Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?
Atomaltı Parçacıkların Dünyası ve Dağılımları: Fermiyon ve Bozonların Kuantum Durumlarındaki Dağılımlarına Bir Giriş...
Atomaltı parçacıkların davranışlarını ve etkileşimlerini açıklama, bunu yaparken de klasik istatistiksel yaklaşımla kuantum mekaniğini birleştirme çabaları “kuantum istatistik” kavramını doğurmuştur. Termodinamik ve kuantum mekaniksel etkilerin, klasik fizikle birleştiği bu alanı giriş düzeyinde de olsa incelemek oldukça ilginç ve sıradışı olacak. Öyleyse başlayalım.
(Ufak bir hatırlatma yapmakta fayda var, aşağıdaki çoğu kavrama daha önceki yazılarımızda değindiğimiz için tekrara düşmemek adına fazla değinmeden geçeceğiz.)
Termal Dalgaboyu
Gaz içerisindeki atomları ele alarak bu ifadeyi açıklamaya çalışalım. Onları yüksek sıcaklıkta birbirleriyle çarpışan bilardo topları olarak düşünebiliriz. Çünkü çarpışan bu atomların boyutları, diğer parçacıklar arası ortalama mesafeden daha küçüktür. Ayrıca atomaltı parçacıklar katı ve sıvı fazdakilere oranla daha az potansiyelle bağlıdırlar diyebiliriz. Önceki yazılarımızdan yola çıkarak da bu atomları birer dalga paketçiği olarak ifade etmek mümkündür. Diğer yandan sıcaklıkla bu atomların ilişkileri arasındaki ilişkiye değinirsek, sıcaklık kinetik enerji ile ilişkili olup sıcaklık azaldıkça, bu dalga paketçikleri, yani atomlar, birbirleriyle daha çok örtüşüp etkileşime girecekler. Böyle olunca da klasik etkilerin yanı sıra kuantumsal etkiler daha baskın hale gelecek.
O halde asıl soru şu: Klasik etkilerin yerini kuantumsal etkilere bıraktığı aralığın/geçişin genel bir tanımı var mı? Tam olarak nerede bu etkiler daha baskınlaşır? Cevap olarak böyle bir geçişten genel olarak bahsedebilmek mümkün olup bunu bulmaya çalışalım:
Atomları “dalga paketi” olarak tanımlamıştık, de Broglie’ye göre her parçacığa eşlik eden bir dalga olup buna “madde dalgaları” denilmekteydi. Buradan yola çıkarak öyleyse bu atomların de Broglie dalgaboyu şu bağıntıyla bulunur:
λ0=hp0{\lambda}_0 = \dfrac{h}{p_0} (Denklem 1)
λ0:{\lambda}_0 : de Broglie Dalgaboyu
h:h: Planck Sabiti
p0:p_0: Momentum
Gerekli olan diğer bir ifade ise kinetik enerji olup bunu denge halindeki T sıcaklığındaki gaz atomlarının enerjisi ile birlikte yazarsak (Bkz: Eş Bölüşüm Fonksiyonu)
p022m=32kT\dfrac{{p_0}^2}{2m} = \dfrac{3}{2} k T (Denklem 2)
Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.
KreosusKreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.
Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.
PatreonPatreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.
Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.
YouTubeYouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.
Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.
Diğer PlatformlarBu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.
Giriş yapmayı unutmayın!Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.
m:m: kütle
k:k: Boltzmann Sabiti
T:T: Sıcaklık
denklemini elde ederiz. Yukarıdaki iki denklem sayesinde amacımız olan de Broglie dalgaboyunu bulmuş oluruz.
λ0=h3mkT\lambda_0 = \dfrac{h}{\sqrt{3mkT}} (Denklem 3)
Şimdi ise bir tek gaz atomundan yola çıkarak bunu gazın içerisindeki çok sayıdaki atomlara genelleştirip bulduğumuz bu de Broglie dalgaboylarıyla düzlem dalgaları “girişim” yaptırarak genel anlamda bir dalga paketi elde ederiz. Burada değinilmesi gereken bir diğer önemli konu ise dalgaboyları ile momentum arasındaki “Heisenberg Belirsizlik İlkesi” ne uygunluk. Bu iki nicelik bu ilkeyi sağlamak zorunda olup belirli büyüklükler şeklinde kendilerini lokalize ederler. (Bkz: Magnitude Estimate Degree of Spatial Localization)
Δx⋅Δp∽ℏ\Delta x \cdot \Delta p \backsim \hbar (Denklem 4)
Fazla ara işlemlere boğulmadan yukarıdaki denklemler sayesinde
λ=2πℏ2mkT\lambda = \sqrt{\dfrac{2 \pi {\hbar}^2}{m k T}} (Denklem 5)
λ:\lambda: Termal Dalgaboyu
bağıntısı elde edilir. Biz buna “termal dalgaboyu” diyoruz. Oldukça önemli bir ifade olup, asıl amacımız olan klasik etkilerin yerini kuantumsal etkilere bıraktığı bölgeyi bulma çabamızın cevabı da burada yatmakta.
nλ3<<1n {\lambda}^3 << 1 (Klasik Etkiler Baskın)
nλ3≈1n {\lambda}^3 \approx 1 (Kuantumsal Etkiler Başlamakta)
n terimi yoğunluk ile ilgili olup sorumuzun cevabı için şu aşamada önemli değildir. Toparlarsak eğer, termal dalgaboyu ile ilişkili (nλ3n \lambda^3 ) terimi 1’den oldukça küçük ise klasik etkiler, 1’e yakınsa kuantumsal etkiler baskın olmaktadır. Kuantum etkilerin önemli ve baskın hale gelmeye başladığı sıcaklık değerine ise “yozlaşma sıcaklığı” (İng: Degeneracy Temperature) denilmektedir. Bu sıcaklıktan itibaren sistem artık kuantum mekaniksel olarak incelenmeye başlanır ve artık kuantum dünyasına giriş yapmış olursunuz. Çünkü burada önceki yazılarımızda sık sık değindiğimiz farklı atomlara ait dalga fonksiyonları birbirleriyle üst üste binerler. (İng: Overlap)
nλ3=1n {\lambda}^3 = 1 (Kuantumsal Etkiler Baskın)
Teorik olarak bulduğumuz bu sonuçları grafik olarak incelersek klasik ve kuantum etkilerin baskın olduğu ve yerini bir diğerine bıraktığı bölgeyi daha net görmüş oluruz. Sıvı helyum için yozlaşma sıcaklığı yaklaşık 2.17 Kelvin olup bu sıcaklıktan itibaren sıvı helyum kuantumsal etkiler gösterip “süperakışkan” özellikte davranışlar sergiler.
Ayrıca bazı diğer sistemlere ait yoğunluk ve yozlaşma sıcaklığı tablosu da şöyle örneklenebilir:
Artık klasik etkilerden kuantumsal etkilere geçişin nerede başladığını gördüğümüze göre, bu atomaltı parçacıkların (Fermiyon ve Bozon) enerji seviyelerindeki yerleşimlerini/dağılımlarını inceleyebiliriz. Bunu yaparken de işi fazla fiziğe ve matematiğe boğmadan yapmayı hedefliyoruz. İlgili okuyucularımız “Kanonik Dağılımlar ve Durum Yoğunluk Fonksiyonları"na bakabilir.
Fermi – Dirac İstatistiği
Atomaltı parçacıkları temel olarak “fermiyonlar” ve “bozonlar” olarak iki ana gruba ayırabiliriz. Spin değerleri (1/2, 3/2,...) şeklinde olan parçacıklar fermiyon adlandırılır. Proton, nötron, elektron fermiyon sınıfında yer alırken isimlendirme ise bu alanda yaptıkları çalışmalar dolayısıyla fizikçi Enrico Fermi’ye ithafen yapılmıştır.
Gelelim fermiyonların enerji seviyelerindeki dağılımlarına… Pauli Dışarlama İlkesi gereğince aynı kuantum durumunda birden daha fazla fermiyon bulunamaz. Antisimetrik özellikten dolayı spinleri farklı olmak zorunda denilebilir. İşte bu kurala uygun şekilde kuantum durumlarına dağılım, “Fermi - Dirac Dağılımı” olarak bilinir ve aşağıdaki bağıntıyla ifade edilir:
njˉ=gje−α+βϵj+1\bar{n_j} = \dfrac{g_j}{e^{-\alpha + \beta \epsilon _j} + 1} (Denklem 6)
njˉ\bar{n_j} :ϵj:\epsilon_j Enerjili Kuantum Durumların Ortalama Doluluk/İşgal Sayısı
Bose – Einstein Dağılımı
Spin değerleri (0, 1, 2, ...) şeklinde olan parçacıklara bozon denilmekte olup bu alandaki çalışmaları nedeniyle fizikçi Satyendra Nath Bose anısına bu şekilde adlandırılmıştır. Bozonlar parçacık fiziğinde kuvvet taşıyıcı parçacıklar olarak bilinirler. Foton, W-Z bozonları, belki de en bilineni 2012 yılında Cern’de deneysel keşfi gerçekleşen Higgs Parçacığı bu ailede yer almaktadır.
Bozonlarda, fermiyonlarda olduğu gibi bir dışarlama durumu söz konusu değildir ve atomdaki kuantum durumlarındaki dağılımları/işgal yerleri aşağıdaki bağıntıyla bulunabilir:
njˉ=gje−α+βϵj−1\bar{n_j} = \dfrac{g_j}{e^{-\alpha + \beta \epsilon _j} - 1} (Denklem 7)
İki dağılım da esas olarak birbirine matematiksel olarak çok benzemekte olup genel olarak şu şekilde yazılabilir:
njˉ=gje−α+βϵj±1\bar{n_j} = \dfrac{g_j}{e^{-\alpha + \beta \epsilon _j} \pm 1} (Denklem8) (++ : Fermi - Dirac, −- : Bose - Einstein)
Maxwell – Boltzmann Dağılımı
Yukarıdaki iki dağılımla birlikte fermiyon ve bozonlar için dağılımları inceledik. Peki sıcaklıkla bu dağılımların ilgisi olduğunu da bildiğimize göre, sıcaklığı artırırsak nasıl bir sonuçla karşılaşırız? Parçacıklar yine yukarıdaki dağılımlara mı uyarlar? Yoksa başka bir dağılım mı gösterirler?
Eğer sıcaklığı değiştirip yüksek sıcaklık limitine yaklaştırırsak, hem Fermi dağılımı hem de Bose dağılımı tıpkı “klasik dağılım”a benzer ve bu özellikte davranış sergilerler. Çünkü yüksek sıcaklıklar daha fazla enerji anlamına gelir ve bu da daha fazla uyarılma demektir. İster bozon ister fermiyon olsun bu sıcaklık değerlerinde uyarılmış olan durumları doldurma eğilimleri termodinamik ve diğer fiziksel nedenlerden dolayı daha azdır. Ayrıca bir durumda bulunan bu parçacıkların sayısı oldukça düşüktür.
O halde klasik dağılım olarak bilinen Maxwell – Boltzmann Dağılımı’nın matematiksel ifadesini yazacak olursak,
nk→n_k \rightarrow eα−βϵke^{\alpha - \beta \epsilon_k} , β→0\beta \rightarrow 0 (Denklem 9)
nk=1z−teβϵk±1n_k = \dfrac{1}{z^{-t} e^{\beta \epsilon_k} \pm 1} (Denklem 10)
bağıntılarını elde etmiş oluruz.
Dağılımları daha net ifade etmek için her üç dağılımı aynı grafikte göstermek mümkün:
Bu grafikten de anlaşılacağı üzere x’in 1’den çok büyük (>1">x>>1x>>1 ) değerleri için parçacıkların dağılımlarının sayısı aynı hale yaklaşmakta ve gelmektedir. Yani Fermi – Dirac Dağılımı ile Bose – Einstein Dağılımı, bu bölgede klasik dağılım olan Maxwell – Boltzmann Dağılımı’na yaklaşır.
Toparlarsak eğer bu yazımızda atomaltı parçacıklara ait atomdaki dağılımlarını istatistiksel mekanikle incelemiş olduk. Aynı zamanda diğer bir önemli soru olan, klasik ile kuantum etkilerin nerede başlayıp baskın hale geldiklerini gösterdik. Günümüz yoğun madde fiziği araştırmaları (süperiletkenlik, band teorileri, enerji dağılımları) ve ister deneysel ister teorik fizik olsun, merkezinde yer alan bu kuantum istatistiği ile daha net anlaşılmaktadır.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 8
- 3
- 3
- 3
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- K. Huang. (2001). Introduction To Statistical Physics. ISBN: 0748409416. Yayınevi: Taylor & Francis.
- W. Greiner, et al. (1995). Thermodynamics And Statistical Mechanics. ISBN: 0387942998. Yayınevi: Springer-Verlag Berlin Heidelberg.
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/01/2025 04:20:23 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9199
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.