Derin Öğrenme Modeli Uygulaması: Yapay Zeka ile Çizgi Yüzler Üretin!
TensorFlow ve Python ile Çizgi Yüzler Üreten Derin Öğrenme Projesi
Projenin Amacı
Bu yazıda sizlere bir makine öğrenmesi projesini aşama aşama, kodları ile birlikte açıklamaya çalışacağız. Projenin sonunda, tamamen rastgele üretilen ("random") sayıları kullanarak, farklı çizgi yüzleri (İng: "cartoon faces") üreten bir derin öğrenme modeline sahip olacaksınız. Bu modelin ürettiği sonuçları aşağıdaki görselde görebilirsiniz.
Temel Bilgi Gereksinimleri
Özellikle belirtmek isteriz ki bu yazıda yer alan kodlar başlangıç seviye yazılımcılar ve Makine Öğrenmesi hakkında en azından temel seviye bilgisi olmayanlar için uygun olmayabilir. Bunun için sizlere Stanford Üniversitesi Profesörü Andrew Ng tarafından hazırlanmış, tamamen ücretsiz bir şekilde alınabilen bu Coursera dersini tavsiye ederiz. Ayrıca kurs, Türkçe alt yazılı olduğu için İngilizce bilmiyorsanız bile takip edebilirsiniz.
Projenin Temelleri
Projenin GitHub sayfasına buradan ulaşabilirsiniz. Ayrıca projede kullanacağımız yazılım ve kütüphaneler şu şekilde olacak:
- TensorFlow 2.0.0b1
- Python 3.6
- numpy
- pandas
Projenin Basamakları
1. Veri Seti İhtiyacı
İlk problemimiz, bir veri seti bulmak. Amacımız çizgi karakterler oluşturan bir derin öğrenme modeli yapmak olduğu için, ihtiyacımız olan şey de binlerce çizgi yüz. Bunun için küçük bir arama yaparsanız, Google tarafından yayınlanmış bu veris setini bulabilirsiniz. Bu veri setinde "etiketlenmiş" (yani saç rengi, göz rengi, ten rengi vs. açısından kategorize edilmiş) yüzler bulunmaktadır. Eğer ilgili olanlar varsa, bir üst seviye olan StyleGAN algoritmasını kullanarak daha keskin ve başarılı sonuçlar elde edebilirler.
Veri seti yaklaşık olarak 4.45 GB, ayrıca etiketlenen özellikleri indirme sayfasının en altında da bulabilirsiniz.
Eğer veri setini indirip incelediyseniz, göreceksiniz ki her bir yüz için bir ".png" bir de ".csv" dosyası var. .png dosyasında yüz resmi, .csv dosyasında ise etiketlenmiş veriler bulunuyor.
2. Veri Setini İşlemek ve Veri Hattı ("Input Pipeline") Oluşturmak
Bu basamakta TensorFlow'un kendi "tf.data" özelliğini kullanacağız. Bu özellik sayesinde verilerimiz bilgisayardan (HDD'den veya SDD'den) okunurken, aynı zamanda GPU (Graphics Processing Unit) modelin eğitimi için gerekli olan matematiksel işlemleri yapacak. Bu da, zaman kaybı olmayacağı anlamına geliyor.
Python ve TensorFlow 2.0 ile bunu uygulamak için, gerekli kütüphaneleri "import" ediyoruz:
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from glob import glob
from tqdm import tqdm
Daha sonra veri işleme konusunda işlemleri yapacak bir sınıf oluşturuyoruz. Burada "sınıf temelli" bir programlama yapmayı daha çok tercih ediyoruz; siz eğer isterseniz daha farklı da yazabilirsiniz. Ayrıca sınıfımızın adını "Marshall" koyacağız. Bunun tek sebebi var: Programlama yaparken sınıflarımıza sevdiğimiz dizi karakterlerinin adını vermekten hoşlanıyor olmamız. Siz istediğiniz ismi seçebilirsiniz.
class Marshall:
def load_image(self, x):
img = tf.io.read_file(x)
img = tf.image.decode_png(img, channels=3)
if self.central_crop:
img = tf.image.central_crop(img, 0.825)
img = tf.image.resize(img, (self.xs, self.ys), method="nearest")
if self.random_flip:
img = tf.image.random_flip_left_right(img)
return tf.cast(img, tf.float32) / 255.
def __init__(self, main_path: str, image_shape: tuple, random_flip: bool = True, central_crop: bool = False):
self.main_path = main_path
self.xs, self.ys, self.channels = image_shape
self.random_flip = random_flip
self.central_crop = central_crop
self.x_data = self.read_all_path()
self.x_data = tf.convert_to_tensor(self.x_data)
self.dataset = tf.data.Dataset.from_tensor_slices(self.x_data).shuffle(len(self.x_data))
self.dataset = self.dataset.map(self.load_image)
self.dataset = self.dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
def read_all_path(self):
paths = []
for path in tqdm(glob(f"{self.main_path.rstrip('/')}/*/*.png")):
paths.append(path)
paths = np.array(paths)
return paths
Küçük bir not: "__init__", sınıf çağrıldığında ilk çalışan fonksiyondur.
Bu sınıf ne yapıyor dersiniz? İlk başta, bazı değerleri "self" değişkenine atıyor, daha sonra "read_all_path" fonksiyonu ile bütün png dosyalarının adresleri bir listeye kaydediliyor. En son olarak bu liste bir tf.data objesine dönüştürülüyor ve ".map(self.load_image)" ifadesi ile listedeki her bir elemanın eğitilmeden önce bu fonksiyondan geçirilmesini sağlıyoruz. Çünkü biz listeye verileri resmin adresi şeklinde kaydettik, ihtiyacımız olan şey ise resmin kendisi... Bu fonksiyon da bunu yapıyor: Resmi okuyup, sayılara dönüştürüyor.
Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.
KreosusKreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.
Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.
PatreonPatreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.
Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.
YouTubeYouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.
Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.
Diğer PlatformlarBu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.
Giriş yapmayı unutmayın!Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.
Kod yazma tarzımız, okuyucuya farklı gelmiş olabilir. Kafanızın karıştığı yerler olabilir. Bu, kodu yazandan yazana çok değişecektir. Ama kısaca şöyle düşünün: Bu sınıf, tüm resim adreslerini alıyor, bu resimleri okuyor ve model eğitimi için kullanılabilir bir hale getiriyor.
Aranızda neden resim adresi okumak yerine en başta sadece resmi okumadık diye düşünenler olabilir, onu da şöyle açıklayalım: Eğer bütün resimleri okuyup bir listeye atasaydık, RAM'imiz bunların hepsini depolayamazdı. Tabii eğer bilgisayarınızın RAM'i çok yüksek ise bu bir sorun olmayabilir. Bu sorunla karşılaşmamak için, yazdığımız kod sadece belli sayıda resmi okuyor, onları işliyor, RAM'den siliyor ve daha sonra yeni resimler ile döngüyü tekrar ediyor. Böylece parça parça ve "RAM'imizi kasmadan" veriyi işleyebiliyoruz.
3. Derin Öğrenme Modeli Oluşturmak
Sıfırdan görüntü üretimi ile ilgili birçok farklı algoritma var; dolayısıyla yapmak istediğiniz işe göre tercihler değişiklik gösterebilir. Biz bu iş için "variational autoencoders" tekniğini kullanacağız.
Bu tekniğin detaylarını açıklamak için işin matematiğine inmek gerekiyor ve bu yazının amacını fazlasıyla aşar; belki ileride bu detaylara da girebiliriz. Eğer yapay zeka uygulamalarının temel matematiğini biliyorsanız, bu konuda bolca ve çok öğretici kaynaklar bulabilirsiniz. Eğer yeni başlayan bir kişiyseniz, işin matematiğine girip kafanızı allak bullak etmek istemeyiz; çünkü bunun için daha temel örnekler üzerinden anlatım yapılması daha doğru olur. Bu yöntemin ileri düzeyde teknik kısmı hem yazının başında önerdiğimiz Coursera dersinde, hem de TensorFlow'un buradaki yazısında anlatılıyor.
Şimdi bu modeli barındıran sınıfı tanımlayacağız. Bu defa sınıf ismimiz "Barney". Nedenini biliyorsunuz. Başlayalım:
class Barney(tf.keras.Model):
def compute_output_signature(self, input_signature):
pass
def encoder_model(self, activation_function: tf.nn = tf.nn.elu, last_layer_activation: tf.nn = None):
input_layer = tf.keras.layers.Input(shape=(self.xs, self.ys, self.channels), name="input_1")
x = tf.keras.layers.Conv2D(32, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(input_layer)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Conv2D(64, (3, 3), strides=2, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Conv2D(64, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.MaxPooling2D((3, 3), strides=2)(x)
x = tf.keras.layers.Conv2D(128, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Conv2D(256, (3, 3), strides=2, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Conv2D(256, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.MaxPooling2D((3, 3), strides=2)(x)
x = tf.keras.layers.Conv2D(256, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Conv2D(512, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(self.last_layer_units*2, activation=last_layer_activation,
kernel_regularizer=tf.keras.regularizers.l2())(x)
model = tf.keras.models.Model(input_layer, x)
model.summary()
return model
def decoder_model(self, activation_function: tf.nn = tf.nn.elu, last_layer_activation: tf.nn = None):
input_layer = tf.keras.layers.Input(
shape=(self.last_layer_units, ), name="input_2"
)
x = tf.keras.layers.Dense(512, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(input_layer)
x = tf.keras.layers.Reshape((1, 1, 512))(x)
x = tf.keras.layers.Conv2DTranspose(512, (3, 3), strides=2, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.UpSampling2D()(x)
x = tf.keras.layers.Conv2DTranspose(256, (3, 3), strides=1, activation=activation_function,
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Conv2DTranspose(256, (3, 3), strides=2, activation=activation_function, padding="same",
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Conv2DTranspose(128, (3, 3), strides=2, activation=activation_function, padding="same",
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.UpSampling2D()(x)
x = tf.keras.layers.Conv2DTranspose(64, (3, 3), strides=1, activation=activation_function, padding="same",
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Conv2DTranspose(64, (3, 3), strides=1, activation=activation_function, padding="same",
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Conv2DTranspose(32, (3, 3), strides=2, activation=activation_function, padding="same",
kernel_regularizer=tf.keras.regularizers.l2())(x)
x = tf.keras.layers.Conv2DTranspose(self.channels, (3, 3), strides=1, activation=last_layer_activation,
padding="same")(x)
model = tf.keras.models.Model(input_layer, x)
model.summary()
return model
def save_models(self):
self.encoder.save(self.file_path.replace(".h5", "_encoder.h5"))
self.decoder.save(self.file_path.replace(".h5", "_decoder.h5"))
def __init__(self, image_shape: tuple, file_path: str, last_layer_units: int = 1024, lr: float = 0.001):
super(Barney, self).__init__()
self.xs, self.ys, self.channels = image_shape
self.file_path = file_path
self.last_layer_units, self.lr = last_layer_units, lr
tf.compat.v1.gfile.MakeDirs("".join(self.file_path.split("/")[:-1]))
try:
self.encoder = tf.keras.models.load_model(self.file_path.replace(".h5", "_encoder.h5"),
custom_objects={"leaky_relu": tf.nn.leaky_relu})
except OSError:
self.encoder = self.encoder_model(
activation_function=tf.nn.leaky_relu,
last_layer_activation=None
)
try:
self.decoder = tf.keras.models.load_model(self.file_path.replace(".h5", "_decoder.h5"),
custom_objects={"leaky_relu": tf.nn.leaky_relu})
except OSError:
self.decoder = self.decoder_model(
activation_function=tf.nn.leaky_relu,
last_layer_activation=None
)
self.optimizer = tf.keras.optimizers.Adam(self.lr, beta_1=0.5)
def encode(self, x: tf.Tensor):
mean, logvar = tf.split(self.encoder(x, training=True), num_or_size_splits=2, axis=1)
return mean, logvar
def decode(self, z: tf.Tensor, apply_sigmoid: bool = False):
logits = self.decoder(z, training=True)
if apply_sigmoid:
logits = tf.sigmoid(logits)
return logits
@staticmethod
def reparameterize(mean: tf.Tensor, logvar: float):
return tf.random.normal(shape=mean.shape) * tf.exp(logvar * .5) + mean
def generate_sample(self, eps: tf.Tensor):
return self.decode(eps, apply_sigmoid=True)
@staticmethod
def log_normal_pdf(sample: float, mean: float, logvar: float, raxis: float = 1):
return tf.reduce_sum(-.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + 1.837877), axis=raxis)
@tf.function
def compute_loss(self, x: tf.Tensor):
mean, logvar = self.encode(x)
z = self.reparameterize(mean, logvar)
x_logit = self.decode(z)
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_logit, labels=x)
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
logpz = self.log_normal_pdf(z, 0., 0.)
logqz_x = self.log_normal_pdf(z, mean, logvar)
return -tf.reduce_mean(logpx_z + logpz - logqz_x), x_logit
@tf.function
def train_step(self, x: tf.Tensor):
with tf.GradientTape() as tape:
loss, outputs = self.compute_loss(x)
gradients = tape.gradient(loss, self.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
return loss, outputs
Bu sınıfta epey bir fonksiyon olduğunu görebilirsiniz. Örnek olması açısından sadece "train_step" fonksiyonunu açıklayacağız, çünkü diğer fonksiyonların arkasında çok büyük ve büyüleyici bir matematik yatıyor. Yukarıda sözünü ettiğimiz nedenlerle bunun detaylarını tek bir makaleye sığdırmak imkansız ve çok yorucu olurdu.
"train_step" fonksiyonu, "loss" dediğimiz ve ne anlama geldiğini birazdan açıklayacağımız değeri hesaplıyor ve tüm modeldeki sayısal değerleri bu loss (kayıp) değerine göre yeniden düzenliyor ve optimize ediyor. Bu işin arka planında da yine büyüleyici bir matematik var. Coursera dersini alarak bunu öğrenebilirsiniz.
Peki nedir bu "loss" değeri? Çok basitleştirilmiş bir şekilde anlatacak olursak: Diyelim ki bir resmin kedi veya köpek olduğunu söyleyen bir makine öğrenmesi projesi yapıyorsunuz. Modeli oluşturdunuz ve bu model 0-1 arasında bir sayı değeri veriyor ("output ediyor"). 0 kedi, 1 de köpek demek. Senaryomuzda, model "0.2" tahmin ediyor, yani kedi. Doğrusu da kedi, yani 0. Loss burada 0.2 oluyor, çünkü gerçek değer ile tahmin edilen değer arasında 0.2'lik bir fark var. Tabii bu loss fonksiyonları çok daha ileri matematikle yapılıyor ve çok fazla türü var: Merak edenler MSE, MAE, Binary, Sparse Categorical Crossentropy vb. algoritmalara göz atabilirler.
İlgilisine ek not düşecek olursak: Model, sonuç değerini 0 ve 1 arasına sıkıştırmak için sigmoid fonksiyonu denen bir fonksiyon kullanıyor ve aktivasyon fonksiyonları kullanıyor. Bu fonksiyonlar modeldeki sayısal değerleri girdi ("input") alarak bir çıktı ("output") üretiyor ve eski sayısal değerler bu yeni çıktılar ile döngüye devam ediyor. Fonksiyonlar ve grafikleri:
Ve yine ilgilisine ek bir diğer not düşersek: Sonucu resim olarak almak istediğimizde de "sigmoid" aktivasyon fonksiyonu kullanıyoruz. Çünkü resimler 0-255 arasındaki sayı değerleridir ve makine öğrenmesinde resimler işlenirken genelde 255'e bölünür, bu da onları 0-1 arasına sıkıştırır.
4. Model Eğitimi
İşte bu son aşama. Burada, 3. aşamada oluşturduğumuz derin öğrenme modelini, 2. aşamada oluşturduğumuz veri hattından alacağımız verilerle eğiteceğiz.
Bunun için veriyi alacak, modele gönderecek, loss değerindeki değişimi ve üretilen resimleri kaydedecek/grafikleyecek bir sınıfa ihtiyacımız var. İsmi "Robin":
class Robin:
def __init__(self, marshall_pipeline: Marshall, barney_model: Barney, epochs: int = 10, batch_size: int = 32):
self.marshall_data = marshall_pipeline
self.barney_model = barney_model
self.batch_size, self.epochs = batch_size, epochs
self.file_writer = tf.summary.create_file_writer("graphs/")
self.marshall_data.dataset = self.marshall_data.dataset.batch(self.batch_size)
def save_images_to_tensorboard(self, epoch: int, real_ex: tf.Tensor, regenerated_ex: tf.Tensor):
samples_from_random = self.barney_model.generate_sample(tf.random.normal(
shape=(self.batch_size, self.barney_model.last_layer_units,)
))
with tf.device("/cpu:0"):
with self.file_writer.as_default():
tf.summary.image("real images", real_ex.numpy(), step=epoch, max_outputs=self.batch_size,
description="real images, no effect from Barney!")
tf.summary.image("regenerated images", regenerated_ex.numpy(), step=epoch, max_outputs=self.batch_size,
description="regenerated images, encoded and decoded by Barney!")
tf.summary.image("decoded images", samples_from_random.numpy(), step=epoch, max_outputs=self.batch_size,
description="decoded images, generated from random bottleneck, decoded by Barney!")
def train_model(self):
x = regenerated_images = None
q = int(tf.data.experimental.cardinality(self.marshall_data.dataset))
for epoch in range(self.epochs):
bar = tf.keras.utils.Progbar(target=q)
for i, x in enumerate(self.marshall_data.dataset):
loss_value, regenerated_images = self.barney_model.train_step(x=x)
with self.file_writer.as_default():
tf.summary.scalar("loss", loss_value, step=(q*epoch)+i, description="Barney's Loss")
bar.update(current=int(i+1), values=[["loss", loss_value]])
self.save_images_to_tensorboard(
epoch=epoch,
real_ex=x,
regenerated_ex=regenerated_images
)
self.barney_model.save_models()
def generate_random_images(self, number_of_images: int = 100):
samples_from_random = self.barney_model.generate_sample(tf.random.normal(
shape=(number_of_images, self.barney_model.last_layer_units,)
))
c = r = int(tf.sqrt(float(number_of_images)).numpy())
fig = plt.figure(figsize=(64, 64))
for i in range(int(c*r)):
fig.add_subplot(r, c, i+1)
plt.axis("off")
plt.imshow(samples_from_random[i])
plt.savefig("results.png")
plt.show()
Burada olan biteni kısaca açıklayacak olursak: Eğitimi, tahmin edildiği üzere "train_model" fonksiyonu yapıyor. Veri hattından ("Marshall" sınıfı ile tanımladığımızı hatırlayın) veriyi alıyor, daha sonra bunu modele veriyor, loss fonksiyonunu hesaplayıp sayısal değerleri düzenliyor (bunu da Barney sınıfı ile tanımladık).
Belki bu iki satır dikkatinizi çekmiş olabilir:
with self.file_writer.as_default():
tf.summary.scalar("loss", loss_value, step=(q*epoch)+i, description="Barney's Loss")
Burada yaptığımız, loss değerindeki değişimi bir grafiğe çizmek, bunu da yine TensorFlow ile gelen TensorBoard kütüphanesi ile yapıyoruz.
"save_images_to_tensorboard" fonksiyonu da gerçek resimleri ve random sayılarla üretilen resimleri TensorBoard'a kaydediyor.
Şimdi Sıra Eğitimde!
Başlayalım:
marshall = Marshall(
main_path="cartoonset100k",
image_shape=(128, 128, 3),
random_flip=False,
central_crop=True
)
barney = Barney(
image_shape=(128, 128, 3),
file_path="models/my_model.h5",
last_layer_units=1024,
lr=0.0001
)
robin = Robin(
marshall_pipeline=marshall,
barney_model=barney,
epochs=10,
batch_size=32,
)
robin.train_model()
Bu kod bloğunda, sırayla tüm sınıfları oluşuyor, en sonunda eğitici sınıfta birleşip eğitimi yapıyorlar.
Sonuç
Eğer makine öğrenmesi alanında tecrübeniz yoksa bu anlatımda boş kalan çok fazla yer olmuştur. Daha fazla temel bilgi için başta verdiğimiz kursa göz atmanızı önemle öneriyoruz.
Dünya değişiyor, biz değişiyoruz, makineler değişiyor. Bunun bir parçası olmak çok heyecan verici, herkesin tatması gereken bir şey bu. Ayrıca bu alan her yere yayılmakta. Canlıyı, DNA yapısını ve onunla ilgili her şeyi Yapay Zeka yardımı ile anlayıp, insan-bilgisayar arayüzleri üretmek isteyen çok sayıda start-up var. Fiziği, hatta tarihi bile AI ile anlamlandırmaya çalışan projeler mevcut!
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 15
- 5
- 5
- 4
- 4
- 3
- 2
- 1
- 0
- 0
- 0
- 0
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 17/11/2024 17:36:55 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/7994
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.