Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?

Atomaltı Parçacıkların Dünyası ve Dağılımları: Fermiyon ve Bozonların Kuantum Durumlarındaki Dağılımlarına Bir Giriş...

7 dakika
2,242
Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır? Cern
Higgs - CMS Deneyi - LHC / CERN
Evrim Ağacı Akademi: Kuantum Fiziği Yazı Dizisi

Bu yazı, Kuantum Fiziği yazı dizisinin 33 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Kuantum Mekaniği Nedir? Atom Altı Parçacıkların Dünyası, Evren'i Daha İyi Anlamamızı Sağlayabilir mi?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Atomaltı parçacıkların davranışlarını ve etkileşimlerini açıklama, bunu yaparken de klasik istatistiksel yaklaşımla kuantum mekaniğini birleştirme çabaları “kuantum istatistik” kavramını doğurmuştur. Termodinamik ve kuantum mekaniksel etkilerin, klasik fizikle birleştiği bu alanı giriş düzeyinde de olsa incelemek oldukça ilginç ve sıradışı olacak. Öyleyse başlayalım.

(Ufak bir hatırlatma yapmakta fayda var, aşağıdaki çoğu kavrama daha önceki yazılarımızda değindiğimiz için tekrara düşmemek adına fazla değinmeden geçeceğiz.)

Standart Model ve Atomaltı Parçacıkların Sınıflandırılması
Standart Model ve Atomaltı Parçacıkların Sınıflandırılması
Wikimedia

Termal Dalgaboyu

Gaz içerisindeki atomları ele alarak bu ifadeyi açıklamaya çalışalım. Onları yüksek sıcaklıkta birbirleriyle çarpışan bilardo topları olarak düşünebiliriz. Çünkü çarpışan bu atomların boyutları, diğer parçacıklar arası ortalama mesafeden daha küçüktür. Ayrıca atomaltı parçacıklar katı ve sıvı fazdakilere oranla daha az potansiyelle bağlıdırlar diyebiliriz. Önceki yazılarımızdan yola çıkarak da bu atomları birer dalga paketçiği olarak ifade etmek mümkündür. Diğer yandan sıcaklıkla bu atomların ilişkileri arasındaki ilişkiye değinirsek, sıcaklık kinetik enerji ile ilişkili olup sıcaklık azaldıkça, bu dalga paketçikleri, yani atomlar, birbirleriyle daha çok örtüşüp etkileşime girecekler. Böyle olunca da klasik etkilerin yanı sıra kuantumsal etkiler daha baskın hale gelecek.

Tüm Reklamları Kapat

O halde asıl soru şu: Klasik etkilerin yerini kuantumsal etkilere bıraktığı aralığın/geçişin genel bir tanımı var mı? Tam olarak nerede bu etkiler daha baskınlaşır? Cevap olarak böyle bir geçişten genel olarak bahsedebilmek mümkün olup bunu bulmaya çalışalım:

Atomları “dalga paketi” olarak tanımlamıştık, de Broglie’ye göre her parçacığa eşlik eden bir dalga olup buna “madde dalgaları” denilmekteydi. Buradan yola çıkarak öyleyse bu atomların de Broglie dalgaboyu şu bağıntıyla bulunur:

λ0=hp0{\lambda}_0 = \dfrac{h}{p_0} (Denklem 1)

λ0:{\lambda}_0 : de Broglie Dalgaboyu

Tüm Reklamları Kapat

h:h: Planck Sabiti

p0:p_0: Momentum

Gerekli olan diğer bir ifade ise kinetik enerji olup bunu denge halindeki T sıcaklığındaki gaz atomlarının enerjisi ile birlikte yazarsak (Bkz: Eş Bölüşüm Fonksiyonu)

p022m=32kT\dfrac{{p_0}^2}{2m} = \dfrac{3}{2} k T (Denklem 2)

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

m:m: kütle

k:k: Boltzmann Sabiti

T:T: Sıcaklık

denklemini elde ederiz. Yukarıdaki iki denklem sayesinde amacımız olan de Broglie dalgaboyunu bulmuş oluruz.

λ0=h3mkT\lambda_0 = \dfrac{h}{\sqrt{3mkT}} (Denklem 3)

Şimdi ise bir tek gaz atomundan yola çıkarak bunu gazın içerisindeki çok sayıdaki atomlara genelleştirip bulduğumuz bu de Broglie dalgaboylarıyla düzlem dalgaları “girişim” yaptırarak genel anlamda bir dalga paketi elde ederiz. Burada değinilmesi gereken bir diğer önemli konu ise dalgaboyları ile momentum arasındaki “Heisenberg Belirsizlik İlkesi” ne uygunluk. Bu iki nicelik bu ilkeyi sağlamak zorunda olup belirli büyüklükler şeklinde kendilerini lokalize ederler. (Bkz: Magnitude Estimate Degree of Spatial Localization)

Tüm Reklamları Kapat

Δx⋅Δp∽ℏ\Delta x \cdot \Delta p \backsim \hbar (Denklem 4)

Fazla ara işlemlere boğulmadan yukarıdaki denklemler sayesinde

λ=2πℏ2mkT\lambda = \sqrt{\dfrac{2 \pi {\hbar}^2}{m k T}} (Denklem 5)

Tüm Reklamları Kapat

λ:\lambda: Termal Dalgaboyu

bağıntısı elde edilir. Biz buna “termal dalgaboyu” diyoruz. Oldukça önemli bir ifade olup, asıl amacımız olan klasik etkilerin yerini kuantumsal etkilere bıraktığı bölgeyi bulma çabamızın cevabı da burada yatmakta.

nλ3<<1n {\lambda}^3 << 1 (Klasik Etkiler Baskın)

nλ3≈1n {\lambda}^3 \approx 1 (Kuantumsal Etkiler Başlamakta)

Tüm Reklamları Kapat

Agora Bilim Pazarı
  • Dış Sitelerde Paylaş

n terimi yoğunluk ile ilgili olup sorumuzun cevabı için şu aşamada önemli değildir. Toparlarsak eğer, termal dalgaboyu ile ilişkili (nλ3n \lambda^3 ) terimi 1’den oldukça küçük ise klasik etkiler, 1’e yakınsa kuantumsal etkiler baskın olmaktadır. Kuantum etkilerin önemli ve baskın hale gelmeye başladığı sıcaklık değerine ise “yozlaşma sıcaklığı” (İng: Degeneracy Temperature) denilmektedir. Bu sıcaklıktan itibaren sistem artık kuantum mekaniksel olarak incelenmeye başlanır ve artık kuantum dünyasına giriş yapmış olursunuz. Çünkü burada önceki yazılarımızda sık sık değindiğimiz farklı atomlara ait dalga fonksiyonları birbirleriyle üst üste binerler. (İng: Overlap)

nλ3=1n {\lambda}^3 = 1 (Kuantumsal Etkiler Baskın)

Teorik olarak bulduğumuz bu sonuçları grafik olarak incelersek klasik ve kuantum etkilerin baskın olduğu ve yerini bir diğerine bıraktığı bölgeyi daha net görmüş oluruz. Sıvı helyum için yozlaşma sıcaklığı yaklaşık 2.17 Kelvin olup bu sıcaklıktan itibaren sıvı helyum kuantumsal etkiler gösterip “süperakışkan” özellikte davranışlar sergiler.

Grafik 1: Sıcaklığa ve Yoğunluğa Bağlı Klasik ve Kuantum Bölgeler
Grafik 1: Sıcaklığa ve Yoğunluğa Bağlı Klasik ve Kuantum Bölgeler
Introduction to Statistical Physics / K. Huang (2001, Taylor & Francis)

Ayrıca bazı diğer sistemlere ait yoğunluk ve yozlaşma sıcaklığı tablosu da şöyle örneklenebilir:

Grafik 2: Diğer Sistemlere Ait Yoğunluk ve Yozlaşma Sıcaklık Değerleri
Grafik 2: Diğer Sistemlere Ait Yoğunluk ve Yozlaşma Sıcaklık Değerleri
Introduction to Statistical Physics / K. Huang (2001, Taylor & Francis)

Artık klasik etkilerden kuantumsal etkilere geçişin nerede başladığını gördüğümüze göre, bu atomaltı parçacıkların (Fermiyon ve Bozon) enerji seviyelerindeki yerleşimlerini/dağılımlarını inceleyebiliriz. Bunu yaparken de işi fazla fiziğe ve matematiğe boğmadan yapmayı hedefliyoruz. İlgili okuyucularımız “Kanonik Dağılımlar ve Durum Yoğunluk Fonksiyonları"na bakabilir.

Fermi – Dirac İstatistiği

Atomaltı parçacıkları temel olarak “fermiyonlar” ve “bozonlar” olarak iki ana gruba ayırabiliriz. Spin değerleri (1/2, 3/2,...) şeklinde olan parçacıklar fermiyon adlandırılır. Proton, nötron, elektron fermiyon sınıfında yer alırken isimlendirme ise bu alanda yaptıkları çalışmalar dolayısıyla fizikçi Enrico Fermi’ye ithafen yapılmıştır.

Gelelim fermiyonların enerji seviyelerindeki dağılımlarına… Pauli Dışarlama İlkesi gereğince aynı kuantum durumunda birden daha fazla fermiyon bulunamaz. Antisimetrik özellikten dolayı spinleri farklı olmak zorunda denilebilir. İşte bu kurala uygun şekilde kuantum durumlarına dağılım, “Fermi - Dirac Dağılımı” olarak bilinir ve aşağıdaki bağıntıyla ifade edilir:

njˉ=gje−α+βϵj+1\bar{n_j} = \dfrac{g_j}{e^{-\alpha + \beta \epsilon _j} + 1} (Denklem 6)

njˉ\bar{n_j} :ϵj:\epsilon_j Enerjili Kuantum Durumların Ortalama Doluluk/İşgal Sayısı

Bose – Einstein Dağılımı

Spin değerleri (0, 1, 2, ...) şeklinde olan parçacıklara bozon denilmekte olup bu alandaki çalışmaları nedeniyle fizikçi Satyendra Nath Bose anısına bu şekilde adlandırılmıştır. Bozonlar parçacık fiziğinde kuvvet taşıyıcı parçacıklar olarak bilinirler. Foton, W-Z bozonları, belki de en bilineni 2012 yılında Cern’de deneysel keşfi gerçekleşen Higgs Parçacığı bu ailede yer almaktadır.

Tüm Reklamları Kapat

Bozonlarda, fermiyonlarda olduğu gibi bir dışarlama durumu söz konusu değildir ve atomdaki kuantum durumlarındaki dağılımları/işgal yerleri aşağıdaki bağıntıyla bulunabilir:

njˉ=gje−α+βϵj−1\bar{n_j} = \dfrac{g_j}{e^{-\alpha + \beta \epsilon _j} - 1} (Denklem 7)

İki dağılım da esas olarak birbirine matematiksel olarak çok benzemekte olup genel olarak şu şekilde yazılabilir:

njˉ=gje−α+βϵj±1\bar{n_j} = \dfrac{g_j}{e^{-\alpha + \beta \epsilon _j} \pm 1} (Denklem8) (++ : Fermi - Dirac, −- : Bose - Einstein)

Tüm Reklamları Kapat

Maxwell – Boltzmann Dağılımı

Yukarıdaki iki dağılımla birlikte fermiyon ve bozonlar için dağılımları inceledik. Peki sıcaklıkla bu dağılımların ilgisi olduğunu da bildiğimize göre, sıcaklığı artırırsak nasıl bir sonuçla karşılaşırız? Parçacıklar yine yukarıdaki dağılımlara mı uyarlar? Yoksa başka bir dağılım mı gösterirler?

Grafik 3: Sıcaklığa Bağlı Fermiyon ve Bozonlara Ait Potansiyel Değişimleri
Grafik 3: Sıcaklığa Bağlı Fermiyon ve Bozonlara Ait Potansiyel Değişimleri
Thermodynamics and Statistical Mechanics / W.Greiner (1995, Springer)

Eğer sıcaklığı değiştirip yüksek sıcaklık limitine yaklaştırırsak, hem Fermi dağılımı hem de Bose dağılımı tıpkı “klasik dağılım”a benzer ve bu özellikte davranış sergilerler. Çünkü yüksek sıcaklıklar daha fazla enerji anlamına gelir ve bu da daha fazla uyarılma demektir. İster bozon ister fermiyon olsun bu sıcaklık değerlerinde uyarılmış olan durumları doldurma eğilimleri termodinamik ve diğer fiziksel nedenlerden dolayı daha azdır. Ayrıca bir durumda bulunan bu parçacıkların sayısı oldukça düşüktür.

O halde klasik dağılım olarak bilinen Maxwell – Boltzmann Dağılımı’nın matematiksel ifadesini yazacak olursak,

nk→n_k \rightarrow eα−βϵke^{\alpha - \beta \epsilon_k} , β→0\beta \rightarrow 0 (Denklem 9)

Tüm Reklamları Kapat

nk=1z−teβϵk±1n_k = \dfrac{1}{z^{-t} e^{\beta \epsilon_k} \pm 1} (Denklem 10)

bağıntılarını elde etmiş oluruz.

Dağılımları daha net ifade etmek için her üç dağılımı aynı grafikte göstermek mümkün:

Grafik 4: Her Üç Dağılımın Gösterimi
Grafik 4: Her Üç Dağılımın Gösterimi
Introduction to Statistical Physics / K. Huang (2001, Taylor & Francis)

Bu grafikten de anlaşılacağı üzere x’in 1’den çok büyük (>1">x>>1x>>1 ) değerleri için parçacıkların dağılımlarının sayısı aynı hale yaklaşmakta ve gelmektedir. Yani Fermi – Dirac Dağılımı ile Bose – Einstein Dağılımı, bu bölgede klasik dağılım olan Maxwell – Boltzmann Dağılımı’na yaklaşır.

Toparlarsak eğer bu yazımızda atomaltı parçacıklara ait atomdaki dağılımlarını istatistiksel mekanikle incelemiş olduk. Aynı zamanda diğer bir önemli soru olan, klasik ile kuantum etkilerin nerede başlayıp baskın hale geldiklerini gösterdik. Günümüz yoğun madde fiziği araştırmaları (süperiletkenlik, band teorileri, enerji dağılımları) ve ister deneysel ister teorik fizik olsun, merkezinde yer alan bu kuantum istatistiği ile daha net anlaşılmaktadır.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Kuantum Fiziği Yazı Dizisi

Bu yazı, Kuantum Fiziği yazı dizisinin 33 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Kuantum Mekaniği Nedir? Atom Altı Parçacıkların Dünyası, Evren'i Daha İyi Anlamamızı Sağlayabilir mi?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
29
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Mmm... Çok sapyoseksüel! 8
  • Muhteşem! 3
  • Tebrikler! 3
  • İnanılmaz 3
  • Bilim Budur! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • K. Huang. (2001). Introduction To Statistical Physics. ISBN: 0748409416. Yayınevi: Taylor & Francis.
  • W. Greiner, et al. (1995). Thermodynamics And Statistical Mechanics. ISBN: 0387942998. Yayınevi: Springer-Verlag Berlin Heidelberg.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/12/2024 18:56:07 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9199

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Araştırmacılar
İspat Yükü
Irk
Diş Hastalıkları
Kedigiller
Neandertal
Uzun
Doktor
Göğüs Hastalığı
Yayılım
Google
Beslenme
Tehlike
Risk
Aslan
Obezite
Radyasyon
Büyük Patlama
Işık Hızı
Genel Halk
Kuantum Fiziği
Bilimkurgu
Evren
Fosil
İklim
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün bilimseverlerle ne paylaşmak istersin?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
A. Kocabaldır, et al. Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?. (24 Ağustos 2020). Alındığı Tarih: 21 Aralık 2024. Alındığı Yer: https://evrimagaci.org/s/9199
Kocabaldır, A., Özdil, A. Ş. (2020, August 24). Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?. Evrim Ağacı. Retrieved December 21, 2024. from https://evrimagaci.org/s/9199
A. Kocabaldır, et al. “Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, 24 Aug. 2020, https://evrimagaci.org/s/9199.
Kocabaldır, Anıl. Özdil, Ayşegül Şenyiğit. “Kuantum İstatistik: Klasik Etkiler, Yerini Ne Zaman Kuantum Etkilerine Bırakır?.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, August 24, 2020. https://evrimagaci.org/s/9199.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close