İrrasyonel Bir Sayının İrrasyonel Kuvveti, Rasyonel Bir Sayı Olabilir Mi?
Yazının başlığı olan soruya cevap vermeden önce rasyonel ve irrasyonel sayıların ne demek olduğunu anlayalım.
Tanımlar
Rasyonel sayılar, iki tam sayının birbirine oranı ile ifade edilebilen sayılardır. Örnek olarak:
32,42,−1749,...\LARGE{\frac{3}{2},\frac{4}{2},\frac{-17}{49},...}
verilebilir. İrrasyonel sayılar ise reel sayılar kümesinin rasyonel olmayan elemanlarıdır. Diğer bir ifade ile rasyonel olmayan her reel sayı irrasyonel bir sayıdır. Bu nedenle iki tam sayının birbirine oranı olarak ifade edilemezler. Örneğin:
2,19,π,e,...\LARGE{\sqrt{2},\sqrt{19},\pi,e,...}
π\pi ve ee sabitlerinin irrasyonel olduklarını birçok matematikçi kanıtlamıştır. Biz basit olarak 2\sqrt{2}'nin irrasyonel bir sayı olduğunu kanıtlayalım.
2\sqrt{2}'nin İrrasyonel Bir Sayı Olduğunun Kanıtı
aa ve bb ortak çarpanları olmayan iki tam sayı olsun.
2=ab\LARGE{\sqrt{2}=\frac{a}{b}}
Bu denkleme göre a2a^2'nin çarpanlarından biri 2'dir, bu da tanım gereği a2a^2'nin çift sayı olduğu anlamına geliyor. a2a^2'nin çift sayı olması için a'nın da çift sayı olması gerekir; çünkü bir tek sayının başka bir tek sayıyla çarpımı yine tek sayıdır. O halde kk bir tam sayı olmak üzere:
a=2k\LARGE{a=2k}
denklemi ile aa'yı ifade edebiliriz. Bunu denklemde yerine koyarsak:
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
4k2=2b2\LARGE{4k^2=2b^2}
b2=2k\LARGE{b^2=2k}
Bu denklemden sonuç olarak b2b^2 sayısının bir çift sayı ve dolayısıyla bb sayısının da çift sayı olması gerektiği ortaya çıkar.
Hem aa hem bb'nin çift olması demek, her iki sayının 2 ile tam bölünebiliyor olması ve dolayısıyla her iki sayınında en az bir ortak çarpanı (bu durumda 2) olduğu anlamına geliyor. Bu da en başta aa ve bb için yaptığımız tanım olan “aa ve bb ortak çarpanları olmayan iki tam sayıdır” ifadesi ile çelişir.
Sonuç olarak 2\sqrt{2}'nin rasyonel sayı olması çelişkili olacağı için 2\sqrt{2} irrasyonel bir sayıdır.
2\sqrt{2}'nin irrasyonel olduğunu kanıtladık; fakat asıl sorumuza geçmeden önce basit bir mantık sorusunu çözelim.
Bir Mantık Sorusu
Can, Mehmet ve Ayşe adında 3 kişi vardır. 3’ünün durumları şöyledir:
- Can, Ayşe’ye bakıyor; Ayşe, Mehmet’e bakıyor.
- Can evli, Mehmet evli değil.
Bu örnekte evli biri evli olmayan birine bakıyor mudur?
- A. Evet
- B. Hayır
- C. Belirli değil
Eğer cevabın C şıkkı olduğunu düşünüyorsanız, yanılıyorsunuz. Eğer "Bir insan ya evlidir ya da evli değildir" varsayımını kabul ederseniz cevap A. şıkkıdır. Bize sorulan bilmeceyi daha iyi ifade edelim:
- Can: Evli
- Ayşe: Belirli Değil
- Mehmet: Evli Değil
Burada Ayşe için iki koşul vardır: “Ya Ayşe evlidir ya da Ayşe evli değildir”. Her iki koşula göre ne elde ettiğimize bakalım:
- 1. Koşul: "Ayşe evlidir." O halde Ayşe, Mehmet’e baktığı için “evli biri evli olmayan birine bakıyordur” önermesi doğrudur.
- 2. Koşul: "Ayşe evli değildir." O halde Can, Ayşe’ye baktığı için “evli biri evli olmayan birine bakıyordur” önermesi doğrudur.
Sonuç olarak, Ayşe evli olsun veya olmasın her iki koşulda da “evli biri evli olmayan birine bakıyordur” önermesi doğrudur.
Bu bilmecede kullandığımız aynı mantık ile yazının başlığı olan soruya cevap verebiliriz.
İrrasyonel Bir Sayının İrrasyonel Kuvveti Rasyonel Bir Sayı Olabilir Mi?
Diyelim ki xx reel sayı olacak şekilde:
x=22\LARGE{x=\sqrt{2}^{\sqrt{2}}}
olsun. 2\sqrt{2}'nin irrasyonel olduğunu bildiğimiz için x irrasyonel bir sayının irrasyonel üssüdür. Her iki tarafın da 2\sqrt{2} üssünü alırsak:
x2=(22)2\LARGE{x^{\sqrt{2}}=({\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}}}
x2=22\LARGE{x^{\sqrt{2}}={\sqrt{2}^2}}
x2=2\LARGE{x^{\sqrt{2}}=2}
Elimizde iki sonuç var:
x=22\LARGE{x=\sqrt{2}^{\sqrt{2}}}
x2=2\LARGE{x^{\sqrt{2}}=2}
- Koşul: "xx, irrasyonel bir sayıdır." O halde, ikinci denkleme göre “irrasyonel bir sayının irrasyonel üssü rasyonel bir sayı olabilir” önermesi doğrudur.
- Koşul: "xx, rasyonel bir sayıdır." O halde, ilk denkleme göre “irrasyonel bir sayının irrasyonel üssü rasyonel bir sayı olabilir” önermesi doğrudur.
Sonuç olarak, xx rasyonel sayı olsun veya olmasın “irrasyonel bir sayının irrasyonel üssü rasyonel bir sayı olabilir” önermesi doğrudur.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 15
- 7
- 6
- 6
- 4
- 4
- 2
- 1
- 0
- 0
- 0
- 0
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 17/11/2024 16:56:07 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/433
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.