Evrim Ağacı
Reklamı Kapat

İrrasyonel Bir Sayının İrrasyonel Kuvveti, Rasyonel Bir Sayı Olabilir Mi?

İrrasyonel Bir Sayının İrrasyonel Kuvveti, Rasyonel Bir Sayı Olabilir Mi?
Tavsiye Makale
Reklamı Kapat

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Yazının başlığı olan soruya cevap vermeden önce rasyonel ve irrasyonel sayıların ne demek olduğunu anlayalım.

Tanımlar

Rasyonel sayılar, iki tam sayının birbirine oranı ile ifade edilebilen sayılardır. Örnek olarak:

32,42,−1749,...\LARGE{\frac{3}{2},\frac{4}{2},\frac{-17}{49},...}

verilebilir. İrrasyonel sayılar ise reel sayılar kümesinin rasyonel olmayan elemanlarıdır. Diğer bir ifade ile rasyonel olmayan her reel sayı irrasyonel bir sayıdır. Bu nedenle iki tam sayının birbirine oranı olarak ifade edilemezler. Örneğin:

2,19,π,e,...\LARGE{\sqrt{2},\sqrt{19},\pi,e,...}

π\pi ve ee sabitlerinin irrasyonel olduklarını birçok matematikçi kanıtlamıştır. Biz basit olarak 2\sqrt{2}'nin irrasyonel bir sayı olduğunu kanıtlayalım.

2\sqrt{2}'nin İrrasyonel Bir Sayı Olduğunun Kanıtı

aa ve bb ortak çarpanları olmayan iki tam sayı olsun.

2=ab\LARGE{\sqrt{2}=\frac{a}{b}}

Bu denkleme göre a2a^2'nin çarpanlarından biri 2'dir, bu da tanım gereği a2a^2'nin çift sayı olduğu anlamına geliyor. a2a^2'nin çift sayı olması için a'nın da çift sayı olması gerekir; çünkü bir tek sayının başka bir tek sayıyla çarpımı yine tek sayıdır. O halde kk bir tam sayı olmak üzere:

Evrim Ağacı'ndan Mesaj

a=2k\LARGE{a=2k}

denklemi ile aa'yı ifade edebiliriz. Bunu denklemde yerine koyarsak:

4k2=2b2\LARGE{4k^2=2b^2}

b2=2k\LARGE{b^2=2k}

Bu denklemden sonuç olarak b2b^2 sayısının bir çift sayı ve dolayısıyla bb sayısının da çift sayı olması gerektiği ortaya çıkar.

Hem aa hem bb'nin çift olması demek, her iki sayının 2 ile tam bölünebiliyor olması ve dolayısıyla her iki sayınında en az bir ortak çarpanı (bu durumda 2) olduğu anlamına geliyor. Bu da en başta aa ve bb için yaptığımız tanım olan “aa ve bb ortak çarpanları olmayan iki tam sayıdır” ifadesi ile çelişir.

Sonuç olarak 2\sqrt{2}'nin rasyonel sayı olması çelişkili olacağı için 2\sqrt{2} irrasyonel bir sayıdır.

2\sqrt{2}'nin irrasyonel olduğunu kanıtladık; fakat asıl sorumuza geçmeden önce basit bir mantık sorusunu çözelim.

Bir Mantık Sorusu

Can, Mehmet ve Ayşe adında 3 kişi vardır. 3’ünün durumları şöyledir:

  1. Can, Ayşe’ye bakıyor; Ayşe, Mehmet’e bakıyor.
  2. Can evli, Mehmet evli değil.

Bu örnekte evli biri evli olmayan birine bakıyor mudur?

  • A. Evet
  • B. Hayır
  • C. Belirli değil

Eğer cevabın C şıkkı olduğunu düşünüyorsanız, yanılıyorsunuz. Eğer "Bir insan ya evlidir ya da evli değildir" varsayımını kabul ederseniz cevap A. şıkkıdır. Bize sorulan bilmeceyi daha iyi ifade edelim:

  • Can: Evli
  • Ayşe: Belirli Değil
  • Mehmet: Evli Değil

Burada Ayşe için iki koşul vardır: “Ya Ayşe evlidir ya da Ayşe evli değildir”. Her iki koşula göre ne elde ettiğimize bakalım:

  • 1. Koşul: "Ayşe evlidir." O halde Ayşe, Mehmet’e baktığı için “evli biri evli olmayan birine bakıyordur” önermesi doğrudur.
  • 2. Koşul: "Ayşe evli değildir." O halde Can, Ayşe’ye baktığı için “evli biri evli olmayan birine bakıyordur” önermesi doğrudur.

Sonuç olarak, Ayşe evli olsun veya olmasın her iki koşulda da “evli biri evli olmayan birine bakıyordur” önermesi doğrudur.

Bu bilmecede kullandığımız aynı mantık ile yazının başlığı olan soruya cevap verebiliriz.

İrrasyonel Bir Sayının İrrasyonel Kuvveti Rasyonel Bir Sayı Olabilir Mi?

Diyelim ki xx reel sayı olacak şekilde:

x=22\LARGE{x=\sqrt{2}^{\sqrt{2}}}

olsun. 2\sqrt{2}'nin irrasyonel olduğunu bildiğimiz için x irrasyonel bir sayının irrasyonel üssüdür. Her iki tarafın da 2\sqrt{2} üssünü alırsak:

x2=(22)2\LARGE{x^{\sqrt{2}}=({\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}}}

x2=22\LARGE{x^{\sqrt{2}}={\sqrt{2}^2}}

x2=2\LARGE{x^{\sqrt{2}}=2}

Elimizde iki sonuç var:

x=22\LARGE{x=\sqrt{2}^{\sqrt{2}}}

x2=2\LARGE{x^{\sqrt{2}}=2}

  • Koşul: "xx, irrasyonel bir sayıdır." O halde, ikinci denkleme göre “irrasyonel bir sayının irrasyonel üssü rasyonel bir sayı olabilir” önermesi doğrudur.
  • Koşul: "xx, rasyonel bir sayıdır." O halde, ilk denkleme göre “irrasyonel bir sayının irrasyonel üssü rasyonel bir sayı olabilir” önermesi doğrudur.

Sonuç olarak, xx rasyonel sayı olsun veya olmasın “irrasyonel bir sayının irrasyonel üssü rasyonel bir sayı olabilir” önermesi doğrudur.

Bu İçerik Size Ne Hissettirdi?
  • Bilim Budur! 2
  • Muhteşem! 1
  • Tebrikler! 1
  • Mmm... Çok sapyoseksüel! 1
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/09/2020 13:03:50 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/433

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Güncel
Karma
Agora
Instagram
Diyet
Sinir Hücresi
Beslenme Biçimi
Balık
Balık Çeşitliliği
Diş Hekimliği
Yapay Seçilim
Kanser
Elektrokimya
Hamilelik
Tekillik
Doğa Gözlemleri
Genel Halk
Ay Görevleri
Deizm
Yumurta
Cansız
Beslenme Davranışı
Nöron Hücresi
Mitler Ve Gerçekler
İspat Yükü
Karanlık Enerji
Neandertaller
Covid-19
Güve
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Reklamı Kapat
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Henüz insanlığın başındayız. Çeşitli problemleri çözmekte zorlanmamız çok normal. Önümüzde yüz binlerce yıl var. Bize düşen, yapabileceğimizi yapmak, öğrenebileceğimizi öğrenmek, çözümleri geliştirmek ve geleceğe aktarmaktır.”
Richard Feynman
Geri Bildirim Gönder