Paylaşım Yap
Tüm Reklamları Kapat

E=mc² Formülü Nereden Geliyor? Einstein'ın En Meşhur Formülü Nasıl Türetilir?

E=mc² Formülü Nereden Geliyor? Einstein'ın En Meşhur Formülü Nasıl Türetilir?
13 dakika
10,305
Tüm Reklamları Kapat

E=mc2E = mc^2 şeklinde ifade edilen kütle-enerji denkliği, Albert Einstein'ın görelilik kuramındaki en etkili fizik ilkelerinden biridir. Bununla birlikte genel halk, bu denklemi az çok biliyor ve duymuş olmasına rağmen, bu denkliğin tam olarak ne anlama geldiği ve nereden türetildiği pek iyi anlayamamaktadır. Sorun, bilim insanlarının ve bilim iletişimcileri olarak, bilgiyi halk için daha anlaşılır bir şekilde ortaya koyma işini yeterince düzgün yapamamış olmamızdan kaynaklanıyor olabilir.

Bu makalede, kütle-enerji denkleminin basit türetimlerini göstereceğiz. Bunu yaparken, bir yandan da bazı görelilik kavramlarını basit, ilginç ve lise düzeyinde bile kolayca anlaşılabilir bir şekilde anlatacağız ve genel halk için erişilebilir hale getirmeye çalışacağız. Yazı boyunca yer vereceğimiz bilgiler sayesinde, Newton fiziğinde nerede yanıldığımızı öğrenecek ve Einstein'ın evrenimizi daha derinden anlamamıza yol açan ve dolayısıyla modern fiziği farklı bir düzeye taşıyan çalışmasını daha iyi bir şekilde takdir edebileceksiniz.

E=mc2'nin En Basit Türetimi

Maxwell'in elektromanyetik denklemleri ile, ışığın sabit bir hızla (c≈3⋅108m/sc\approx 3\cdot 10^8 m/s) hareket ettiği kanıtlanmıştır ve bu, sayısız deney ve gözlemle doğrulanmıştır. Işık hızı, elektromanyetik dalgaların veya fotonların momentumu pp ve enerji seviyesi EE ile orantılıdır:

Tüm Reklamları Kapat

p=E/c\Large p=E/c

veya

E=pc\Large E=pc

Hepimizin lise derslerinden aşina olduğu Newton fiziğinde, bir cismin momentumu (pp), o cismin hızı (vv) ve kütlesiyle (mm) aşağıdaki gibi ilişkilidir:

Tüm Reklamları Kapat

p=mv\Large p=mv

Söz konusu fotonlar olduğunda, hız her zaman ışık hızına eşit olduğundan, yukarıdaki denklemi şöyle değiştirebiliriz:

p=mc\Large p=mc

Şimdi, bu momentum denklemini, en baştaki enerji denkleminde yerine yazacak olursak, o meşhur kütle-enerji denkliğini elde ederiz:

Evrim Ağacı'ndan Mesaj

E=pcE=(mc)c\Large E=pc \newline E=(mc)c

Yani:

E=mc2\Large E=mc^2

Çok basit, değil mi?

Ama bu noktada hemen kafanıza şu soru takılmalı: Fotonların kütlesi yoktur! Dolayısıyla E=mc2E=mc^2 denklemi bir foton için sıfır enerji vermelidir; halbuki her bir fotonun enerjisi olduğunu biliyoruz.

Burada atladığımız bir nokta, momentum tanımını Newton fiziğine göre yapmış olmamızdır. İnsanlar, bir fotonun kütlesiz olmasından bahsederken, genellikle m0m_0 olarak ifade edilen durağan/değişmez kütleden bahsetmektedirler. Bu, Newton'un da kastettiği kütledir. Ancak yukarıdaki denklemlerdeki kütle, göreli kütleye atıfta bulunmaktadır. Bu ikisi arasındaki farkı daha derinlemesine öğrenmek isterseniz, buradaki yazımızı okuyabilirsiniz.

Tüm Reklamları Kapat

Özetle, bir fotonun hareketsiz kütlesi yoktur; çünkü hareketsiz foton diye bir şey yoktur. Buna karşılık, fotonun göreli kütleye sahip olduğunu söyleyebiliriz. Gündelik yaşamda aşina olduğumuz, ışık hızından çok ama çok daha yavaş hareket eden nesneler için durağan kütle ile göreli kütle neredeyse birebir eşittir. Ancak ışık hızında giden fotonlar için bunun tam tersi geçerlidir: Durağan kütleleri sıfırken, bütün kütleleri göreli kütleden oluşur.

Eğer hala ikna olmadıysanız, son denklemi tekrar ispatlayalım.

Foton İçin Momentumun p=mc Olduğunun İspatı

Aşağıdaki şekilde gösterildiği gibi, x\text{x} ekseninde uzay, t\text{t} ekseninde zaman olan, eylemsiz bir çerçevede duran bir lazer kaynağını düşünün. t1t_1 anında lazer kaynağı sağa doğru bir foton göndersin. Fotonlarda durağan kütle olmamasına rağmen, ışık basıncı olduğunu biliyoruz: Yani doğru şartları sağlayacak olursanız, fotonların düştüğü yerdeki cisimleri itebileceklerini (yani onlara basınç uyguladıklarını) biliyoruz. İnanılmaz küçük olsa bile ölçülebilir olan bu etkiyi, aşağıdaki videoda 05:44 noktasından itibaren kendi gözlerinizle görebilirsiniz:

Tüm Reklamları Kapat

Bu durum, fotonlarda gerçekten de momentum ve göreli kütle olduğunu göstermektedir.

Bu durumda, uzay boşluğunda fotonları saçan kaynak, t2t_2 anında gösterildiği gibi saçtığı fotonlardan uzaklaşacaktır; tıpkı arkasından alev püskürten bir roketin, püskürttüğü parçacıklardan zıt yöne doğru uzaklaşması gibi. Kalem, L\text{L} metre sola gittiğinde, ondan çok daha hafif olan fotonlar, orijinal konumundan l\text{l} metre sağa hareket edecektir:

Hem lazer kaynağının hem de fotonun kütle merkezi, başlangıçta C\text{C} konumundaydı ve bu merkez, şu şekilde hesaplanabilir:

Başlangıçtaki Ku¨tle Merkezi=(MX1+mx1)(M+m)\Large \text{Başlangıçtaki Kütle Merkezi}=\frac{(MX_1+mx_1)}{(M+m)}

Tüm Reklamları Kapat

Agora Bilim Pazarı
Dedektif Vardayok Ne Var Ne Yok!

Wickson Vardayok dünyanın hem en sıra dışı hem de en sıradan dedektifi! Onun olağanüstü özelliği, hiçbir özelliğinin olmaması. O kadar normal ki kimse onu fark etmiyor. Mesela sağınıza mı baktınız, o hep biraz daha sağda
kalıp görünmüyor.
Bir dedektif görünmez olmaktan başka ne ister!

Bütün derdi kafasındaki tek tel saça iyi bakmak olan Başkomiser Fellikke (saç telinin de ismi var: Filippo), elindeki en karmaşık vakayı her zamanki gibi Vardayok’a verdi. Şimdi, şehrin bütün bulutlarını yutan bir makineden, saat 5’in çalınmasına, sadece hikâyeyle çalışan bir arabadan, dünyanın öbür ucuna serçe parmağı üzerinde gidebilen bir çiftçiye kadar bir sürü akılalmaz mesele, dünyanın en tuhaf dedektifi Vardayok’u bekliyor.

Hazırsanız, macera başlıyor!

Luca Doninelli, İtalya’nın çocuk kitapları alanındaki en önemli ödüllerinden Strega’yı kazanan ve pek çok dile çevrilen bu kitaptaki kimi tuhaflıkları çocuklarla birlikte uydurmuş. Üstüne de bolca mizah serperek bize sunmuş. Şimdiden afiyet olsun.

PREMIO STREGA ÖDÜLÜ
GIOVANNI ARPINO ÖDÜLÜ
WHITE RAVENS SEÇKİSİ

Devamını Göster
₺115.00
Dedektif Vardayok Ne Var Ne Yok!
  • Dış Sitelerde Paylaş

Burada, M\text{M} ve m\text{m}, sırasıyla foton kaynağının ve fotonun kütleleridir. X1X_1 ve x1x_1, foton kaynağı ve fotonun kütle merkezleridir.

Benzer şekilde, t2t_2 zamanında hem foton kaynağı hem de foton için yeni kütle merkezi şu şekilde hesaplanabilir:

Yeni Ku¨tle Merkezi=(MX2+mx2)(M+m)\Large \text{Yeni Kütle Merkezi}=\frac{(MX_2+mx_2)}{(M+m)}

=(M(X1−L)+m(x1+l)M+m\Large = \frac{(M(X_1-L)+m(x_1+l)}{M+m}

=(MX1−ML+mx1+ml)M+m\Large = \frac{(MX_1-ML+mx_1+ml)}{M+m}

Burada X2X_2 ve x2x_2, t2t_2 anında foton kaynağı ve foton için kütle merkezleridir. Dış kuvvet olmadığından, yeni ortak kütle merkezi de aynı C\text{C} konumunda olmalıdır. Bu nedenle, şu denklemi elde ederiz:

(MX1+mx1)(M+m)=(MX1−ML+mx1+ml)M+m\Large \frac{(MX_1+mx_1)}{(M+m)}=\frac{(MX_1-ML+mx_1+ml)}{M+m}

Bu denklemi şu şekilde sadeleştirebiliriz:

ML=ml\Large ML=ml

Her iki tarafı da (t2−t1)(t_2-t_1) ile bölecek olursak:

Tüm Reklamları Kapat

ML(t2−t1)=ml(t2−t1)\Large \frac{ML}{(t_2-t_1)}=\frac{ml}{(t_2-t_1)}

Foton kaynağımızın hızını V=L(t2−t1)V=\frac{L}{(t_2-t_1)} olarak, fotonun hızınıysa V=l(t2−t1)V=\frac{l}{(t_2-t_1)} olarak yazabiliriz. Bu durumda denklemimiz, şöyle basitleşecektir:

MV=mv\Large MV=mv

Bu denklem, momentumun korunumu yasasıyla aynıdır. Unutmayın ki ll, fotonların (t2−t1)(t_2-t_1) süresi içinde hareket ettiği mesafedir. Dolayısıyla yukarıdaki vv hızı, aslında ışık hızı olan cc ile aynıdır. Bu nedenle denklem şöyle de yazılabilir:

Tüm Reklamları Kapat

MV=mc\Large MV=mc

Fotonun momentumu (pfotonp_{\text{foton}}) ve kaynağın momentumu (pkaynakp_{\text{kaynak}}) da dahil olmak üzere, bu bağlamda ele aldığımız tüm momentum değerleri eşittir. Dolayısıyla tüm bunları birbirine şu şekilde bağlayabiliriz:

pfoton=pkaynak=MV=mc\Large p_{\text{foton}}=p_{\text{kaynak}}=MV=mc

İşte burada sadece en baştaki ve en sondaki terimleri alırsak:

Tüm Reklamları Kapat

pfoton=mc\Large p_{\text{foton}}=mc

Bu denklem, ışığın momentumunun klasik Newton fiziğinden türetilebileceğini ispatlamaktadır. Dolayısıyla bir önceki kısımda yaptığımız türetim geçerlidir.

Şimdi, göreli foton kütlesinin etkilerini gösteren bir gözleme bakalım.

Foton Kütlesinin Varlığının İspatı

Işığın düz bir çizgide ilerlediği herkes için barizdir. Işığın bükülebileceğini hayal edebiliyor musunuz? Bu mümkün! Evet, Einstein'ın genel görelilik kuramında bu tür bir bükülme öngörülmüştür ve sonradan yapılan deneylerde de bizzat gözlenmiştir.

Tüm Reklamları Kapat

Gökbilimciler, gökyüzündeki yıldızların Güneş ve Dünya'ya göre konumlarını bilirler. Aşağıdaki konfigürasyonda gösterildiği gibi, Güneş'in diğer tarafında da belirli yıldızlar vardır. Bunlardan birinin ışığı düz bir çizgide ilerleseydi, Güneş tarafından engellenirdi ve bize asla ulaşamazdı; dolayısıyla Dünya'daki bir gözlemci yıldızdan gelen ışığı göremezdi. Bununla birlikte, Güneş'in tam arkasında kalan o yıldız, noktalı çizgi ile gösterildiği gibi bir yanılsama sayesinde, bir tutulma olayı sırasında net bir şekilde gözlendi:

Hepimizin bildiği gibi, ışığın belli bir enerjisi vardır ve bu enerji, şöyle ölçülür:

E=hf\Large E=hf

Burada hh, Planck sabiti, ff ise ışığın frekansıdır. Einstein'ın denklemini tersine çevirebiliriz:

Tüm Reklamları Kapat

m=E/c2\Large m=E/c^2

Şimdi, EE'nin yukarıda verdiğimiz değerini bu denkleme yerleştirirsek:

m=hfc2\Large m=\frac{hf}{c^2}

Bu denklem, ışığın, Güneş'in yerçekimi ile çekilen ve Dünya'daki bir gözlemcinin Güneş'in ardında kalan bir yıldızdan gelen ışığı görmesini sağlayan bir kütlesi olduğunu gösterir.

Tüm Reklamları Kapat

Einstein, Genel Görelilik Teorisi'nde bu fenomeni farklı bir bakış açısıyla açıkladı: Kütleçekimi, etrafındaki uzayı büker ve ışık, kavisli uzayda en kısa yoldan gider. Bir kara deliğin civarındaki aşırı bir durumda, ışık kaçamayacağı düzeyde kara deliğe doğru kıvrılır. Bu nedenle bir kara deliği doğrudan göremeyiz; ancak yakındaki nesneler üzerindeki etkisini gözlemleyebiliriz.

Düzgün Cisimler İçin Sezgisel Bir İspat

Az önce, fotonlar için kütle-enerji denklemini kanıtladık. Şimdi, bir önceki türetmemizdeki lazer kaynağının perspektifinden, fotonun kaynağından aldığı enerji miktarıyla aynı miktarda enerjiyi (EE) kaybettiğini düşünün. Böylece, enerji kaybı şöyle bulunur:

Ekayıp=mc2\Large E_{\text{kayıp}}=mc^2

Veya denklemi tersine çevirirsek, kaybedilen kütleyi de bulabiliriz:

Tüm Reklamları Kapat

mkayıp=Ekayıpc2\Large m_{\text{kayıp}}=\frac{E_{\text{kayıp}}}{c^2}

Einstein'ın 1905'te kanıtlamaya çalıştığı şey, işte tam olarak buydu. Ancak, onun mantığını takip etmek, matematikten çok iyi anlamayan birçok insan için epey zordur. Ne var ki buraya kadar yaptığımız türetmeler, durağan kütleye sahip düzenli cisimler için kütle-enerji denkleminin geçerliliğinin doğrudan kanıtını sağlamamıştır. Bu sorunu çözmemiz gerekiyor. Biz, burada, aşırı düzeyde matematiğe girmeden, sezgisel bir türetme sağlamaya çalışacağız.

En basit momentum-hız denklemimizi tekrar yazalım:

p=mv\Large p=mv

Tüm Reklamları Kapat

Şimdi, bunun zamana göre türevini alalım:

dpdt=d(mv)dt\Large \frac{dp}{dt}=\frac{d(mv)}{dt}

Newton fiziğinde kütlenin zamana göre değişmediği varsayılır. Bu durumda:

d(mv)dt=mdvdt\Large \frac{d(mv)}{dt}=m\frac{dv}{dt}

Tüm Reklamları Kapat

Hızın zamana göre türevi, ivmeye eşittir (dvdt=a\frac{dv}{dt}=a). Kütle ile ivmenin çarpımı da kuvvete eşittir (F=maF=ma). Dolayısıyla:

d(mv)dt=ma=F\Large \frac{d(mv)}{dt}=ma=F

Denklemin sağ kısmı, Newton'un ikinci yasasıdır. Ancak bu yasa, kütlenin artık değişmez olmadığı, ışık hızına yakın hızlarda sorun yaratmaya başlayacaktır (çünkü türetiminde varsaydığımız "kütlenin değişmezliği" varsayımı hatalı olacaktır).

Şimdilik, yukarıdaki denklemi düzenleyerek, ikinci yasayı "uygulanan kuvvet nedeniyle momentumun artması" olarak yeniden tanımlayalım:

Tüm Reklamları Kapat

F=dpdt=d(mv)dt\Large F=\frac{dp}{dt}=\frac{d(mv)}{dt}

Bu tanım, hem Newtoncu hem de göreli fizikte tutarlı bir şekilde çalışır, çünkü kütleyi zamana göre değişir biçimde tanımlayabiliriz. Eğer bunu yaparsak, her ikisi de zamana göre değişen parametrelerin bir çarpımının (mvmv) türevini alıyoruz demektir. Bu da kalkülüste zincir kuralıyla yapılmalıdır:

F=d(mv)dt=mdvdt+vdmdt\Large F=\frac{d(mv)}{dt}=m\frac{dv}{dt}+v\frac{dm}{dt}

Burada birinci terim, Newton yasasının klasik kısmı iken, ikinci terim uygulanan kuvvet nedeniyle kazanılan kütleyi gösterir (ve sadece görelilikte karşımıza çıkar).

Tüm Reklamları Kapat

Burada sistemin kazandığı enerji, FF kuvvetinin SS nedeniyle yaptığı iş olarak tanımlanır:

dEg=FdS\Large dE_g=FdS

Bir önceki denklemi burada yerine yazarsak:

dEg=v(mdvdt+vdmdt)\Large dE_g=v(m\frac{dv}{dt}+v\frac{dm}{dt})

Tüm Reklamları Kapat

Dağıtırsak:

dEg=mvdvdt+v2dmdt\Large dE_g=mv\frac{dv}{dt}+v^2\frac{dm}{dt}

Bunu şu şekilde de sadeleştirebiliriz:

dEg=12m(dv)2+v2(dm)\Large dE_g=\frac{1}{2}m(dv)^2+v^2(dm)

Tüm Reklamları Kapat

Terimler birazcık tanıdık gelmeye başladı mı? Eğer çok düşük hızlarda gidiliyorsa, en sağdaki terimdeki dmdm değerinin pratik olarak değişmediğini (yani sıfır olduğunu) varsayabiliriz. Dolayısıyla bu düşük hızlarda, lise fiziğinden bildiğimiz kinetik enerji denklemini elde ederiz:

Eg=Ek=12mv2 \Large E_g=E_k=\frac{1}{2}mv^2

Ancak yüksek hızlarda, mesela v=cv=c olduğunda, artık hızda daha fazla artış sağlanamaz (çünkü hiçbir cisim ışık hızını aşamaz). Dolayısıyla dv=0dv=0 olur. Bu durumda denklemimiz şöyle sadeleşir:

dEg=c2dm\Large dE_g=c^2dm

Tüm Reklamları Kapat

Her iki tarafın da integralini alırsak, enerji kazancını şu şekilde elde ederiz:

Eg=(m−m0)c2=mc2−m0c2\Large E_g=(m-m_0)c^2=mc^2-m_0c^2

Veya:

E=mc2=Eg+m0c2\Large E=mc^2=E_g+m_0c^2

Tüm Reklamları Kapat

Burada m0m_0 durağan kütledir. m0c2m_0c^2, cismin durgun enerjisini temsil eder. Bu son denklem, kütle-enerji denklemini, kalan enerjiyi toplam enerjiden ayıran bir terimle ifade etmenin sadece farklı bir yoludur.

dEg=12m(dv)2+v2(dm)dE_g=\frac{1}{2}m(dv)^2+v^2(dm) denklemiyle, uygulanan kuvvetin cismin enerji kazanımına iki kısımda katkıda bulunduğunu belirleyebiliriz: Çoğunlukla düşük hızlarda hız ivmesinden kaynaklanan kinetik enerji ve öncelikle yüksek hızlarda kütle artışı... Newton yasaları düşük hızlarda geçerli olan bir görelilik yaklaşımından ibarettir. Newton yasaları, özellikle de yüksek hızlardaki fizik süreçlerini tanımlamak için kullanılamazlar. Einstein'ın teorilerinden gelen göreli fizik, bu sorunları düzeltir ve evrensel olarak çalışır.

İleri Düzeyde İspat

Buraya kadar bir düzey kalkülüs kullanmış olsak da, ara bazı basamakları atlamıştık. Şimdi, daha ileri düzeyde bir ispatla eksikleri giderelim. Bu kısmın matematik bilmeyenler için biraz daha ağır olacağı konusunda uyarmak isteriz.

İspatımıza, enerjinin mesafeye göre kuvvetin integrali olduğunu hatırlatarak başlıyoruz. Bu nedenle kinetik enerji (KK) şu şekilde tanımlanabilir:

Tüm Reklamları Kapat

K=∫0sFds\Large K=\int^s_0 Fds

Burada FF, yer değiştirmenin olduğu yönde uygulanan kuvvet, dsds ve ss ise kuvvetin uygulandığı yönde kat edilen mesafedir.

Newton'un ikinci hareket yasasını kullanarak, kuvveti şöyle gösterebiliriz:

F=d(mv)dt\Large F=\frac{d(mv)}{dt}

Tüm Reklamları Kapat

Dolayısıyla kinetik enerji denklemi şu şekilde genişletilebilir:

K=∫0sd(mv)dtds\Large K=\int^s_0\frac{d(mv)}{dt}ds

Veya:

=∫0mvvd(mv)\Large =\int^{mv}_0vd(mv)

Tüm Reklamları Kapat

Veya:

=∫0vvd[m0v1−v2/c2]\Large =\int^v_0vd[\frac{m_0v}{\sqrt{1-v^2/c^2}}]

Hız limitinin cc (ışık hızı) olduğuna dikkat edin. cc'de zaman genişlemesi %100 olur ve hareket yönündeki mesafeler sıfıra yakınsar, dolayısıyla bu hızdaki bir cisim zaman veya mesafe deneyimlemeyecektir ve bu nedenle hızı üst sınır olarak ayarlanmıştır.

Şimdi, parçalara göre integral alıyoruz:

Tüm Reklamları Kapat

∫xdy=xy−∫ydx\Large \int{xdy}=xy-\int{ydx}

Adım adım takip edersek:

K=m0v21−v2/c2−m0∫0vvdv1−v2/c2\Large K=\frac{m_0v^2}{\sqrt{1-v^2/c^2}}-m_0\int^v_0\frac{vdv}{\sqrt{1-v^2/c^2}}

Veya:

Tüm Reklamları Kapat

=m0v21−v2/c2−[m0c2m0v1−v2/c2]0v\Large =\frac{m_0v^2}{\sqrt{1-v^2/c^2}}-\Biggl[m_0c^2\frac{m_0v}{\sqrt{1-v^2/c^2}}\Biggr]^v_0

Veya:

=m0v21−v2/c2−m0c2\Large =\frac{m_0v^2}{\sqrt{1-v^2/c^2}}-m_0c^2

Son olarak:

Tüm Reklamları Kapat

=mc2−m0c2\Large =mc^2-m_0c^2

Sonuç, bir cismin kinetik enerjisinin, c2c^2 ile çarpılan göreli hareketinin bir sonucu olarak kütlesindeki artışa eşit olduğunu gösterir. Bu, şöyle yeniden düzenlenebilir:

mc2=m0c2+K\Large mc^2=m_0c^2+K

Eğer kinetik enerji, K=0K = 0 olacak şekilde azaltılırsa, cisim durağan olacaktır; ancak yine de m0c2m_0c^2 enerjisine sahip olacaktır. Başka bir deyişle, bir cisim, çerçevesine göre hareketsiz olduğunda E0E_0 enerjisi içerir ve m0m_0 kütlesine sahiptir. Buna, durağan kütle denir. Bu şu şekilde gösterilir:

Tüm Reklamları Kapat

E=E0+K\Large E=E_0+K

Bu denklemde:

E0=m0c2\Large E_0=m_0c^2

şeklinde tanımlanır. Daha aşina olunan formülüyle:

Tüm Reklamları Kapat

E=mc2\boxed{\Large E=mc^2}

İşte bu, durgun bir haldeki kütleler için E=mc2E=mc^2 türetimini tamamlar.

Hareket eden bir cisim içinse toplam enerji şöyle hesaplanır:

E=mc2=m0c21−v2/c2\boxed{\Large E=mc^2=\frac{m_0c^2}{\sqrt{1-v^2/c^2}}}

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
86
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 15
  • Tebrikler! 8
  • Bilim Budur! 6
  • Mmm... Çok sapyoseksüel! 6
  • İnanılmaz 4
  • Merak Uyandırıcı! 4
  • Umut Verici! 2
  • Korkutucu! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 26/04/2024 09:44:03 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13533

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Yeni Doğan
Hayvan Davranışları
Işık Yılı
Bağırsak
Virüs
Psikanaliz
Maske Takmak
Yeşil
Saldırı
Zeka
Solunum
Köpekler
Arkeoloji
Bebek Doğumu
Karar Verme
Genel Görelilik
Mistik
Epistemik
Besin
Evrim Ağacı
Ağrı
Mers
Akıl
Algoritma
Güneş
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Ç. M. Bakırcı. E=mc² Formülü Nereden Geliyor? Einstein'ın En Meşhur Formülü Nasıl Türetilir?. (7 Aralık 2022). Alındığı Tarih: 26 Nisan 2024. Alındığı Yer: https://evrimagaci.org/s/13533
Bakırcı, Ç. M. (2022, December 07). E=mc² Formülü Nereden Geliyor? Einstein'ın En Meşhur Formülü Nasıl Türetilir?. Evrim Ağacı. Retrieved April 26, 2024. from https://evrimagaci.org/s/13533
Ç. M. Bakırcı. “E=mc² Formülü Nereden Geliyor? Einstein'ın En Meşhur Formülü Nasıl Türetilir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 07 Dec. 2022, https://evrimagaci.org/s/13533.
Bakırcı, Çağrı Mert. “E=mc² Formülü Nereden Geliyor? Einstein'ın En Meşhur Formülü Nasıl Türetilir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, December 07, 2022. https://evrimagaci.org/s/13533.
ve seni takip ediyor

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close