). Introduction To Electrodynamics. ISBN: 9780138053260. Yayınevi: Prentice Hall.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 31/03/2023 18:36:22 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9031

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Jeoloji
Metal
Kırmızı
Botanik
Dünya Dışı Yaşam
Çalışma
Sars
Ay Görevleri
Endokrin Sistemi
Salgın
Cinsiyet
Müzik
Astronomi
Sağlık Bilimleri
Cinsel Yönelim
Antikor
Alkol
Kamuflaj
Einstein
Fizik
Samanyolu Galaksisi
Elektromanyetizma
Hızlı
Hayatta Kalma
Kozmik Mikrodalga Arkaplan Işıması (Cmb)
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Size Özel
Güncel
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
A. Kocabaldır, et al. Evrenin Denklemlerini "Görebilmek": Fizikteki Meşhur Denklemler Neyi Anlatıyor, Gündelik Hayatta Ne Anlama Geliyor?. (27 Temmuz 2020). Alındığı Tarih: 31 Mart 2023. Alındığı Yer: https://evrimagaci.org/s/9031
Kocabaldır, A., Bakırcı, Ç. M. (2020, July 27). Evrenin Denklemlerini "Görebilmek": Fizikteki Meşhur Denklemler Neyi Anlatıyor, Gündelik Hayatta Ne Anlama Geliyor?. Evrim Ağacı. Retrieved March 31, 2023. from https://evrimagaci.org/s/9031
A. Kocabaldır, et al. “Evrenin Denklemlerini "Görebilmek": Fizikteki Meşhur Denklemler Neyi Anlatıyor, Gündelik Hayatta Ne Anlama Geliyor?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 27 Jul. 2020, https://evrimagaci.org/s/9031.
Kocabaldır, Anıl. Bakırcı, Çağrı Mert. “Evrenin Denklemlerini "Görebilmek": Fizikteki Meşhur Denklemler Neyi Anlatıyor, Gündelik Hayatta Ne Anlama Geliyor?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, July 27, 2020. https://evrimagaci.org/s/9031.

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Paylaş
Reklamsız Deneyim

Evrim Ağacı'ndaki reklamları, bütçenize uygun bir şekilde, kendi seçtiğiniz bir süre boyunca kapatabilirsiniz. Tek yapmanız gereken, kaç ay boyunca kapatmak istediğinizi aşağıdaki kutuya girip tek seferlik ödemenizi tamamlamak:

10₺/ay
x
ay
= 30
3 Aylık Reklamsız Deneyimi Başlat
Evrim Ağacı'nda ücretsiz üyelik oluşturan ve sitemizi üye girişi yaparak kullanan kullanıcılarımızdaki reklamların %50 daha az olduğunu, Kreosus/Patreon/YouTube destekçilerimizinse sitemizi tamamen reklamsız kullanabildiğini biliyor muydunuz? Size uygun seçeneği aşağıdan seçebilirsiniz:
Evrim Ağacı Destekçilerine Katıl
Zaten Kreosus/Patreon/Youtube Destekçisiyim
Reklamsız Deneyim
Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Moderatöre Bildir

Raporlama sisteminin amacı, platformu uygunsuz biçimde kullananların önüne geçmektir. Lütfen bir içeriği, sadece düşük kaliteli olduğunu veya soruya cevap olmadığını düşündüğünüz raporlamayınız; bu raporlar kabul edilmeyecektir. Bunun yerine daha kaliteli cevapları kendiniz girmeye çalışın veya size sunulan (oylama gibi) diğer araçlar ile daha kaliteli cevaplara teşvik edin. Kalitesiz bulduğunuz içerikleri eleyebileceğiniz, kalitelileri daha ön plana çıkarabileceğiniz yeni araçlar geliştirmekteyiz.

Kural İhlali Seç
Öncül Ekle
Sonuç Ekle
Mantık Hatası Seç
Kural İhlali Seç
Soru Sor
Aşağıdaki "Soru" kutusunu sadece soru sormak için kullanınız. Bu kutuya soru formatında olmayan hiçbir cümle girmeyiniz. Sorunuzla ilgili ek bilgiler vermek isterseniz, "Açıklama" kısmına girebilirsiniz. Soru kısmının soru cümlesi haricindeki kullanımları sorunuzun silinmesine ve UP kaybetmenize neden olabilir.
Görsel Ekle
Kurallar
Platform Kuralları
Bu platform, aklınıza takılan soruları sorabilmeniz ve diğerlerinin sorularını yanıtlayabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Gerçekten soru sorun, imâdan ve yüklü sorulardan kaçının.
Sorularınızın amacı nesnel olarak gerçeği öğrenmek veya fikir almak olmalıdır. Şahsi kanaatinizle ilgili mesaj vermek için kullanmayın; yüklü soru sormayın.
2
Bilim kimliğinizi kullanın.
Evrim Ağacı bir bilim platformudur. Dolayısıyla sorular ve cevaplar, bilimsel perspektifi yansıtmalıdır. Geçerli bilimsel kaynaklarla doğrulanamayan bilgiler veya reklamlar silinebilir.
3
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Sahtebilimi desteklemek yasaktır.
Sahtebilim kategorisi altında konuyla ilgili sorular sorabilirsiniz; ancak bilimsel geçerliliği bulunmayan sahtebilim konularını destekleyen sorular veya cevaplar paylaşmayın.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Soru Ara
Aradığınız soruyu bulamadıysanız buraya tıklayarak sorabilirsiniz.
Alıntı Ekle
Eser Ekle
Kurallar
Platform Kuralları
Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Tavsiye Et
Aşağıdaki kutuya, [ESER ADI] isimli [KİTABI/FİLMİ] neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Kurallar
Platform Kuralları
Bu platform; okuduğunuz kitaplara, izlediğiniz filmlere/belgesellere veya takip ettiğiniz YouTube kanallarına yönelik tavsiylerinizi ve/veya yapıcı eleştirel fikirlerinizi girebilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Önceliğimiz pozitif tavsiyelerdir.
Bu platformu, beğenmediğiniz eserleri yermek için değil, beğendiğiniz eserleri başkalarına tanıtmak için kullanmaya öncelik veriniz. Sadece negatif girdileri olduğu tespit edilenler platformdan geçici veya kalıcı olarak engellenebilirler.
2
Tavsiyenizin içeriği sadece negatif olamaz.
Tavsiye yazdığınız eserleri olabildiğince objektif bir gözlükle anlatmanız beklenmektedir. Dolayısıyla bir eseri beğenmediyseniz bile, tavsiyenizde eserin pozitif taraflarından da bahsetmeniz gerekmektedir.
3
Negatif eleştiriler yapıcı olmak zorundadır.
Eğer tavsiyenizin ana tonu negatif olacaksa, tüm eleştirileriniz yapıcı nitelikte olmak zorundadır. Yapıcı bir tarafı olmayan veya tamamen yıkıcı içerikte olan eleştiriler silinebilir ve yazarlar geçici veya kalıcı olarak engellenebilirler.
4
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Eser Ara
Aradığınız eseri bulamadıysanız buraya tıklayarak ekleyebilirsiniz.
Tür Ekle
Üst Takson Seç
Kurallar
Platform Kuralları
Bu platform, yaşamış ve yaşayan bütün türleri filogenetik olarak sınıflandırdığımız ve tanıttığımız Yaşam Ağacı projemize, henüz girilmemiş taksonları girebilmeniz için geliştirdiğimiz bir platformdur. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Takson adlarını doğru yazdığınızdan emin olun.
Taksonların sadece ilk harfleri büyük yazılmalıdır. Latince tür adlarında, cins adının ilk harfi büyük, diğer bütün harfler küçük olmalıdır (Örn: Canis lupus domesticus). Türkçe adlarda da sadece ilk harf büyük yazılmalıdır (Örn: Evcil köpek).
2
Taksonlar arası bağlantıları doğru girin.
Girdiğiniz taksonun üst taksonunu girmeniz zorunludur. Eğer üst takson yoksa, mümkün olduğunca öncelikle üst taksonları girmeye çalışın; sonrasında daha alt taksonları girin.
3
Birden fazla kaynaktan kontrol edin.
Mümkün olduğunca ezbere iş yapmayın, girdiğiniz taksonların isimlerinin birden fazla kaynaktan kontrol edin. Alternatif (sinonim) takson adlarını girmeyi unutmayın.
4
Tekrara düşmeyin.
Aynı taksonu birden fazla defa girmediğinizden emin olun. Otomatik tamamlama sistemimiz size bu konuda yardımcı olacaktır.
5
Mümkünse, takson tanıtım yazısı (Taksonomi yazısı) girin.
Bu araç sadece taksonları sisteme girmek için geliştirilmiştir. Dolayısıyla taksonlara ait minimal bilgiye yer vermektedir. Evrim Ağacı olarak amacımız, taksonlara dair detaylı girdilerle bu projeyi zenginleştirmektir. Girdiğiniz türü daha kapsamlı tanıtmak için Taksonomi yazısı girin.
Gönder
Tür Gözlemi Ekle
Tür Seç
Fotoğraf Ekle
Kurallar
Platform Kuralları
Bu platform, bizzat gözlediğiniz türlerin fotoğraflarını paylaşabilmeniz için geliştirilmiştir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Net ve anlaşılır görseller yükleyin.
Her zaman bir türü kusursuz netlikte fotoğraflamanız mümkün olmayabilir; ancak buraya yüklediğiniz fotoğraflardaki türlerin özellikle de vücut deseni gibi özelliklerinin rahatlıkla ayırt edilecek kadar net olması gerekmektedir.
2
Özgün olun, telif ihlali yapmayın.
Yüklediğiniz fotoğrafların telif hakları size ait olmalıdır. Başkası tarafından çekilen fotoğrafları yükleyemezsiniz. Wikimedia gibi açık kaynak organizasyonlarda yayınlanan telifsiz fotoğrafları yükleyebilirsiniz.
3
Paylaştığınız fotoğrafların telif hakkını isteyemezsiniz.
Yüklediğiniz fotoğraflar tamamen halka açık bir şekilde, sınırsız ve süresiz kullanım izniyle paylaşılacaktır. Bu fotoğraflar nedeniyle Evrim Ağacı’ndan telif veya ödeme talep etmeniz mümkün olmayacaktır. Kendi fotoğraflarınızı başka yerlerde istediğiniz gibi kullanabilirsiniz.
4
Etik kurallarına uyun.
Yüklediğiniz fotoğrafların uygunsuz olmadığından ve başkalarının haklarını ihlâl etmediğinden emin olun.
5
Takson teşhisini doğru yapın.
Yaptığınız gözlemler, spesifik taksonlarla ilişkilendirilmektedir. Takson teşhisini doğru yapmanız beklenmektedir. Taksonu bilemediğinizde, olabildiğince genel bir taksonla ilişkilendirin; örneğin türü bilmiyorsanız cins ile, cinsi bilmiyorsanız aile ile, aileyi bilmiyorsanız takım ile, vs.
Gönder
Tür Ara
Aradığınız türü bulamadıysanız buraya tıklayarak ekleyebilirsiniz.