Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!

Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!
7 dakika
3,571
  • Yapay Zeka
  • Biyografi Araştırmaları
Evrim Ağacı Akademi: Yapay Zeka Uzmanları ve Görüşleri Yazı Dizisi

Bu yazı, Yapay Zeka Uzmanları ve Görüşleri yazı dizisinin 1. yazısıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al

Yapay zeka sistemleri; mantıklama, gerçek dünya bilgisi ve sosyal etkileşim gerektiren görevlerin birçoğunda insanların yerini almanın yanına bile yanaşabilecek düzeyde değiller. Yapay zeka ve makina öğrenmesi alanında en önde gelen bilim insanlarından olan ve aynı zamanda Berkeley'deki Kaliforniya Üniversitesi Elektrik Mühendisliği ve Bilgisayar Bilimleri ile İstatistik Bölümü'nde profesör oolan Michael I. Jordan'ın söylediğine göre, yapay zekanın düşük seviyeli örüntü tanımlama becerileri konusunda insan düzeyinde bir beceri sergiledikleri doğrudur; ancak bilişsel seviyede yaptıkları tek şey, yalnızca insan zekasını taklit etmektir; derinlemesine ve yaratıcı bir şekilde etraflarıyla etkileşime geçemezler.

Jordan, yapay zeka alanında yakın geçmişte elde edilen büyük kazanımların altında yatan sebep olan makina öğrenmesinin tek amacının (hatta en çok arzulanan amacının) insan düşüncesini taklit etmek olmadığını da söylüyor. Bunun yerine makina öğrenmesi, insan zekasını pekiştirecek ve tamamlayacak bir araç görevi görmektedir. Bunu da, devasa büyüklükteki veri setlerini didik didik tarayarak başarmaktadır; tıpkı arama motorlarının Web sitelerini organize ederek insan bilgisini tamamlaması ve pekiştirmesi gibi. Ayrıca makina öğrenmesi; birden fazla veri setinde bulunan bilgiyi bir araya getirerek, bunlar içindeki örüntüleri bularak ve yeni aksiyon yönleri belirleyerek insanlara sağlık hizmetleri, ticaret ve taşımacılık alanlarında da yeni hizmet alanları yaratabilir. Jordan, şöyle diyor:

Tüm Reklamları Kapat

İnsanlar teknoloji trendlerinden söz ederken yapay zekanın anlamı konusunda kafa karışıklığı olduğunu gösteriyorlar. İnsanların söylediklerini dinleyecek olursanız, zeki bir şekilde düşünen bilgisayarlarımız olduğunu ve bunlar sayesinde ilerlediğimizi ve bunların insanlarla rekabet halinde olduğunu sanabilirsiniz. Böyle bir teknolojimiz yok; ama insanlar sanki varmış gibi konuşuyorlar.

Micheal I. Jordan Kimdir?

Jordan, ikisi arasındaki farkı en iyi bilen kişilerden biri. IEEE üyelerinden olan Jordan, makina öğrenmesi konusunda Dünya'nın lider otoritelerinden biri konumunda. 2016 yılında Jordan, Science dergisinde yayınlanan bir programatik analizde yeryüzündeki en etkili bilgisayar bilimci seçilmişti.[1] Jordan, önceden belirlenmiş etiketlere ihtiyaç duymadan veri içerisinde yapılar bulabilen denetimsiz makina öğrenmesi sahasını, birbiriyle ilişkisiz algoritmalar bütününden çıkararak entelektüel olarak tutarlı bir araştırma sahasına dönüştürmede rol aldı.[2] Denetimsiz öğrenme, yapay zekanın eğitileceği veriyi etiketlememizi sağlayacak, yerleşik bir teorinin bulunmadığı alanlarda önemli bilimsel uygulamalara sahiptir.

Michael I. Jordan
Michael I. Jordan
Peg Skorpinski

Jordan'ın sahaya yaptığı katkılar, ona birçok ödül getirdi. Örneğin 2021 yılında, Amerikan Matematik Cemiyeti tarafından 3 yılda bir verilen Ulf Grenander Ödülü'ne, Stokastik Teori ve Modelleme alanında layık görüldü.[3] Ondan bir önceki sene de makina öğrenmesi ve veri bilimine yaptığı katkılar dolayısıyla IEEE John von Neumann Madalyası'na layık görülmüştü.[4]

Tüm Reklamları Kapat

Geçtiğimiz yıllarda Jordan, bilim insanları, mühendisler ve diğer kişilerin makina öğrenmesini tam olarak anlayabilmesi için bir göreve başladı. Ona göre makina öğrenmesindeki gelişmeler, yeni bir mühendislik dalının doğumunu yansıtıyor. 1900'lü yıllarının başında kimya ve akışkanlar mekaniği sahalarından kimya mühendisliğinin doğumu gibi; bilgisayar bilimi, istatistik ve kontrol teorisi alanındaki onlarca yıldır süregelen çalışmalar, makina öğrenmesini doğurmaktadır. Dahası, Jordan'a göre makina öğrenmesi sahası, insanlarla teknoloji arasındaki etkileşime odaklanan ve insan-merkezli olan ilk mühendislik sahasıdır. Şöyle diyor:

Yapay zeka ve süperzeka konusundaki bilimkurgu tartışmaları eğlenceli olsa da, bunlar tamamen dikkat dağıtıcıdır. Eldeki gerçek probleme yeterince odaklanamamaktayız. Bu problem, gezegen boyutunda olan ve makina öğrenmesi temelli bir sistem inşa etmektir. Bu sistemin insanlara değer katması gerekir, eşitsizlikleri arttırması değil!

Harekete Katılmak...

1960'ların çocuğu olan Jordan, zihnimizin nasıl çalıştığına yönelik felsefi ve kültürel perspektiflere her zaman ilgi duydu. İngiliz mantıkçı Bertrand Russell'ın otobiyografisini okuduktan sonra, psikoloji ve istatistik alanında çalışma konusunda heveslendi.[5] Russell, insan düşüncesini mantıksal ve matematiksel bir süreç olarak görüyordu. Jordan, şöyle anlatıyor:

Düşünceyi mantıksal bir süreç olarak görmek ve bilgisayarların mantığın yazılım ve donanım alanında uygulamalarından doğduğunu fark etmek, zihinle beyin arasındaki paraleli görmemi sağladı. Felsefe, zihinle ilgili muğlak tartışmalardan çıkıp, daha somut, daha algoritmik, daha mantıklı bir şeye dönüşebilir gibi geldi. Beni çeken buydu.

Jordan, Baton Rouge'daki Louisiana Eyalet Üniversitesi'nde psikoloji okudu ve 1978 yılında bu sahada lisans diplomasını aldı. 1980 yılında Tempe'deki Arizona Eyalet Üniversitesi'nden matematik yüksek lisansını, 1985'te ise San Diego'daki Kaliforniya Üniversitesi'nden bilişsel bilimler sahasında doktorasını aldı.

Reklam
NordPass Ücretsiz şifre yöneticisi ile eksiksiz dijital güvenlik
  • Şifrelerinizi, kredi kartlarınızı ve kişisel bilgilerinizi güvenle depolayın.
  • İnternet sitelerine giriş bilgilerinizi tek tıkla yükleyin ve yeni şifreleri kolayca kaydedin.
  • Şifreniz çalınırsa, anlık bildirimler alın.
Fırsatı Yakalayın
30 günlük para iadesi garantisi

Jordan üniversiteye ilk başladığında, makina öğrenmesi diye bir saha yoktu. O mezun olurken, bu saha daha yeni yeni doğuyordu. Şöyle anlatıyor:

Makina öğrenmesi ilgimi çekiyordu. Daha o zamandan, öğrenmeyi anlamak için gereken daha derin prensiplerin istatistik, bilgi teorisi ve kontrol teorisinde yattığını düşünüyordum; dolayısıyla kendimi bir makina öğrenmesi araştırmacısı olarak yaftalamadım. Ama nihayetinde makina öğrenmesi fikrini kucakladım, çünkü bu sahada çalışan ilginç insanlar vardı ve sahada yaratıcı işler üretiliyordu.

2003 yılında Jordan ve öğrencileri, gizli Dirichlet paylaştırması adı verilen, dokümanlar ve diğer veri koleksiyonları içerisinde denetlenmeyen bir biçimde öğrenmeye yönelik olasılıkçı bir çerçeve geliştirdiler.[6] Bu teknik, gizli temaları tespit etmede ve dokümanları kategorilere ayrıştırmada kullanılan en popüler modelleme yöntemlerinden biri haline geldi.

Jordan'ın şu anki projeleri, ekonomi sahasından aldığı fikirleri, geçmişte geliştirdiği bilgisayar bilimleri ve istatistik yöntemleriyle harmanlıyor. Ona göre öğrenen sistemlerin amacı kararlar almak veya insanların karar alma süreçlerine yardım etmektir. Burada kritik nokta, karar alanların nadiren çevrelerinden izole (yalıtık) olduğudur. Diğer karar alıcılarla etkileşime geçerler ve bunların hepsinin farklı ihtiyaçları ve değerleri olabilir. Bu şekilde yaşanan toplam etkileşim, ekonomik prensipler tarafından yönetilebilir. Jordan, şu anki araştırmasını şöyle anlatıyor:

Öğrenen tarafların gerçek dünya deneylerinden yola çıkarak tercihlerini öğrendikleri, öğrenecekleri veriyi toplarken keşif ile istismarı bir arada kullanan ve öğrenenlere belirli türden verileri toplamak ve belirli biçimlerde koordine olmuş kararlar vermek konusunda teşvikler veren piyasa mekanizmalarının öğrenme sürecini yapılandırabileceği bir araştırma programı geliştiriyoruz. Bu tür bir araştırmanın katkısı, gerçek dünyada çalışan sistemler yaratmak olacaktır. Bu sistemler, üreticiler ve tüketicileri sosyal iyilik haline değer veren öğrenme-temelli pazarlarda bir araya getirecektir.

Yapay Zekayı Netleştirmek

2019 yılında Jordan, Harvard Data Science Review dergisinde Yapay Zeka: Gerçekleşmemiş Devrim başlıklı bir yazı yayınladı.[7] Bu makalede Jordan, yapay zeka teriminin sadece halk tarafından değil, aynı zamanda teknologlar tarafından da yanlış anlaşıldığını açıklıyor. 1950'li yıllarda bu terim ilk defa geliştirildiğinde, o zamanki insanlar insan-seviyesinde zekaya sahip hesap makinaları üretmeyi hayal ediyorlardı. Bu hayal halen geçerli; ancak son birkaç on yıldır gidişat, bu hayalden biraz farklı yönde ilerliyor. Bilgisayarlar insan zekası düzeyine ulaşmış değil; ancak yine de insan zekasını tamamlayacak ve pekiştirecek niteliğe sahip oldular.

Dahası, prensip olarak insanların da başarabildiği düşük seviyeli örüntü tespit etme kapasitesi konusunda kusursuzluğa eriştiler; ama bu başarı, büyük bir maliyetle geldi. Örneğin, makina öğrenmesi temelli sistemler devasa ölçekli finansal işlemlerde sahtekarlığı tespit edebiliyorlar ve bu sayede elektronik ticarete hız katıyorlar. Modellemede, tedarik zincirlerinin kontrolünde ve sağlık hizmetlerinde temel bir role sahipler. Ayrıca sigorta çalışanlarına, doktorlara, eğitimcilere ve film yapımcılarına yardım ediyorlar.

Tüm Reklamları Kapat

Yapay Zeka Teknolojisi adı verilen bu sahadaki tüm gelişmelere rağmen, bu teknolojilerin altında yatan sistemlerde üst seviye mantıklama veya düşünce diyebileceğimiz hiçbir şey bulunmuyor. Bu sistemler, insanların yapabildiği gibi semantik temsiller veya çıkarımlar yapamıyorlar. Uzun dönem hedefleri formüle edip, bunların peşinden gidemiyorlar. Şöyle anlatıyor:

Öngörülebilir bir gelecek boyunca, bilgisayarların gerçek dünyadaki problemlere yönelik soyut mantıklama yeteneği konusunda insanlarla eşit bir düzeye gelmesi mümkün değil. En acil sorunlarımızı çözmek için, insanlarla bilgisayarlar arasında iyi düşünülmüş etkileşimler yaratmamız lazım. Büyük ölçekli sistemlerin zeki davranışlarının; o sistemi oluşturan parçalar arasındaki etkileşimlerden doğduğu kadar, o parçaların tekil zekasından da doğduğunu anlamamız gerekiyor.

Ayrıca Jordan, teknolojiyi geliştirirken insan mutluluğunun ikincil planda kalmaması gerektiğini düşünüyor:

Tarihsel olarak yepyeni bir şey yaratmak için gerçek bir fırsata sahibiz: İnsan-merkezli bir mühendislik disiplini yaratabiliriz!

Jordan'a göre bu, toplum politikalarında ve akademik araştırmalarda mühendisliğin rolüne yönelik yeni tartışmaları alevlendirmeyi de içeriyor. Ona göre, halk arasında sosyal bilimlerden söz etmek çekiciyken, sosyal mühendislikten söz etmek itici geliyor. Benzer şekilde, genom bilimi kulağa havalı gelirken, genetik mühendislik itici gelmektedir. Şöyle diyor:

Bana kalırsa "mühendislik" teriminin entelektüel camiadaki rolünü yok ettik. İnsanlar vizyoner araştırmalardan söz ederken "mühendislik" yerine "bilim" sözcüğünü tercih ediyorlar. Özellikle de "mühendislik işte" gibi laflar işleri daha da bozuyor.

Tüm Reklamları Kapat

Bana kalırsa bilimin insan türü için yaptığıh harika şeyleri düşünmek önemli. Bunların büyük bir kısmı aslında inşaat mühendisliği, elektrik mühendisliği, kimya mühendisliği ve diğer mühendislik sahalarının başarısı. Mühendislik, insan mutluluğuna en doğrudan ve en temelden etki eden bilim sahası.

Jordan, günümüzde bilimsel bilgi akışının da aksadığını söylüyor ve IEEE Access gibi açık erişimli dergilerin daha önemli hale geldiğini söylüyor:

Bana kalırsa ticari yayın firmaları, artık etkisiz olan ve bilgi akışını kısıtlayan bir iş modeli inşa ettiler.

Jordan'ın makalelerinin büyük bir kısmına IEEE Xplore Dijital Kütüphanesi üzerinden erişebilirsiniz.

Alıntı Yap
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Yapay Zeka Uzmanları ve Görüşleri Yazı Dizisi

Bu yazı, Yapay Zeka Uzmanları ve Görüşleri yazı dizisinin 1. yazısıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
20
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 21
  • Muhteşem! 5
  • Merak Uyandırıcı! 4
  • Mmm... Çok sapyoseksüel! 3
  • İnanılmaz 1
  • Bilim Budur! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  1. Türev İçerik Kaynağı: IEEE Spectrum | Arşiv Bağlantısı
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/01/2023 19:37:24 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/10355

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Size Özel (Beta)
İçerikler
Sosyal
Böcekler
Antibiyotik
Ergen
Maske Takmak
Canlı
Grip
Ekonomi
Yiyecek
Evrim Teorisi
Koruma
Yeme
Yapay Zeka
İspat Yükü
Yok Oluş
Avrupa
Atom
Kütle
Hekim
Nöron
Sahtebilim
Bakteri
Böcek
Klinik Mikrobiyoloji
Antik
Nükleik Asit
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
K. Pretz, et al. Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!. (13 Nisan 2021). Alındığı Tarih: 28 Ocak 2023. Alındığı Yer: https://evrimagaci.org/s/10355
Pretz, K., Bakırcı, Ç. M. (2021, April 13). Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!. Evrim Ağacı. Retrieved January 28, 2023. from https://evrimagaci.org/s/10355
K. Pretz, et al. “Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 13 Apr. 2021, https://evrimagaci.org/s/10355.
Pretz, Kathy. Bakırcı, Çağrı Mert. “Yapay Zekanın Michael Jordan'ı: Önünüze Gelen Her Şeye Yapay Zeka Demeyi Bırakın!.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, April 13, 2021. https://evrimagaci.org/s/10355.

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Paylaş
Reklamsız Deneyim

Evrim Ağacı'ndaki reklamları, bütçenize uygun bir şekilde, kendi seçtiğiniz bir süre boyunca kapatabilirsiniz. Tek yapmanız gereken, kaç ay boyunca kapatmak istediğinizi aşağıdaki kutuya girip tek seferlik ödemenizi tamamlamak:

10₺/ay
x
ay
= 30
3 Aylık Reklamsız Deneyimi Başlat
Evrim Ağacı'nda ücretsiz üyelik oluşturan ve sitemizi üye girişi yaparak kullanan kullanıcılarımızdaki reklamların %50 daha az olduğunu, Kreosus/Patreon/YouTube destekçilerimizinse sitemizi tamamen reklamsız kullanabildiğini biliyor muydunuz? Size uygun seçeneği aşağıdan seçebilirsiniz:
Evrim Ağacı Destekçilerine Katıl
Zaten Kreosus/Patreon/Youtube Destekçisiyim
Reklamsız Deneyim
Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Moderatöre Bildir

Raporlama sisteminin amacı, platformu uygunsuz biçimde kullananların önüne geçmektir. Lütfen bir içeriği, sadece düşük kaliteli olduğunu veya soruya cevap olmadığını düşündüğünüz raporlamayınız; bu raporlar kabul edilmeyecektir. Bunun yerine daha kaliteli cevapları kendiniz girmeye çalışın veya size sunulan (oylama gibi) diğer araçlar ile daha kaliteli cevaplara teşvik edin. Kalitesiz bulduğunuz içerikleri eleyebileceğiniz, kalitelileri daha ön plana çıkarabileceğiniz yeni araçlar geliştirmekteyiz.

Öncül Ekle
Sonuç Ekle
Mantık Hatası Seç
Soru Sor
Aşağıdaki "Soru" kutusunu sadece soru sormak için kullanınız. Bu kutuya soru formatında olmayan hiçbir cümle girmeyiniz. Sorunuzla ilgili ek bilgiler vermek isterseniz, "Açıklama" kısmına girebilirsiniz. Soru kısmının soru cümlesi haricindeki kullanımları sorunuzun silinmesine ve UP kaybetmenize neden olabilir.
Görsel Ekle
Kurallar
Platform Kuralları
Bu platform, aklınıza takılan soruları sorabilmeniz ve diğerlerinin sorularını yanıtlayabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Gerçekten soru sorun, imâdan ve yüklü sorulardan kaçının.
Sorularınızın amacı nesnel olarak gerçeği öğrenmek veya fikir almak olmalıdır. Şahsi kanaatinizle ilgili mesaj vermek için kullanmayın; yüklü soru sormayın.
2
Bilim kimliğinizi kullanın.
Evrim Ağacı bir bilim platformudur. Dolayısıyla sorular ve cevaplar, bilimsel perspektifi yansıtmalıdır. Geçerli bilimsel kaynaklarla doğrulanamayan bilgiler veya reklamlar silinebilir.
3
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Sahtebilimi desteklemek yasaktır.
Sahtebilim kategorisi altında konuyla ilgili sorular sorabilirsiniz; ancak bilimsel geçerliliği bulunmayan sahtebilim konularını destekleyen sorular veya cevaplar paylaşmayın.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Soru Ara
Aradığınız soruyu bulamadıysanız buraya tıklayarak sorabilirsiniz.
Alıntı Ekle
Eser Ekle
Kurallar
Komünite Kuralları
Bu komünite, fark edildiğinde ufku genişleten tespitler içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Tavsiye Et
Aşağıdaki kutuya, [ESER ADI] isimli [KİTABI/FİLMİ] neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Kurallar
Platform Kuralları
Bu platform; okuduğunuz kitaplara, izlediğiniz filmlere/belgesellere veya takip ettiğiniz YouTube kanallarına yönelik tavsiylerinizi ve/veya yapıcı eleştirel fikirlerinizi girebilmeniz içindir. Tavsiye etmek istediğiniz eseri bulamazsanız, buradan yeni bir kayıt oluşturabilirsiniz. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Önceliğimiz pozitif tavsiyelerdir.
Bu platformu, beğenmediğiniz eserleri yermek için değil, beğendiğiniz eserleri başkalarına tanıtmak için kullanmaya öncelik veriniz. Sadece negatif girdileri olduğu tespit edilenler platformdan geçici veya kalıcı olarak engellenebilirler.
2
Tavsiyenizin içeriği sadece negatif olamaz.
Tavsiye yazdığınız eserleri olabildiğince objektif bir gözlükle anlatmanız beklenmektedir. Dolayısıyla bir eseri beğenmediyseniz bile, tavsiyenizde eserin pozitif taraflarından da bahsetmeniz gerekmektedir.
3
Negatif eleştiriler yapıcı olmak zorundadır.
Eğer tavsiyenizin ana tonu negatif olacaksa, tüm eleştirileriniz yapıcı nitelikte olmak zorundadır. Yapıcı eleştiri kurallarını buradan öğrenebilirsiniz. Yapıcı bir tarafı olmayan veya tamamen yıkıcı içerikte olan eleştiriler silinebilir ve yazarlar geçici veya kalıcı olarak engellenebilirler.
4
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Eser Ara
Aradığınız eseri bulamadıysanız buraya tıklayarak ekleyebilirsiniz.
Tür Ekle
Üst Takson Seç
Kurallar
Komünite Kuralları
Bu platform, yaşamış ve yaşayan bütün türleri filogenetik olarak sınıflandırdığımız ve tanıttığımız Yaşam Ağacı projemize, henüz girilmemiş taksonları girebilmeniz için geliştirdiğimiz bir platformdur. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Takson adlarını doğru yazdığınızdan emin olun.
Taksonların sadece ilk harfleri büyük yazılmalıdır. Latince tür adlarında, cins adının ilk harfi büyük, diğer bütün harfler küçük olmalıdır (Örn: Canis lupus domesticus). Türkçe adlarda da sadece ilk harf büyük yazılmalıdır (Örn: Evcil köpek).
2
Taksonlar arası bağlantıları doğru girin.
Girdiğiniz taksonun üst taksonunu girmeniz zorunludur. Eğer üst takson yoksa, mümkün olduğunca öncelikle üst taksonları girmeye çalışın; sonrasında daha alt taksonları girin.
3
Birden fazla kaynaktan kontrol edin.
Mümkün olduğunca ezbere iş yapmayın, girdiğiniz taksonların isimlerinin birden fazla kaynaktan kontrol edin. Alternatif (sinonim) takson adlarını girmeyi unutmayın.
4
Tekrara düşmeyin.
Aynı taksonu birden fazla defa girmediğinizden emin olun. Otomatik tamamlama sistemimiz size bu konuda yardımcı olacaktır.
5
Mümkünse, takson tanıtım yazısı (Taksonomi yazısı) girin.
Bu araç sadece taksonları sisteme girmek için geliştirilmiştir. Dolayısıyla taksonlara ait minimal bilgiye yer vermektedir. Evrim Ağacı olarak amacımız, taksonlara dair detaylı girdilerle bu projeyi zenginleştirmektir. Girdiğiniz türü daha kapsamlı tanıtmak için Taksonomi yazısı girin.
Gönder
Tür Gözlemi Ekle
Tür Seç
Fotoğraf Ekle
Kurallar
Komünite Kuralları
Bu platform, bizzat gözlediğiniz türlerin fotoğraflarını paylaşabilmeniz için geliştirilmiştir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Net ve anlaşılır görseller yükleyin.
Her zaman bir türü kusursuz netlikte fotoğraflamanız mümkün olmayabilir; ancak buraya yüklediğiniz fotoğraflardaki türlerin özellikle de vücut deseni gibi özelliklerinin rahatlıkla ayırt edilecek kadar net olması gerekmektedir.
2
Özgün olun, telif ihlali yapmayın.
Yüklediğiniz fotoğrafların telif hakları size ait olmalıdır. Başkası tarafından çekilen fotoğrafları yükleyemezsiniz. Wikimedia gibi açık kaynak organizasyonlarda yayınlanan telifsiz fotoğrafları yükleyebilirsiniz.
3
Paylaştığınız fotoğrafların telif hakkını isteyemezsiniz.
Yüklediğiniz fotoğraflar tamamen halka açık bir şekilde, sınırsız ve süresiz kullanım izniyle paylaşılacaktır. Bu fotoğraflar nedeniyle Evrim Ağacı’ndan telif veya ödeme talep etmeniz mümkün olmayacaktır. Kendi fotoğraflarınızı başka yerlerde istediğiniz gibi kullanabilirsiniz.
4
Etik kurallarına uyun.
Yüklediğiniz fotoğrafların uygunsuz olmadığından ve başkalarının haklarını ihlâl etmediğinden emin olun.
5
Takson teşhisini doğru yapın.
Yaptığınız gözlemler, spesifik taksonlarla ilişkilendirilmektedir. Takson teşhisini doğru yapmanız beklenmektedir. Taksonu bilemediğinizde, olabildiğince genel bir taksonla ilişkilendirin; örneğin türü bilmiyorsanız cins ile, cinsi bilmiyorsanız aile ile, aileyi bilmiyorsanız takım ile, vs.
Gönder
Tür Ara
Aradığınız türü bulamadıysanız buraya tıklayarak ekleyebilirsiniz.