Evrim Ağacı
Reklamı Kapat

Elektronlarda Spin (Dönme) Kavramı Nedir? Nasıl Keşfedilmiştir?

Elektronlarda Spin (Dönme) Kavramı Nedir? Nasıl Keşfedilmiştir? ThoughtCo
Tavsiye Makale
Reklamı Kapat

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

1845 yılında Michael Faraday, manyetik alan içine gömülmüş malzemelerin bazılarının içinden ışık geçerken, ışığın manyetik alandan etkilendiğini fark etti. Daha spesifik olarak tanımlamak gerekirse Faraday'ın fark ettiği şey, ışığın elektromanyetik alan içinde "titreştiği düzlemi" keşfetmek oldu. Yani ışığın bu alan içinde "döndüğünü" fark etti. Bu, ışık ile elektromanyetizma arasında bir ilişki olduğuna yönelik ilk gözlemdi.

1862 yılına geldiğimizde Faraday, manyetik alanın ışık üzerinde herhangi bir doğrudan etkisi olup olmadığını göstermeye çalıştı. Ne var ki tüm denemelerine rağmen, kendi sözleriyle "tek bir adet dahi gösterilebilir etkiye" rastlamadı. Ancak çok geçmeden, yanıldığı ortaya çıkacaktı. 1870 yılında James Clark Maxwell, ışık saçan kaynaklar ve parçacıklar ile ilgili olarak şunları yazıyordu:

Doğa içerisindeki hiçbir kuvvet, ışık parçacıklarının kütlesini veya osilasyon periyodunu değiştiremez.

Maxwell de yanılıyordu. 1896 yılında Zeeman, Faraday'ın zamanındakinden daha iyi teknoloji kullanarak Faraday deneylerini yeniden yapma kararı aldı. Sofra tuzunu (ki bizim için önemli olan, sofra tuzu içindeki sodyum atomlarıdır) ateşe attı ve bu karışımı bir elektromıknatıs üzerine yerleştirdi. Manyetik alanı aktive ettiğinde, sodyum atomlarından gelen spesifik ışık spektrumu frekanslarının sayısının arttığını gördü. Böylece, manyetik alanın ışık spektrumunu etkileyebileceğini ilk defa ispatlamış oldu.

Bugün bunun tam olarak nasıl olduğunu biliyoruz; ancak o dönemde elektronlar henüz keşfedilmemişti ve dolayısıyla bu olayın nasıl yaşandığının izahı 30 sene beklemek zorunda kaldı. 1897 yılında, temel parçacıklardan biri olan elektronlar keşfedildi. Protonlar 1919 yılında, nötronlar ise 1932 yılında keşfedildi.

1897 yılında Lorentz, Elektron Teorisi isimli teorisini ileri sürdü. Aynı yıl, kadmiyum atomlarıyla çalışan Zeeman, mavi renk spektrumuna ait çizgilerle, ışığın manyetik alandan etkilenmesine yönelik daha da iyi sonuçlar elde etmeyi başardı ve bulguları, Elektron Teorisi'ni güçlendirdi. 1902 yılında ikili, Nobel Fizik Ödülü'ne layık görüldü. Ancak şuna dikkat çekmekte fayda var: Bu ödüle rağmen daha o dönemde halen, bugün Zeeman Etkisi denen bu spektrum çizgisi çoklanması olayının iyi bir açıklaması bulunmuyordu. Sadece olgu keşfedilmişti; henüz sağlam bir teori yoktu.

Zeeman Etkisini gösteren bir grafik. Bu, cıvanın 546.1 nanometre dalga boyundaki spektral çizgileri. A ile işaretlenende manyetik alan bulunmuyor. B ile işaretlenen kısımda manyetik alan var ve spektral çizgiler transvers Zeeman etkisi gösteriyor. C ile işaretlenen alanda da manyetik alan var ve boyuna Zeeman etkisi gözüküyor. Zeeman etkisi, manyetik alanın etkisi altında spektral çizgilerin birden fazla alt bileşene ayrılmasına verilen bir isim.
Zeeman Etkisini gösteren bir grafik. Bu, cıvanın 546.1 nanometre dalga boyundaki spektral çizgileri. A ile işaretlenende manyetik alan bulunmuyor. B ile işaretlenen kısımda manyetik alan var ve spektral çizgiler transvers Zeeman etkisi gösteriyor. C ile işaretlenen alanda da manyetik alan var ve boyuna Zeeman etkisi gözüküyor. Zeeman etkisi, manyetik alanın etkisi altında spektral çizgilerin birden fazla alt bileşene ayrılmasına verilen bir isim.
Wikipedia

Spektrum çizgilerinin çoklanması şu nedenle önemlidir: Böyle bir çoklanma için etkileşim gerekmektedir. Elektromanyetik Teori çerçevesinde, hareket eden bir yükün manyetik alan içinden geçerken bu alan ile nasıl etkileşeceğini biliyoruz. Lorentz Teorisi ise, elektromanyetik alan içinden geçen ışığın, alan ile etkileşiminden ötürü oluşan kaç çizgi görmemiz gerektiğini söylemektedir. Bu çizgilerin oluşumu, ışık ile elektromanyetik alan etkileşimini ispatlamaktadır.

Ama bir sorun da vardı: Gerçekte gözlenen çizgi sayısı, teorinin "olması gerektiğini" söylediğinden hep 2 kat daha fazla çıkıyordu. İşte açıklaması olmayan ana konu buydu: Elektronda yük haricinde ek bir özellik olmalıdır ve bu özellik her neyse, 2 kat çizgiye neden olan şey de o olmalıdır.

Bu öylesine zorlu bir problemdi ki, 1925 yılında Pauli, manyetik alan içindeki atomların spektrum çizgilerinin çoklanmasıyla ilgili olarak "klasik yöntemlerle tanımlanamaz" yazdı. Bu noktadan sonra, elektronlara farklı bir gözle bakılmaya başlandı. Cevap, kuantum mekaniğinden gelecekti.

O dönemde bir lisansüstü öğrencisi olan Kronig, bu özelliğin ana nedeninin elektronların kendi etrafında dönmesi yani spin adı verilen bir özellik olması gerektiğini ileri sürdü. Dahası, bu dönmenin, indirgenmiş Planck sabiti birimiyle tam sayıların yarısı kadar olması gerektiğini tespit etti. Ne yazık ki deneysel veriler, yukarıda anlattığımız gibi, teorinin öngördüğünden hep 2 kat kadar fazla çıkıyordu. Kronig bunun büyük bir hata olduğunu düşündü ve bu nedenle araştırma sonuçlarını yayınlamak istemedi.

Evrim Ağacı'ndan Mesaj

O dönemde Kronig gibi oldukça genç olan Uhlenbeck ve Goudsmit, Kronig ile aynı sonuca varan çalışmalar yaptılar. Fakat Kronig'in aksine, çok büyük bir hata yaptıklarının farkına varamadan, "elektronların kendi etrafında döndüklerini" ileri sürdükleri makaleleri çoktan yayınlanmıştı bile.

Hata şuydu: Elektronlar, gerçekte kendi etrafında dönemezler; çünkü dönebilecekleri bir eksenleri yoktur! Elektronlar, nokta parçacıklardır. Eğer dönecek olurlarsa, yörüngesel hızları ışık hızının 100 katı kadar olurdu. Dolayısıyla söz konusu rotasyon, mikroskobik seviyede olan bir dönme olamazdı.

Buna rağmen elektronun kendi etrafında döndüğünü düşünmek, pratik açıdan oldukça faydalıydı. Pauli, dışlama (dışarlama) ilkesi adı verilen ilkeyi 1926 yılında ileri sürdü ve elementlerin periyodik tablosunu fiziksel bir perspektiften açıklamayı başardı. Bu prensip, yarı tam sayı parçacıklardan ikisinin hiçbir zaman birbiriyle aynı olamayacağını söylüyordu. Bu prensip aslen kuantum mekaniği açısından düşünülmeliydi; ancak nedensellik ilkesi çerçevesinde kuantum alan teorisinden de çıkarılabiliyordu.

1926 yılında Thomas; Kronig, Uhlenbeck ve Goudsmit tarafından yapılan hesaplardaki 2 katlık hatanın özel görelilikten kaynaklandığını fark etti. 1928 yılında Dirac, elektronların neden döndüğünü düşünmemiz gerektiği üzerine kafa yormaya başladı ve elektronların görelilik teorisini sil baştan inşa etmeye karar verdi. Bunu yaparken, Schrödinger-Pauli Denklemi'ni zarif bir şekilde genelleştirmeyi başardı. Bu sayede, spin kavramını da kendiliğinden denklemlerden çıkarmayı başardı.

Sadece bu da değil: Sadece elektronlara yönelik bir denklem geliştirmedi; aynı zamanda, elektronlarla aynı kütleye sahip pozitif yüklü parçacıklar için de bir denklem geliştirdi. 1931 yılında pozitron adı verilen bu parçacıklar ilk defa keşfedildi.

Sonradan yapılan çalışmalar, Dirac Denklemi'nin yüksek enerji düzeylerinde geçersiz olduğunu ortaya koydu. Tüm enerji seviyelerini kapsayan bir elektron ve foton teorisinin inşa edilmesi için 25 yıl daha gerekti. Bu teoriye birçokları katkı sağladı; ancak Kuantum Elektrodinamik Teorisi olarak bildiğimiz teorinin babaları olan Feynman, Schwinger ve Tomonaga, bu önemli teorinin inşası sayesinde Nobel Ödülü'ne layık görüldüler.

Böylece teorik fizik ile deneysel fizik arasındaki dans, birçok Nobel Ödülü'nden geçerek bize elektronların spin davranışının izahını verdi.

Spinin ne olduğunu iyi anlamak gerekiyor: Temel parçacık spini, parçacığı betimleyen özelliklerden birisidir; tıpkı kütle veya yük gibi. Bir hareket karşılığı yoktur. Ama ilginçtir ki parçacık yüklü ise, manyetik alan ile etkileşirken spini bu olayda rol oynamaktadır ve sanki yüklü bir parçacık "dönüyormuş gibi" davranmaktadır. Ama bu gerçek bir dönme olmaz, çünkü dönme olarak bildiğimiz davranışı sergiliyor olsa, bir elektron normalden biraz daha yavaş veya biraz daha hızlı da dönebilmelidir; ancak gerçekte böyle bir durum yoktur. Sadece 2 "dönme" hali vardır. Bu açıdan spin, aslında bir parçacığın en önemli özelliğidir diyebiliriz; çünkü diğer parçacıklar ile bir arada nasıl duracak onu belirlemektedir.

Spin eğer "yarım" ise parçacığa fermiyon, "tam" ise bozon adını vermekteyiz. Fermiyonlar bir arada bulunamaz, bozonlar ise bir arada bulunmak isterler. Bu da, maddenin doğasını anlamak konusunda bize çok önemli bilgiler vermektedir. Bu konuda daha fazla bilgiyi buradaki yazımızdan alabilirsiniz.

Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 5
  • Tebrikler! 5
  • Merak Uyandırıcı! 5
  • Bilim Budur! 4
  • Mmm... Çok sapyoseksüel! 3
  • Grrr... *@$# 3
  • İnanılmaz 1
  • Umut Verici! 1
  • Güldürdü 0
  • Üzücü! 0
  • İğrenç! 0
  • Korkutucu! 0

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/09/2020 19:46:31 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8193

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Güncel
Karma
Agora
Instagram
Besin
Doğum
Cinsiyet Araştırmaları
Enfeksiyon
Lipit
Zooloji
Zehirli Mantar
Kimya
Elektrik
Mistisizm
Kafatası
Matematik
Canlılık Ve Cansızlık Arasındaki Farklar
Beslenme Bilimi
Film
İspat
İnsanlar
Homo Sapiens
Uzay Görevleri
Bilim
Maske
Dağılım
Radyasyon
Tardigrad
Galaksi
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Reklamı Kapat
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“İklim değişiminin politik boyutları olduğu söyleniyor. Bu tuhaf, çünkü insanların E=mc2 veya bilimin diğer temel gerçekleri konusunda taraflar tuttuğunu hiç görmüyoruz?”
Neil deGrasse Tyson
Geri Bildirim Gönder