Tüm Dinamiklikleriyle Kara Delikler - III

Bu yazının içerik özgünlüğü henüz kategorize edilmemiştir. Eğer merak ediyorsanız ve/veya belirtilmesini istiyorsanız, gözden geçirmemiz ve içerik özgünlüğünü belirlememiz için [email protected] üzerinden bize ulaşabilirsiniz.

İlksel kara delikler

İlksel kara deliklerin tam olarak neyi karşıladığını, bu yazıyı okuduktan sonra, isimlerinden hatırlayabiliriz: evrenimizin erken dönemlerindeki aşırı madde yoğunluğundan dolayı oluştuğu düşünülen, varsayımsal kara delik türüdür. Büyük Patlama modeline göre, evrenin oluşumundan sonraki ilk birkaç dakikada basınç ve sıcaklık, müthiş derecede yüksekti. Bu şartlar altında, madde yoğunluğundaki basit dalgalanmalar, kara delik oluşturmak için yeterli yoğunluktaki bölgelerin ortaya çıkmasıyla sonuçlanabilir. Yüksek yoğunluklu çoğu bölgenin, evrenin ilk anlarındaki genişlemenin etkisiyle hızlı bir şekilde dağılmaktasına rağmen, ilksel bir kara delik, stabil yapısını koruyarak günümüze kadar süregelebilir. 10^14 kg ila 10^23 kg aralığında kütleye sahip olan bu ilksel kara delikler, ayrıca birer karanlık madde adayıdırlar. Yani ''karanlık madde'' diye tanımladığımız olgu, bu kara deliklerden oluşuyor olabilir.

lksel kara delikleri tespit etmenin bir yolu, yayımladıkları Hawking radyasyonudur. İngiliz fizikçi, Stephen Hawking, 1974'te büyük sayıda ve küçük ilksel kara deliklerin, Samanyolu Galaksisi'nin belli bölgelerinde oluşabileceğini kuramsallaştırmıştır. Kuramın içerisinde, tüm kara deliklerin, kütleleriyle ters orantılı bir hızda bir radyasyon yaydığı olgusu da yer almıştır. Bu radyasyon, Hawking radyasyonudur. Bu radyasyon, söz konusu kara deliklerin kütlelerinde azalmaya neden olduğundan, çok küçük kütleli ilksel kara delikler, buharlaşırlar. Bu buharlaşma, elbette günlük yaşamda karşılaştığımız buharlaşma değildir; kara deliğin giderek kütle kaybetmesi için kullanılmış bir benzetmedir. İlksel kara deliklerin hayatının son aşaması, milyonlarca megaton hidrojen bombasının patlamasıyla eşdeğer şiddette meydana gelen radyasyon patlamalarına sahne olur. Buharlaşmanın son aşaması da böyle geçer. Düzenli bir kara delik (yaklaşık 3 Güneş kütlesine sahip bir kara delik), evrenin yaşamı boyunca kütlesinin tamamını kaybedemez; kaybedebilmesi için yaklaşık 10^69 yıl gerekir. Ancak, ilksel kara delikler, herhangi bir yıldız çekirdeğinden oluşmadığı için (yıldızsal kara delik olmadıkları için), herhangi bir boyutta olabilirler; küçük, çok büyük, orta, vs. Yaklaşık 10^11 kg kütleye sahip bir kara deliğin yaşamı, evrenin yaşı kadar bir süre alır. Eğer Büyük Patlamanın hemen sonrasında, bu gibi ilksel kara deliklerden oluşmuş olsaydı, günümüzde Samanyolu Galaksisi'nin yakınlarında, bunlardan gözlemliyor olabilirdik.

NASA'nın 2008'de fırlatılan uydusuyla yörüngeye oturan Fermi Gama Işını Teleskobu'nun bir amacı da, bu tip ilksel kara delikleri ve buharlaşmalarını gözlemlemekti. Ancak kuramsal Hawking radyasyonu olmasaydı, böylesi ilksel kara deliklerin varlığından bahsetmemiz oldukça zor olurdu. Küçük bir ilksel kara deliğin Dünya'nın yakınından geçerken akustik sinyaller yaratması beklenir. Büyük bir nükleon kitlesiyle karşılaştırıldığında, ufak kalan çapları ve görece yüksek hızları dolayısıyla, yeryüzünde hiçbir kötü etki yaratmadan transit geçiş yapabilmeleri beklenir. Bu tip kara delikleri tespit etmenin başka bir yolu da, yıldız yüzeyindeki dalgacıkları gözlemek olabilir. Eğer ilksel bir kara delik, bir yıldızdan transit geçiş yaparsa, yıldızın yoğunluğunda gözlemlenebilir titreşimler meydana gelir.

İlksel kara delikler hakkındaki bir başka şüphe ise gama ışını patlamalarının açıklaması olarak düşünülmeleridir. (Bkz. Evren'in Göz Kırpışı: Gama Işını Patlaması) Ancak henüz bu açıklama bilimsellik kazanmış değildir. İlksel kara deliklerin çözüm getirebileceği sanılan diğer problemler: karanlık madde problemi ve kozmolojik monopol (tek kutup) problemidir. İlksel bir kara delik mutlaka küçük olmak zorunda olmadığından, daha sonraki galaksilerin oluşumlarına da katkıda bulunmuş olabilirler. İlksel kara delikler bu problemleri çözemeseler bile, kozmologlara, evrenin ilk anlarındaki yoğunluk dalgalanması spektrumuna sınırlamalar getirilmesi ve erken evrendeki ilksel kara delik sayısının tespit edilmesi konusunda yardımcı olmuşlardır.

Bütün bunların yanında, sicim teorisinin öngörüsüne göre, eğer 4 boyutlu bir evren söz konusu olsaydı, en küçük ilksel kara delik şimdiye kadar buharlaşmış olmalıydı. Çünkü en küçük ölçeklerde kütleçekiminin nasıl davranacağını belirlemesi beklenen bu teoriye göre, kütleçekimi, ilksel kara deliklerin buharlaşmasını yavaşlatıyor olabilir. Bu da doğal olarak, galaksimizde birkaç bin ilksel kara deliğin yaşıyor olabileceği anlamına gelir. Eğer yukarıda bahsettiğimiz Fermi Gama Işını Teleskobu ile yapılan gözlemlerde, gama ışını patlamalarında küçük, özel girişim desenleri gözlemlenirse, bu, dolaylı yoldan hem ilksel kara deliklere hem de sicim teorisine kanıt olabilir.

Orta kütleli kara delikler

İsimlendirmeden de anlaşılacağı üzere, küçük boyuttaki kara deliklerle süper kütleli kara delikler arasında, bir yerde olmaları beklenir; öyledirler de. Kütleleri, 100 Güneş kütlesiyle 10.000 Güneş kütlesi arasında değişebilir. İlk kez gözlemlendikleri, yaklaşık 40 yıl öncesine kadar, galaksilerin merkezlerini domine ettikleri sanılmaktaydı fakat gerçeğin daha farklı olduğu anlaşıldı. Daha çok, evrende başıboş dolaşan bu kara delikler, yıldızsal kara deliklerden çok daha parlaktırlar (aslında kendi ışıkları değil; ''avlarının'' çığlık sesleri olarak düşünebileceğimiz çok sıcak toz bulutları ve X-ışınları). Orta kütleli kara deliklerin, görece kısa bir geçmişte çöken yıldızlardan oluştukları ve günümüzde de büyüme sürecini yaşadıkları görüşü de bir başka görüştür. Hem süper kütleli, hem de orta kütledeki kara deliklerin, Evren'in başlangıcındaki ilkel maddeden oluştuklarını düşünen bilim insanları, orta kütleli kara deliklerin yıldızsal kara deliklerden, halihazırda yaşadıkları büyüme süreci ile ayrıldıklarını düşünüyorlar.

Orta kütleli kara deliklere dair güncel bir örnek, M-82 galaksisi'nde bulunan kara deliktir. Etrafında yarattığı etkilerle beraber parlaklığı, 460 Güneş kütlesine sahip olduğunu göstermektedir. Bu özelliğiyle, Samanyolu'ndan 5 kat, Samanyolu'nun merkezinden ise 1 kat daha fazla parlaktır. Ancak bu parlaklık, çok aktif olan söz konusu kara deliğin aktivitleriyle beraber değişmektedir. Dünya'mızdan 12 milyon ışık yılı uzakta bulunan bu kara delik, 6563 Angström dalga boyunda iyonize hidrojen atomları yaymaktadır. Komşusu, M-81 ile dramatik bir birleşmeye sahne olabilecek olan bu galaksi, merkezindeki kara deliğiyle beraber oldukça yaşlıdır. Kızılötesi teleskopla bakıldığında, M-82, gökyüzündeki en parlak galaksidir.

Tıpkı yıldızsal ve süper kütleli kara delikler gibi, orta kütleli kara delikler de yakınlarında bulunan yıldızlardan, gaz ve toz bulutlarından ve diğer maddelerden kütle çalarlar; böylece, etraflarında bir toplanma diski oluştururlar. Yukarıda, M-82 galaksisi'ndeki kara deliğin parlaklığının değişebilir olduğunu belirtmişik; bunun yanında bu parlaklığın değişimi, periyodiktir. Her 62 günde bir, parlaklığı artıp azalan bu galaksinin bu parlayıp sönme sürecinin, yakınlaştığı komşu galaksi, M-81 ile birbiri etrafında dönerkenki periyodundan kaynaklandığı düşünülmektedir. Kara delik ise bir dev ya da bir süper-dev olduğu düşünülen bir yıldızdan madde çalmaktadır. Bu madde çalma sürecinde, önce yıldızın dış tabakasını çalan kara delik, ardından iç kısımlarla kendine bir ziyafet çekecektir. Bu yıldızın dev veya süper-dev sınıfından olması, belki de kara galaksinin parlaklığının sebebidir.

Bazı hipotezler, küçük kara deliklerin birleşerek orta büyüklükteki kara delikleri oluşturduğunu söylese de, son zamanlarda yapılan araştırmalar, bunun yanlış olduğunu göstermektedir. Orta büyüklükteki kara deliklerin oluşumu için tek yol, şimdilik yıldızsal kara deliklerin ilerleyen yaşlarında hala inanılmaz bir gelişim göstererek aşırı büyümesi olarak görünmektedir. En küçük kara delikler olan 10 Güneş kütlesinden büyük kara delikler, süpernovalardan, yani yıldız kalıntılarından ortaya çıkar; en büyükleri ise milyarlarca Güneş kütlesine sahip olup, galaksilerin derinliklerinde yaşarlar. Galaksilerin birbirleriyle etkileşmesinde de bu dev kara deliklerin rolü büyüktür.

Bir diğer orta kütleli kara delik ise, Hyper-Luminous X-ray source 1 (HLX-1) olarak bilinen gökcismidir. Bu kara delik, ESO 243-49 diye adlandırılan bir galaksinin yakınında konuşlanmıştır. Esasında 2009 yılına kadar resmi olarak kara delik özelliği kazanmamış olan bu gökcismi, yoğun olarak yaydığı X-ışınından dolayı bir kara delik olarak görülmekteydi. Nitekim, 2009 yılında, cüce galaksinin ESO 243-49 ile karşılaşması ve yutulmasının gözlemi ile beraber, bu cismin bir kara delik olduğu ortaya çıktı. Kara delik, 2004 yılının Kasım ayında, yayımladığı ultra-radyasyonla beraber keşfedilmişti ( o zamanlar ''kara delik'' değildi tabii). ESO 243-49'daki 243, ana galaksinin numarasıyken, 49 ise cüce galaksinin numarasıdır. Birleşmeden sonra (aslında dramatik bir yutulma), isim, bu şekilde değişmiştir.

Gelecek yazımızda, süper kütleli kara deliklere değineceğiz. Umuyoruz ki faydalı olacaktır.

Sevgiler.

Tüm Dinamiklikleriyle Kara Delikler - II

Taksonomik Olarak İnsan: Hayvan, Memeli, Doğuran, Primat, Maymun, İnsan...

Yazar

Emre Oral

Emre Oral

Yazar

Katkı Sağlayanlar

Çağrı Mert Bakırcı

Çağrı Mert Bakırcı

Editör

Evrim Ağacı'nın kurucusu ve idari sorumlusudur. Popüler bilim yazarı ve anlatıcısıdır. Doktorasını Texas Tech Üniversitesi'nden almıştır. Araştırma konuları evrimsel robotik, yapay zeka ve teorik/matematiksel evrimdir.

Konuyla Alakalı İçerikler
  • Anasayfa
  • Gece Modu

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim