Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Polarizasyon Nedir? Işık Kaç Farklı Şekilde Polarize Olabilir?

17 dakika
10,563
Polarizasyon Nedir? Işık Kaç Farklı Şekilde Polarize Olabilir? Pinterest
Işığın Polarizasyonu
Tüm Reklamları Kapat

Polarizasyon, enine dalgaların salınımlarının geometrik yönünü belirten bir özelliktir. Alttaki fotoğrafta da görüldüğü gibi enine bir dalgada, dalganın salınım yönü ilerleme yönüne diktir. Enine dalgalara en basit örnek, gergin bir ip boyunca hareket eden titreşimlerdir. Buna karşılık, bir sıvı veya gazdaki ses dalgaları gibi boyuna dalgalarda, salınımdaki parçacıkların yer değiştirmesi her zaman ilerleme doğrultusundadır, bu nedenle bu dalgalar polarizasyon göstermezler. Polarizasyon sergileyen enine dalgalar, katı maddelerdeki ışık ve radyo dalgaları, kütleçekimi dalgaları ve enine ses dalgaları (kayma dalgaları) gibi dalgaları içerir.

Bir Elektromanyetik Dalga
Bir Elektromanyetik Dalga

Işık Dalgalarında Polarizasyon

İskoç fizikçi James Clerk Maxwell, dört basit denklem ile Faraday'ın ışığın bir elektromanyetik dalga olduğu öngörüsünü elektromanyetik dalgaların ışık ile aynı hızda yayıldığını göstererek ispat etmiştir. Dolayısıyla bu ispattan da anlaşıldığı gibi sıradan bir ışık kaynağından çıkan ışık ışınları, ışık kaynağındaki atomlar tarafından yayınlanan çok sayıda elektromanyetik dalgadan oluşmuştur. Bu elektromanyetik dalgaların üst üste binmesiyle de bileşke elektromanyetik dalga oluşmaktadır. Dolayısıyla bir ışık kaynağından çıkan ışık dalgasının elektrik alan vektörünün mümkün tüm yönlerde bileşeni vardır ve her yönde aynı olasılıkla titreşir.

Elektromanyetik dalga, elektrik alan ve manyetik alandan oluşur; fakat bir ışık dalgasının kutuplanma veyahut polarizasyon yönü olarak elektrik alan vektörünün titreştiği yön seçilmesinden dolayı elektromanyetik dalganın "elektrik alan" kısmı bizi bu yazıda daha çok ilgilendirecektir.

Tüm Reklamları Kapat

Eğer ilk başta da bahsedildiği gibi sıradan bir ışık kaynağından çıkan ışık ışınlarını ele alırsak, bu ışınlar elektromanyetik, rastgele, enine dalgalardır ve bundan dolayı bu ışınlar her yönde aynı olasılıkla titreşmesinden kaynaklı olarak rastgele kutuplu ya da polarize olmamış (kutuplanmamış) ışık şeklinde adlandırılırlar. Polarize olmamış ışıklara Güneş, alev ve akkor lambalar gibi birçok kaynaktan gelen ışık veya diğer elektromanyetik radyasyon türleri örnek olarak verilebilir.

Sıradan Bir Işık Kaynağından Çıkan Işığın Elektrik Alan Vektörleri
Sıradan Bir Işık Kaynağından Çıkan Işığın Elektrik Alan Vektörleri

Üsteki şekilde, yayılma doğrultusu sayfa düzleminden dışarı doğru olan polarize olmamış ışık gösterilmektedir. Üstteki okların sembolize ettiği elektrik alan vektörü, her bir atom tarafından oluşturulmuş farklı elektrik alan vektörlerini göstermektedir. Bileşke elektrik alan EE, bu elektrik alan vektörlerinin toplamıdır. Eğer bileşke dalganın elektrik alan vektörü, uzayda belli bir noktada, yani gözlemin yapıldığı yerde hep aynı yöne titreşiyorsa, böyle dalgalara çizgisel kutuplu ya da düzlem kutuplu dalga denir. Elektrik alan titreşim doğrultusu ile yayılma doğrultusunun oluşturduğu düzleme kutuplanma (polarizasyon) düzlemi denir.

Polarizasyon Neden Önemlidir?

Kutuplama (polarizasyon); elektromanyetik dalganın, özellikle de elektrik alan bileşeninin hangi düzlemde titreştiğini ifade eder. Dalga uzayda ilerlerken elektrik alan vektörü bir düzlem boyunca salınım yapar. İşte bu düzlem, dalganın kutuplanma düzlemidir. Eğer elektrik alan hep aynı yönde titreşiyorsa bu doğrusal kutuplaşma, yönü zamanla dairesel şekilde değişiyorsa bu dairesel kutuplaşma, daha karmaşık bir elips izliyorsa bu da eliptik kutuplaşma olarak adlandırılır.

Peki bu ne işe yarar? Kutuplama, ışığın sadece var olup olmadığını değil, nasıl var olduğunu anlamamıza olanak tanır. Gözlerimiz ışığın parlaklığını ve rengini algılayabilir, ama kutuplamasını doğrudan algılayamayız. Oysa bazı böcekler ve kuşlar, kutuplanmış ışığı algılayabilir ve bunu yön bulmak ya da avlarını tespit etmek için kullanırlar.

Tüm Reklamları Kapat

Ayrıca kutuplaşma, modern teknolojilerde büyük bir öneme sahiptir. Televizyon ekranlarında, mikroskoplarda, lazer sistemlerinde, fiber optik iletişimde ve hatta kuantum bilgisayarlarda kutuplaşma bilgisi kullanılmaktadır. Çünkü dalgaların kutuplanma yönü, tıpkı bir "bit" gibi kullanılabilir ve bu da onu bilgi taşıyıcısı yapar.[5], [6]

Kısacası kutuplaşma, ışığın karakterini anlatan bir yönelimi temsil eder. Onu anlamak, ışıkla daha derin bir ilişki kurmak demektir; sadece onu görmek değil, onun ne söylediğini anlamaktır.

Polarizasyon Çeşitleri

Üç adet polarizasyon çeşidi bulunmaktadır:

  • Doğrusal,
  • Dairesel,
  • Eliptik.

Doğrusal Polarizasyon

Doğrusal kutuplanmada dalgalar; ölçüleceği, gözlem yapılacağı, düzleme doğru ilerlerler. Bu düzlemde, tek bir EE bileşkesinin, eğik bir doğru boyunca zamanla harmonik olarak titreştiği yani değiştiği düşünülebilir. Elektrik alanı dalganın ilerleme doğrultusu boyunca bir dalga boyu yol aldığında tam bir titreşim devri yapar. Bu toplama işleminin aynı şekilde tersi de yapılabilir, yani bir düzlem kutuplu dalga birbirine dik iki bileşene ayrılabilir.

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 50₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Dairesel Polarizasyon

Dairesel kutuplanmada ise, bir elektromanyetik dalganın her noktada dalganın elektromanyetik alanının sabit bir büyüklüğe sahip olduğu ve dalganın yönüne dik bir düzlemde sabit bir hızda döndüğü bir polarizasyon durumudur. Dairesel kutuplanmada elektrik alan vektörü, dalga yol alırken ilerleme ekseni çevresinde döner. Kendine doğru gelen dalgaya bakan (kaynağa doğru bakan) bir gözlemciye, EE bileşke elektrik alan vektörünün saatin dönüş yönünde ww açısal frekansıyla döndüğü görülür. Bu şekilde olan bir dalgaya sağ dairesel kutuplu ya da daha çok tercih edilen adıyla sağ dairesel ışık denir. Tersi oluyorsa yani genlik değişmemek üzere EE saatin dönme yönünün tersine dönüyorsa bu dalgaya da sol dairesel kutuplu veya sol dairesel ışık denir. Dairesel polarizasyonun oluşumu ise, iki ortogonal elektrik alan bileşen vektörü eşit büyüklükte olduğunda ve tam olarak 90° veya dalga boyunun dörtte biri kadar faz dışı olduğunda meydana gelir.

Eliptik Polarizasyon

Eliptik kutuplanma ise, matematiksel anlatım bakımından doğrusal ve dairesel kutuplu ışık eliptik kutuplu ışığın veya daha kısa ve basit ifadeyle eliptik ışığın özel durumları olarak düşünülebilir. Yani demek istenilen, EE bileşke elektrik alan vektörünün genelde hem dönmesi hem de büyüklüğünün değişmesidir.

Doğrusal, Dairesel ve Eliptik Polarizasyon
Doğrusal, Dairesel ve Eliptik Polarizasyon

Üsteki şeklin sol kısmında çizgisel kutuplu bir dalga gösterilmektedir. Elektrik alan devamlı olarak bir yönde titreşmektedir, ilerleme doğrultusu z'dir ve xy-düzlemi de kutuplanma veyahut polarizasyon düzlemidir.

Şu ana kadar polarize olmuş ve polarize olmamış ışıklardan bahsettik fakat belki de okuyucuların bir kısmında şu soru belirmiş olabilir: "Polarize olmamış ışıktan polarize ışık elde edebilir miyiz, eğer elde edebilirsek bu nasıl gerçekleşebilir?" Bu soruya cevaben, kutuplanmamış bir ışık demetinden çizgisel kutuplu ışık demeti elde etmek mümkündür. Bu, mümkün olan tüm yönlerde titreşim yapan bileşke elektromanyetik dalga içinde, elektrik alan vektörleri belli bir yönde titreşim yapanları seçip, diğer tüm yönler titreşim yapanları çıkarmakla mümkün olur.

Vektörel Bakış Açısıyla Polarizasyon

Bir elektromanyetik dalga, genellikle elektrik alan vektörü ile temsil edilir. Bu vektör, dalganın ilerleme yönüne dik bir düzlemde titreşir. Örneğin dalga xx yönünde ilerliyorsa, elektrik alan yy ve zz yönlerinde bileşenlere sahip olabilir.

E⃗(t)=Eycos(wt)a^y+Ezcos(wt+θ)a^z\Large \vec E(t)=E_ycos(wt)\hat a_y+E_zcos(wt+\theta)\hat a_z

Tüm Reklamları Kapat

Yukarıdaki denklem, zamanla değişen elektrik alan vektörünü ifade eder. Buradaki θθ, faz farkını gösterir. Bu faz farkı ve genlikler, kutuplaşmanın türünü belirler:

  • θ=0\theta = 0 veya θ=π\theta = \pi ise doğrusal polarizasyon,
  • Ey=EzE_y = E_z ve θ=±π2\theta = ± \frac \pi 2 ise dairesel polarizasyon,
  • Diğer durumlarda ise eliptik polarizasyon oluşur.

Ek olarak kutuplanmış ışığın matematiksel gösteriminde Jones vektörleri sıkça kullanılır. Bunlar, ışığın kutuplanma durumunu kompleks sayılarla ifade eder:

E⃗=(EyEz)=(AeiθyBeiθz)\Large \vec E= \begin{pmatrix}
E_y \\
E_z
\end{pmatrix} = \begin{pmatrix}
Ae^{i\theta_y} \\
Be^{i\theta_z}
\end{pmatrix}

Tüm Reklamları Kapat

Bu form, kutuplanmış ışıkla optik sistemlerin nasıl etkileşeceğini hesaplamada kullanılır. Optik elemanlar (örneğin polarizatörler) ise Jones matrisleri ile temsil edilir.

Malus Yasası

Kutuplanmış ışığın bir polarizörden geçerken ne kadarının iletileceğini veren Malus Yasası, oldukça sade ama güçlü bir formülle ifade edilir:[5]

I=I0cos2θ\Large I=I_0cos^2\theta

Burada I0I_0 gelen ışığın şiddeti, θθ ise ışığın kutuplama düzlemiyle polarizör arasındaki açıdır. Bu yasa, özellikle polarize gözlüklerin ve optik filtrelerin tasarımında temel alınır.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Checklist Manifesto – İşi Doğru Yapmanın Basit Bilimi

Time dergisi tarafından 2010 yılının tüm dünyada en etkili 100 insanı arasında gösterilen ve Dünya Sağlık Örgütü’nün  Güvenli Cerrahi Hayat Kurtarır programını yürüten DrAtul Gawande, sıradan bir kontrol listesinin şaşırtıcı gücünü ortaya koyuyor.

Gawande muhteşem bir yazar ve bu kitabın iddialı amaçları var.” –Malcolm Gladwell

 

Modern dünya bize akıl almaz düzeyde teknik bilgi sunuyor. Yine de sağlık hizmetleri, devlet yönetimi, hukuk ve finans alanlarında, örgütlü etkinliklerin hemen hepsinde yapılan önlenebilir hataların acısını çekmeye devam ediyoruz. Ve bunun nedeni son derece basit: artık sahip olduğumuz bilgi hacmi ve karmaşıklık düzeyi, bireyler olarak bu bilgiyi uygun yoldan, tutarlı, doğru ve güvenli biçimde iletme becerimizi aşmış durumda. Daha uzun süre eğitim görüyor, daha fazla uzmanlaşıyor, daha ileri teknoloji kullanıyor ama yine de hata yapıyoruz.
Geniş bir okur kitlesine sahip yazar ve cerrah Atul Gawande, daha iyisini başarabileceğimiz görüşünü savunuyor ve çözüm olarak, olabilecek en mütevazı yolu gösteriyor bize: kendi halinde bir kontrol listesi. Gawande, kontrol listelerinin, uçakları uçurmaktan akıl almaz derecede incelikli teknik gerektiren gökdelenler inşa etmeye dek, yaptığımız en zor işlerden bazılarını nasıl altından kalkılabilir hale getirdiğini açıklıyor. Kendi deneyimine dayanarak, bu düşüncenin cerrahinin son derece karmaşık ve çeşitlilik gösteren dünyasında hayata geçirilmesiyle hazırlanan doksan saniyelik bir kontrol listesinin, dünyanın dört bir yanındaki sekiz hastanede, hemen bütün cerrahi girişim türlerinde, ölümleri ve komplikasyonları, ek maliyet getirmeksizin, üçte biri aşan oranda azaltmayı nasıl başarabildiğini gözler önüne seriyor.
Gawande, anlattığı sürükleyici öykülerle bizi, acil durum kontrol listesinin, suyun altında yarım saat kalan bir boğulma vakasında kurbanın kurtulmasını sağladığı Avusturya’dan, yoğun bakım birimlerinde kullanılan temizlik kontrol listesinin ölümcül bir hastane enfeksiyonu türünü ortadan kaldırdığı Michigan’a, ardında da düşmek üzere olan bir uçağın kokpitine götürüyor. Bu yolculuk sırasında, kontrol listelerinin neler yapıp neler yapamadığını, yalnız tıp alanında değil, ulusal güvenlikten yatırım bankacılığına, her çeşit meslek grubu ve iş alanında sağlayabileceği çarpıcı ilerlemeleri ortaya koyuyor.
Checklist Manifestosu, yaşamımızdaki karmaşıklığın doğasını irdeleyen, merak ettiren ve eyleme geçirten bir kitap. İşini doğru yapmak isteyen herkesin için…

Bilgiler ve Uyarılar:

  1. Bu ürün sipariş alındıktan 1-3 gün içinde postalanacaktır.
  2. Lütfen sipariş vermeden önce iade ve ürün değişikliği ile ilgili bilgilendirmemizi okuyunuz.
  3. Bu kampanya, Domingo Yayınevi tarafından Evrim Ağacı okurlarına sunulan fırsatlardan birisidir.
Devamını Göster
₺255.00
Checklist Manifesto – İşi Doğru Yapmanın Basit Bilimi

Işığın polarizasyonu (Malus yasası).
Işığın polarizasyonu (Malus yasası).
Bilsen Beşergil

Polarize Olmuş Işık Elde Etme Yöntemleri

Kutuplanmamış ışıktan kutuplanmış ışık elde etmek için dört yöntem vardır. Bunlar seçici soğurma, yansıma, çift kırılma ve saçılmadır.

Seçici Soğurma ile Polarizasyon

Seçici soğurma ile polarizasyon, "polaroid" olarak adlandırılan "standart" polarizörde kullanılan işlemdir. Polarizör (kutuplayıcı), polarize olmamış ışıktan belli bir yönde titreşen elektromanyetik dalgayı seçerek, polarize olmuş ışık elde etmemizi sağlayan malzemelere denir. Bu malzemeler yani polarizörler, tercih edilen yönü koruyarak plastik malzeme içinde düzenlenmiş uzun kristallerden yapılmıştır. Bu düzenlenmiş uzun kristallere(moleküler zincirlere) dik olan doğrultuya polarizörün geçirme ekseni denir.

Eğer bir elektromanyetik dalganın elektrik alan vektörü, üstte şekilde görüldüğü gibi bir moleküler zincirlere paralel olma durumunda ya da geçirme eksenine dik ise elektromanyetik dalga o zincirdeki moleküllerle etkileşime (yani moleküllerdeki elektronlarla etkileşime) girerek dalganın enerjisini soğurur, dolayısıyla geçen dalganın enerjisi, genliğiyle orantılı olduğu için genliğinde çok büyük bir azalma olur. Fakat bu durumun tersi de mümkündür: Gelen elektromanyetik dalga, moleküler zincire dik, geçirme eksenine paralelse, moleküler zincirdeki elektronlarla etkileşim az olacağı için soğurma az olacak ve böylelikle dalganın büyük bir kısmı geçmeyi başaracaktır. Bu da geçirme eksenine paralel olan elektrik alan vektörleri bileşenlerinin geçer, diğerlerinin ise soğurulacağı anlamına gelmektedir.

Fakat ışığın gerçekten polarize olup olmadığını gözlemlemek için ikinci bir polarizör daha kullanmamız gerekmektedir çünkü başta da belirtildiği gibi ışık her yöne eşit olasılıkta titreştiği için biz bir polarizörü hangi yöne, kaç derecelik açıyla değiştirmemizden bağımsız olarak ışığın şiddetini aynı gözlemleriz. Eğer ikinci bir polarizör kullanırsak -ki buna da "analizör" diyeceğiz, bu analizörü çevirdiğimizde, ışık şiddeti bir maksimum ile sıfır değeri arasında değişiyorsa ışık demetinin polarize olduğunu gözlemleyeceğiz.

Seçici Soğurma ile Polarizasyon
Seçici Soğurma ile Polarizasyon

Üstteki şekilde de polarizörün geçirme ekseni düşey olduğundan, bu polarizörü geçen ışık düşey olarak polarize olmuştur. Analizör ışık demetini engeller. Analizörün geçirme ekseni polarizörün geçirme ekseni ile 𝜃 açısı yapmaktadır. Geçirme eksenleri paralel olursa analizörden geçen ışığın şiddeti maksimum; geçirme eksenleri birbirine dik ise ışık şiddeti sıfır olur yani ışık soğurulmuş olur.

Yansıma ile Polarizasyon

Yansıma ile polarizasyonda, polarize bir ışık demetinin saydam bir yüzeyden yansıdığını düşünelim. Gelme açısına bağlı olarak ışık polarizasyonunun üç ihtimali vardır:

  • ışığın polarize olması,
  • ışığın polarize olmaması ve
  • ışığın kısmen polarize olmasıdır.

Saydam bir yüzeye gelen ve yansıyan ışığın elektrik alan vektörü iki bileşene sahip olabilir. Bu iki bileşenlerden biri yansıma düzlemine paralel olan, diğeri ise yansıma düzlemine dik olan bileşendir. Saydam yüzeye gelen ışığın elektrik alanı yüzeydeki elektronları ivmelendirir ve bu elektronların ışıma yapmasını sağlar. Böylelikle yansıyan ve kırılan olmak üzere iki dalga oluşur. Yansıma düzlemine paralel olan dalgayı inceleyecek olursak, gelen ışık demetinin bu bileşeni tarafından hızlandırılan elektronlar yansıyan dalgaya dik olarak hareket ettiğini gözlemleriz. Gelen dalganın çok küçük bir kısmı elektronlar tarafından soğurulur, bundan dolayı da gelen dalganın bu bileşeninin meydana getirdiği yansıma oldukça güçlüdür. İkinci bileşen tarafından hızlandırılan elektronlar, yansıyan dalgaya paralel hareket ettikleri için gelen dalganın büyük kısmını elektronlar soğurur ve yansıma zayıf olur.

Yansıma ile polarizasyonda polarize olmamış bir ışık demeti yansıma düzlemine paralel veya dik gelirse yansıyan ışık kutuplanmaz. Eğer gelen dalga diğer geliş açılarına sahipse yani dik veya paralel olacak şekilde gelmiyorsa, yansıyan ve kırılan ışık demetleri kısmen kutupludur, yani elektrik alan vektörlerinin iki bileşeni vardır. Fakat yansıyan ve kırılan ışık arasındaki açı 90 derece olursa, yansıyan ışığın, elektrik alan vektörünün sadece yansıma düzlemine paralel bileşeni vardır. Bu bileşen güçlü bir yansıma oluşturur. Bu durumda yansıyan ışık yansıma düzlemine paralel doğrultuda çizgisel polarize olmuştur. Bu durumdaki ışığın gelme açısının özel bir adı vardır ve buna Brewster açısı (θB\theta_B) denir.

Yansıma ile Polarizasyon ve P Değerleri Brewster Açısıdır.
Yansıma ile Polarizasyon ve P Değerleri Brewster Açısıdır.

Çift Kırılma ile Polarizasyon

Kristallerin çoğu "çift kırıcı" özelliği gösterirler. Çift kırıcılık, ışığı iki demet haline getirmektedir. Bunun nedeni ışığın bu kristaller içindeki her doğrultuda aynı hızla yayılmamasıdır. İkiye ayrılan ışığın her iki kısmı da polarize olur. Gelme düzlemine, dik olarak polarize olmuş ışına normal ışın, paralel olarak polarize olmuş ışına ise ekstra normal ışın denir. İnce turmalin kristali levhaları bu ışınlardan birini soğurarak (emerek) diğerini geçirir. Böylelikle polarize olmuş ışın elde edilmiş olur. Çift kırıcı kristallerde, iki demetin birleştiği bir doğrultu bulunur ve buna da "optik eksen" denir.

Tüm Reklamları Kapat

Saçılma ile Polarizasyon

Işık, gaz gibi bir parçacıklar sistemine girdiğinde, ortamda bulunan elektronlar ışığın bir kısmını soğurup sonra tekrar yayarlar, ışığın ortam tarafından soğurulması ve tekrar yayınlanmasına saçılma denir. Saçılma ile polarizasyonda ise moleküllerin üzerine gelen ışık onların salınım yapmasına neden olur. Salınım yönü de, radyasyonun elektrik alan vektörünün salınım yönüne göredir. Saçılma ile polarizasyon örnekleri ise şunlardır:

  • Güneş ışınlarının atmosferde saçılması, yukarıdan gözlemciye gelen ışığın polarize olmasına neden olur.
  • Yönünü değiştirirken bir polarizörden mavi gökyüzüne bakmak, polarizörün belirli bir açısında karanlık gökyüzü verir. Bu efekt, açık havada fotoğraf çekerken kullanılır.
  • Mavi gökyüzünde beyaz bulutlar olduğunda özel bir etki elde edilir. Buluttan yansıyan ışık polarize değildir, çünkü buluttaki su damlaları ışığın dalga boyundan daha büyüktür. Fotoğrafçılıkta bir polarizör kullanmak, karanlık gökyüzündeki beyaz bulutları gösterecektir (Rayleigh saçılması nedeniyle).
Saçılma ile Polarizasyon
Saçılma ile Polarizasyon

Polarizasyonun Bazı Kullanım Alanları

Elektromanyetik dalgaların kutuplanması kulağa soyut bir fizik konusu gibi gelebilir; ancak etkileri her gün çevremizde fark etmeden karşılaştığımız olaylarda kendini gösterir. Kutuplama, yalnızca laboratuvarlarda değil, doğada, teknolojide ve hatta kültürel deneyimlerimizde bile iz bırakır. Polarizasyonun kullanıldığı bazı örnekler şunlar olabilir:

  • Polarize Gözlükler: Güneş gözlüklerinde kullanılan polarize camlar, belirli bir düzlemde titreşen ışığı süzerek yansımalardan kaynaklı parlamaları azaltır. Özellikle su yüzeyinden, ıslak yoldan veya metal bir yüzeyden yansıyan ışıklar genellikle yatay düzlemde kutuplanmış hâlde olur. Polarize gözlükler, bu ışığı engelleyerek görüş netliğini ve konforu artırır.
  • LCD ve Ekran Teknolojileri: LCD (İng: "Liquid Crystal Display") ekranlar, kutuplanmış ışık prensibiyle çalışır.[4] Ekranın içindeki sıvı kristal molekülleri, elektrik alanla yönlendirilerek ışığın kutuplama düzlemini değiştirir. Böylece ekranın belirli bölgelerinde ışık geçer veya engellenir; bu da görüntü oluşumunu sağlar.
LCD ekran yapısını gösteren kesit diyagram.
LCD ekran yapısını gösteren kesit diyagram.
PTCLED
  • Fotoğrafçılıkta Polarize Filtreler: Fotoğrafçılar, gökyüzünün daha doygun görünmesini sağlamak, cam veya su yüzeyindeki yansımaları ortadan kaldırmak için polarizasyon filtreleri kullanır. Bu filtreler, istenmeyen kutuplanmış ışığı süzerek fotoğrafın kontrastını ve netliğini artırır.
  • Hayvanlar ve Kutuplama: Bazı hayvanlar, kutuplanmış ışığı algılayabilir. Örneğin arılar, güneş ışığının gökyüzünde saçılması sonucu oluşan kutuplanma desenlerini kullanarak yönlerini tayin eder. Kutup balıkları ve bazı kuşlar da bu yeteneğe sahiptir. Bu durum, kutuplaşmanın yalnızca fiziksel değil, biyolojik bir fenomen olduğunu da gösterir.
  • 3D Sinema Gözlükleri: 3D sinema teknolojilerinde her göz için ayrı bir görüntü kutuplanmış ışıkla gönderilir. Gözlük camları ise bu kutuplanmış ışığın yalnızca bir kısmını geçirir. Böylece her göz farklı bir görüntü algılar ve beyin bu iki görüntüyü üç boyutlu olarak birleştirir.
  • Haberleşme Sistemleri: Uydu haberleşmeleri, radyo yayınları ve mobil iletişimde elektromanyetik dalgaların kutuplanması, aynı frekans bandında birden fazla sinyalin iletilmesini sağlar.[6] Bu teknik, polarizasyon çoğullama (İng: "polarization multiplexing") olarak adlandırılır. Örneğin, aynı taşıyıcı frekansta biri dikey diğeri yatay kutuplanmış iki sinyal aynı anda iletilebilir ve bu, veri iletim hızını iki katına çıkarır.
  • Mikroskopi ve Malzeme Analizi: Polarize ışık mikroskopisi, özellikle biyoloji ve jeoloji alanlarında, numunedeki yapısal farklılıkları ortaya çıkarmak için kullanılır. Anizotropik (yön bağımlı) malzemeler, kutuplanmış ışık altında farklı şekillerde davranır. Bu sayede lifli doku yapıları, kristal dizilimleri ve gerilme bölgeleri detaylıca incelenebilir.
  • Kuantum İletişim: Kuantum kriptografi sistemlerinde kutuplaşma, bilgi güvenliği için bir kuantum anahtar dağıtım yöntemi olarak kullanılır. Fotonların kutuplama durumları, kuantum mekaniğinin temel ilkelerine göre ölçüldüğünde değiştiği için, iletim sırasında gizlice dinlenip dinlenmediği anlaşılabilir. Bu teknik, “kırılması imkânsız” güvenlik vaat eden kuantum iletişim ağlarının temelidir. Bu sistemin detaylı incelemesi için Quantum Cryptography'nin simülasyonundan yararlanabilirsiniz.
  • Uzaktan Algılama ve Hava Gözlemleri: Uydu görüntüleme ve radar sistemlerinde, kutuplaşmış elektromanyetik dalgalar kullanılarak toprağın yapısı, bitki örtüsü ve nem durumu hakkında bilgi elde edilebilir. Polarimetrik radarlar, nesnelerin yüzey özelliklerine bağlı olarak yansıttığı kutuplanma bilgilerini analiz eder.
  • Optik Fiber Sistemleri: Fiber optik kablolarda ışığın kutuplanma durumu zamanla değişebilir. Bu da iletilen sinyalin bozulmasına neden olabilir. Modern optik sistemlerde kutuplama dengeleyiciler (İng: "polarization controllers") ve kutuplama ayrıştırıcılar, bu etkiyi azaltarak daha stabil ve güvenilir veri iletimi sağlar.

Tüm bu örneklerin yanı sıra, bazı bilim dalları da polarizasyondan yararlanır.

Mühendislikte Stres Ölçümü

Mühendislikte, gerilim kaynaklı çift kırılma olgusu, şeffaf malzemelerdeki gerilimlerin kolayca gözlemlenmesine olanak tanır. Yukarıda belirtildiği ve aşağıdaki fotoğrafta görüldüğü gibi, çift kırılmanın kromatikliği, iki polarizör arasında bakıldığında tipik olarak renkli desenler oluşturur. Dış kuvvetler uygulandığında, malzemede indüklenen iç gerilim gözlemlenir. Ek olarak, üretim sırasında "donan" gerilimler nedeniyle çift kırılma sıklıkla gözlemlenir. Bu, üretim sürecinde malzemenin esnemesine bağlı olarak çift kırılma özelliğine sahip olan selofan bantta gözlemlenir.

Tüm Reklamları Kapat

Plastik Bıçak ve Kaşıkta Çapraz Polarize Işık Altında Görülen Gerginlik Çizgileri
Plastik Bıçak ve Kaşıkta Çapraz Polarize Işık Altında Görülen Gerginlik Çizgileri

Jeolojide Kullanımı

Çift kırılma özelliği, kristalli minerallerde yaygındır ve gerçekten de polarizasyonun ilk keşfinde çok önemli rol oynamıştır. Mineralojide polarizasyon kavramı, polarizasyon mikroskopları kullanılarak mineralleri tanımlamak amacıyla sıklıkla kullanılır. Katı malzemelerdeki ses dalgaları polarizasyon sergiler.

Katı malzemelerdeki ses dalgaları polarizasyon özelliğini sergiler. Üç kutuplaşmanın yeryüzündeki diferansiyel yayılımı, sismoloji alanında çok önemlidir. Yatay ve dikey polarize sismik dalgalar (kesme dalgaları) SH ve SV olarak adlandırılırken, uzunlamasına polarizasyonlu dalgalar (sıkıştırma dalgaları) P dalgaları olarak adlandırılır.

Kimyada Kullanımı

Bir kristal türünün çift kırılmasının onu tanımlamada yararlı olduğunu söyledik ve bu nedenle doğrusal çift kırılmanın saptanması özellikle jeoloji ve mineralojide yararlıdır. Doğrusal polarize ışığın polarizasyon durumu genellikle böyle bir kristalden geçerken değişir, bu da iki çapraz polarizör arasından bakıldığında göze çarpmasını sağlar. Benzer şekilde, kimyada sıvı bir çözeltide polarizasyon eksenlerinin dönüşü yani dairesel veya eliptik polarizasyon yararlı bir ölçüm olabilir. Bir sıvıda doğrusal çift kırılma imkansızdır, ancak kiral bir molekül çözelti halindeyken dairesel çift kırılma olabilir. Böyle bir molekülün sağ ve sol elli enantiyomerleri eşit sayıda olduğunda, etkileri sıfırlanır.

Bununla birlikte, organik moleküllerde daha sık olduğu gibi, yalnızca bir tane (veya birinin üstünlüğü) olduğunda, bu dengesizliğin büyüklüğünü (veya yalnızca bir enantiyomerin mevcut olduğu varsayıldığında molekülün kendisinin konsantrasyonunu) ortaya çıkaran net bir dairesel çift kırılma gözlemlenir. Bu, polarize ışığın bir sıvı tüpünden geçirildiği bir polarimetre kullanılarak ölçülür; bunun sonunda, içinden ışık iletimini geçersiz kılmak için döndürülen başka bir polarizör bulunur.

Astronomide Kullanımı

Astronominin birçok dalında, uzaydan gelen polarize elektromanyetik dalganın incelenmesi büyük önem taşımaktadır. Genellikle yıldızların termal radyasyonunda bir faktör olmamasına rağmen, polarizasyon aynı zamanda tutarlı astronomik kaynaklardan (örneğin, hidroksil veya metanol ustaları) ve aktif galaksilerdeki büyük radyo lobları gibi tutarsız kaynaklardan ve pulsar radyo radyasyonundan (bunlar , bazen tutarlı olduğu tahmin edilmektedir) ve ayrıca yıldızlararası tozdan saçılarak yıldız ışığına empoze edilir. Polarizasyon, radyasyon kaynakları ve saçılma hakkında birçok bilgi sağlar. Kozmik mikrodalga arka planın polarizasyonu, çok erken evrenin fiziğini incelemek için kullanılıyor. Sinkrotron radyasyonu doğası gereği polarizedir. Astronomik kaynakların Dünya üzerindeki biyolojik moleküllerin kiralitesine neden olduğu öne sürülmüştür.

Evrim Ağacı, sizlerin sayesinde bağımsız bir bilim iletişim platformu olmaya devam edecek!

Evrim Ağacı'nda tek bir hedefimiz var: Bilimsel gerçekleri en doğru, tarafsız ve kolay anlaşılır şekilde Türkiye'ye ulaştırmak. Ancak tahmin edebileceğiniz gibi Türkiye'de bilim anlatmak hiç kolay bir iş değil; hele ki bir yandan ekonomik bir hayatta kalma mücadelesi verirken...

O nedenle sizin desteklerinize ihtiyacımız var. Eğer yazılarımızı okuyanların %1'i bize bütçesinin elverdiği kadar destek olmayı seçseydi, bir daha tek bir reklam göstermeden Evrim Ağacı'nın bütün bilim iletişimi faaliyetlerini sürdürebilirdik. Bir düşünün: sadece %1'i...

O %1'i inşa etmemize yardım eder misiniz? Evrim Ağacı Premium üyesi olarak, ekibimizin size ve Türkiye'ye bilimi daha etkili ve profesyonel bir şekilde ulaştırmamızı mümkün kılmış olacaksınız. Ayrıca size olan minnetimizin bir ifadesi olarak, çok sayıda ayrıcalığa erişim sağlayacaksınız.

Avantajlarımız
"Maddi Destekçi" Rozeti
Reklamsız Deneyim
%10 Daha Fazla UP Kazanımı
Özel İçeriklere Erişim
+5 Quiz Oluşturma Hakkı
Özel Profil Görünümü
+1 İçerik Boostlama Hakkı
ve Daha Fazlası İçin...
Aylık
Tek Sefer
Destek Ol
₺50/Aylık
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
20
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

Makalelerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu makalemizle ilgili merak ettiğin bir şey mi var? Buraya tıklayarak sorabilirsin.

Soru & Cevap Platformuna Git
Bu Makale Sana Ne Hissettirdi?
  • Tebrikler! 6
  • Muhteşem! 4
  • Bilim Budur! 2
  • Mmm... Çok sapyoseksüel! 2
  • Umut Verici! 1
  • Merak Uyandırıcı! 1
  • Güldürdü 0
  • İnanılmaz 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 29/07/2025 03:40:59 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13878

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün bilimseverlerle ne paylaşmak istersin?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Size Özel
Makaleler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Geçmiş ve Notlar
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
İşaretle
Göz Attım
Site Ayarları

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.

[Site ayalarına git...]
Bu Yazıdaki Hareketleri
Daha Fazla göster
Tüm Okuma Geçmişin
Daha Fazla göster
0/10000
Kaydet
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. F. Sağlam, et al. Polarizasyon Nedir? Işık Kaç Farklı Şekilde Polarize Olabilir?. (24 Ocak 2023). Alındığı Tarih: 29 Temmuz 2025. Alındığı Yer: https://evrimagaci.org/s/13878
Sağlam, M. F., Bakırcı, Ç. M., Yazıcı, . (2023, January 24). Polarizasyon Nedir? Işık Kaç Farklı Şekilde Polarize Olabilir?. Evrim Ağacı. Retrieved July 29, 2025. from https://evrimagaci.org/s/13878
M. F. Sağlam, et al. “Polarizasyon Nedir? Işık Kaç Farklı Şekilde Polarize Olabilir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 24 Jan. 2023, https://evrimagaci.org/s/13878.
Sağlam, Mehmet Furkan. Bakırcı, Çağrı Mert. Yazıcı, . “Polarizasyon Nedir? Işık Kaç Farklı Şekilde Polarize Olabilir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, January 24, 2023. https://evrimagaci.org/s/13878.

Bize Ulaşın

ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close