Elektromanyetik Dalga Nedir? Bir Elektromanyetik Dalganın Anatomisi Nasıldır?
İş yapabilme yeteneği olarak tanımlanan enerji, çeşitli biçimlerde gözlenebilir ve bir enerji türünden diğerine dönüşebilir. Piller ve dolu barajlar potansiyel enerji depolamasına örnek verilebilirken durgun bir gözlemciye göre hareketli olan sistemler de kinetik enerjiyi gösterir. Elektron ve proton gibi yüklü parçacıklar hareket ettiklerinde elektromanyetik alanlar oluştururlar ve bu alanlar da elektromanyetik radyasyon şeklinde bir enerji taşınımını işaret eder.
Mekanik dalgalar ve elektromanyetik dalgalar, etrafımızdaki dünyada enerji taşınımının iki önemli yoludur. Mekanik dalgalar katı, sıvı, gaz ve plazma halindeki maddelerde gerçekleşen titreşimlerdir. Su dalgaları sıvı ortamlardaki, ses dalgaları da gaz ortamlardaki titreşimler ile oluşan dalgalara örnektir. Bu tip mekanik dalgalar ortamda ilerlerken moleküllerin birbirlerine çarpması ve enerji transfer etmesiyle oluşur. Uzayda ses dalgalarının yayılamamasının nedeni de budur.
Burada önemli olan nokta, maddenin değil enerjinin taşınıyor olmasıdır. Mesela bir havuzdaki dalgalar bir yerden bir yere su taşımaz, ancak suyun enerjisi su içerisinde hareket eder.
Öte yandan elektrik ve manyetizma, statik olabilirler. Saçımızın dikleşmesi ve mıknatıslar gibi statik elektrik ve manyetik örnekler verilebilir. Ancak birinin değişmesi, diğerini indükler ve bu değişen alanlar, aşağıdaki resimde görülebileceği gibi bir elektromanyetik dalga oluşturur. Elektromanyetik dalgaların mekanik dalgalardan en büyük farkları yayılmak için bir ortama ihtiyaç duymamalarıdır. Bunun anlamı elektromanyetik dalgaların sadece maddesel ortamlarda değil, aynı zamanda boşlukta da hareket edebileceğidir.
1860'lar ve 1870'lerde James Clerk Maxwell adında bir bilim insanı, elektrik ve manyetik alanların elektromanyetik dalga oluşturmak için bir çiftlenim meydana getirebileceğini açıklamıştır. Bugün Maxwell Denklemleri olarak bilinen denklem seti, elektrik ve manyetizma arasındaki ilişkinin matematiksel temelidir. Heinrich Hertz, Maxwell'in teorilerini radyo dalgalarının üretimi ve alımı için uyarlamıştır ve radyo dalgalarının bir saniyedeki devinim sayısı (frekans) ile hertz birimi tanımlanmıştır. Hertz'in radyo dalgaları ile yaptığı çalışmalar iki problemi çözmüştür: İlki, radyo dalgalarının ışık hızında ilerlemesi bilgisinin edinilmesidir. Yani radyo dalgaları, ışığın (dolayısıyla elektromanyetik dalganın) bir formudur. İkincisi ise elektrik ve manyetik alanların, elektromanyetik dalgalar formunda nasıl kablolardan ayrılabildiği bilgisinin edinilmesidir.
Dalga mı, Parçacık mı?
Işık, foton denilen ayrık enerji paketlerinden oluşur. Fotonlar momentum taşırlar, durgun kütleleri yoktur ve ışık hızında hareket ederler. Bütün ışıklar (elektromanyetik spektrumdaki tüm elektromanyetik dalgalar) hem dalga hem parçacık özellikleri gösterirler. Kullanılan tüm cihazlar, bu iki özelliğin biri ile çalışır veya birini ölçer. Bir spektrometre ışığın dalga özelliği ile ilgili, bir dijital kamera ise parçacık özelliği ile ilgilidir.
Işığın bir diğer özelliği de kutuplanabilmesidir, buna polarizasyon da denir. Elektromanyetik alanın hizalanmasının bir ölçüsü olan kutuplanma, kumbaraya metal para atma olayıyla canlandırılabilir. Belli bir yönelim haricinde para kutuya giremez. Çoğumuzun kullandığı polarize camlı güneş gözlükleri de gözü rahatsız edebilecek parlaklıkları (fazladan yönelim bileşenleri ile oluşan) bu şekilde yok eder.
Elektromanyetik Dalgaların Özellikleri
Elektromanyetik dalgaların tıpkı okyanus dalgaları gibi tepe noktaları vardır. Bu tepe noktalarının bir saniyede belli bir referans noktasına göre geçişi, frekansı; iki tepe noktası arası mesafe de dalga boyunu verir.
Elektromanyetik dalgalar ve elektromanyetik radyasyon aynı fiziksel olguyu işaret eder: Her ikisi de elektromanyetik enerji ile ilgilidir. Bu enerji frekans (radyo dalgalarında), dalga boyu (kızılötesi ve görünür bölgede) veya direkt enerji (x ve gama ışınlarında) ile ifade edilebilir. Üçü de matematiksel olarak birbirleriyle ilişkilidir ve biri bilinirse diğer ikisi bulunabilir. Elektromanyetik spektrumda, uzun dalga boyundan kısaya giderken dalga boyu azalıp enerji artar; kısadan uzuna giderken ise dalga boyu artıp enerji azalır. Bu durum şöyle hayal edilebilir: İki kişinin tuttuğu bir atlama ipinde fazla dalga oluşturmak için fazla enerji harcanmalıdır.
Elektromanyetik Dalga Denklemi
Uzayda herhangi bir yönde dik düzlemler şeklinde hareket eden dalgalar, fizikte düzlem dalgalar olarak adlandırılır. xx yönünde hareket eden bir düzlem elektromanyetik dalgada elektrik alan bileşeni için dalga denklemi şu şekildedir:
∂2E∂x2=1c2∂2E∂t2\frac{\partial^2E}{\partial x^2} = \frac{1}{c^2}\frac{\partial^2E}{\partial t^2}
Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.
KreosusKreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.
Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.
PatreonPatreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.
Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.
YouTubeYouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.
Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.
Diğer PlatformlarBu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.
Giriş yapmayı unutmayın!Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.
Benzer şekilde, elektrik alana dik bir düzlemdeki manyetik alan için de eşitlik aynı formdadır. Düzlem dalganın doğasına uygun olarak hem elektrik hem de manyetik alan bileşenleri hareket yönüne (xx) diktir. Eşitlikte dalga hızının olması gereken yerde, boşluktaki elektromanyetik dalgaların hızı olan ışık hızı (cc) yer almaktadır.
Elektromanyetik dalgalar için dalga denklemi, Maxwell denklemlerinden türetilmektedir. Elektrik alan bileşeni için düzlem dalga çözümü şu şekildedir:
E=Emsin(kx−wt)E = E_m sin(kx-wt)
Dalganın manyetik alan bileşeni ise şöyle yazılabilir:
B=Bmsin(kx−wt)B = B_m sin(kx-wt)
Çözümlerin Maxwell denklemleri ile tutarlı olması için bileşenlerin genliklerinin oranı ışık hızını vermeli, yani şu denklem sağlanmalıdır:
EmBm=c\frac{E_m}{B_m} = c
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 13
- 4
- 4
- 3
- 1
- 1
- 1
- 0
- 0
- 0
- 0
- 0
- NASA Science. Anatomy Of An Electromagnetic Wave - Nasa Science. Alındığı Tarih: 30 Kasım 2023. Alındığı Yer: NASA Science | Arşiv Bağlantısı
- Hyper Physics. Electromagnetic Waves. Alındığı Tarih: 30 Kasım 2023. Alındığı Yer: Hyper Physics | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 18/01/2025 08:07:16 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/12631
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.