Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Kuasi Parçacıklar Nelerdir?

Teknoloji İçin Önemi ve Süperiletkenlik

8 dakika
6
Kuasi Parçacıklar Nelerdir? Futurism
  • Blog Yazısı
Quasiparticle
Blog Yazısı
Tüm Reklamları Kapat

Kuasi parçacıklar (İng."Quasi particles" diğer adıyla "yarı parçacıklar") yoğun madde fiziğinde ismi sık duyulan terimlerden biridir. Tanım olarak katılardaki temel uyarılmaları parçacık olarak inceleyen fiziksel bir kavramdır. Fiziksel manada parçacık değildir. Enerji kaynaklı olan bu uyarılmalar madde enerji eşliğine dayanarak parçacık olarak ele alınmıştır. Nasıl ki kozmik ışınlar sonucu fotonun enerjisi kısa ömürlü parçacıklar olan müon, pion gibi parçacıklara dönüşebiliyorsa veya CERN'deki parçacık hızlandırıcılarında kinetik enerji yeni parçacıklar oluşmasına etki edebiliyorsa katılardaki kollektif uyarılmalar da madde olarak kabul edilebilir. Yarı parçacıklar normal madde parçacıkları ile benzerlikler taşımaktadır ancak deneysel zorluklardan dolayı doğrudan gözlemlenememiş teorik parçacıklar olması onları normal madde olmaktan öte tutan bir özelliğidir. [1]

Kuasi Parçacık Teorisi Nasıl Ortaya Çıktı?

Kuasi parçacık fikri ilk olarak Sovyet-Azerbaycan asıllı fizikçi Lev Landau tarafından "Fermi Sıvı Teorisine" dayandırılarak ortaya çıkmıştır. Sonrasında Alexei Abrikosov ve Isaak Khalatnikov tarafından geliştirilmiştir.[2]Fermi Sıvı Teorisi düşük sıcaklıklarda çoğu metaldeki iletim elektronların normal durumunu tanımlayan etkileşimli fermiyonların teorik bir modelidir. Teori, Fermi sıvısının Fermi gazı ile benzerliğinin ve farklılığının nedenini sorgular. Etkileşimsiz bir Fermi gazının içeriği momentum durumlarını işgal eden fermiyonlardan oluşur. Fermiyonlar arasında etkileşim olduğunda, fermiyonların spini, yükü ve momentumu değişmeden kalırken; kütle, manyetik moment vb. dinamik özellikleri değişir. Fermi gaz sisteminin temel uyarılmaları ile Fermi sıvı sisteminin temel uyarılmaları arasında bu nedenle ilişki vardır. Landau Fermi gazının "sıvılaşması" sırasındaki bu fermiyon aktivitesinin sebebinin etkileşmeyen fermiyonlarla yer değiştiren etkileşen kuasi parçacıklar olacağını ortaya atmıştır.

Bazı Kuasi Parçacıklar

Elektron Deliği

Elektron deliği (İng. "Electron hole") bir atomda veya bir alandaki elektron eksikliğidir. Elektronun yükü normal bir atomda çekirdekteki proton tarafından dengelenir. Diğer koşullarda ise bir noktadaki elektron yokluğu orada pozitif bir yük oluşturur. Mesela bir atom bir foton tarafından uyarıldığında elektron yüksek enerji seviyesine geçer ve ilk durumdaki konumunda elektronun yüküne eşit büyüklükte pozitif yüklü bir boşluk bırakır. Bu boşluk elektron deliği olarak adlandırılır. Elektron boşluğu yarı iletken maddelerde taşınabilir.[3]Yarı iletkenlerde elektrik akımı oluşmasında önemli bir etken olması ve elektron deliğinin yarı iletken maddelerde taşınabilmesi dolayısıyla transistör, diyot, çip vb. yarı iletkenlerin çalışmasında önemli rolü vardır.

Tüm Reklamları Kapat

Eksiton

Eksiton ( İng. "Exciton") basitçe, bir elektron deliği ve bir elektronun Coulomb etkileşimi ile birbirine bağlanmış halidir.[4] Bu onu yük olarak nötr kılar. Parçacık-yarıparçacık çiftinin ayrılması için enerji gerekir. Eksiton bağlanma enerjisi, bir eksitonun kendisini oluşturan elektron ve boşluk yükü taşıyıcılarına ayrıştırılması için gereken enerjiyi temsil eder. Daha yüksek bir eksiton bağlama enerjisi; daha uzun ömürlü, daha kararlı bir eksitonu gösterir. Eksiton bağlama enerjisi aşağıdaki gibi hesaplanır:

E(b)=e2/4πεεoRE(b)={e^2}/
4\piε εo R

Formüle göre eksiton bağlanma enerjisi elektrik yükünün karesi ile doğru; malzeme dielektrik sabiti, vakum dielektrik sabiti, elektron-delik arasındaki mesafe ile ters orantılıdır.

İki farklı eksiton tipi vardır. Bunlardan biri Frenkel eksitonu diğeri ise Wannier-Mott eksitonudur. Frenkel eksitonları atom yarıçapına benzer büyüklükte bir yarıçapa sahip, sıkı sıkıya bağlı eksitonlardır. Wannier-Mott eksitonları daha büyük bir eksitonik yarıçapa sahiptir.[5]

Tüm Reklamları Kapat

Wannier-Mott Eksitonu ile Frenkel Eksitonu'nun büyüklük olarak kıyası(Küçük mavi noktalar birim atomları temsil ediyor.)
Wannier-Mott Eksitonu ile Frenkel Eksitonu'nun büyüklük olarak kıyası(Küçük mavi noktalar birim atomları temsil ediyor.)
Ossila

Fonon

Fonon (İng. "Phonon") kristal örgülerdeki birden fazla atomun ortak titreşimidir. Bu ortak titreşimler bir tesadüfe bağlanmamış ve titreşim için gerçekleşen uyarılmaların yarı madde kaynaklı olduğu kabul edilmiştir. Fonon kelimesi foton kelimesi ile karıştırılabilir ve bu iki parçacık arasındaki benzerlik kelime benzerliğinden ibaret değildir. Nasıl ki elektromanyetik dalgaların kuantası fotonsa ses dalgalarının kuantası da fonondur demek yanlış olmaz. Çünkü uzun dalga boylu fononlar kristal içinde sese yol açar.

Fononlar süperiletkenlik adına önemli parçacıklardır. Bunun sebebi elektronlar arasındaki zayıf çekim kuvveti -zayıf çekim kuvveti de elektronlar arasındaki fonon alışverişinin neticesidir-sonucu oluşan "Cooper çiftleri"nin metaldeki elektrik direncini arttıran veya azaltan titreşimlere etki etmesidir.

Fononlar akustik fonon ve optik fonon olmak üzere iki çeşittir. Akustik fononların enerjileri optik fononlara göre daha düşüktür ve fotonlarla çiftleşmeleri daha zor olur. Optik fononlar ise daha yüksek enerjiye sahiptirler, fotonlarla çiftleşmesi daha kolaydır.

Magnon

Magnon (İng. "Magnon") kristal bir kafesteki elektronların oluşturduğu spin yapısının uyarım yarı parçacığıdır. Elektromanyetik dalganın taşıyıcı parçacığı olan fotona benzer şekilde spin dalgalarının taşıyıcı parçacığı magnondur. Foton gibi magnon da enerji taşır.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

Spin, fermiyonların ve bozonların yaptığı "dönme" davranışıdır. Aslında bir fermiyon olan elektronun dönmesi imkansızdır. Bunun sebebi elektronun dönme ekseninin olmaması ve açısal momentuma göre hızının ışık hızını geçmesi gerektiğidir. Ancak bazı kuantum durumlarını açıklamak için elektronun döndüğünü varsaymak gerekir.

Spin dalgalarını açıklamak gerekirse bir fermiyon olan elektron spine sahiptir ve bu spin değeri 1/2 dir. Kristal örgülerdeki uyarılmalar sonucu elektronların spinlerinde oluşan ortak dalgalanmalar spin dalgaları, taşıyıcı parçacığı da bahsedildiği üzere magnondur.

Spin dalgalarını gösteren bir görsel
Spin dalgalarını gösteren bir görsel
Nature

Majorana Fermiyonu

Majorana fermiyonu (İng. "Majorana Fermion") kısaca hem parçacık hem de anti parçacık gibi davranan antipartikülüyle aynı -kendi kendinin antaipartikülü- olan parçacıktır. Basit bir benzetme yapmak gerekirse, herhangi bir fermiyonun bir tam sayı değeri olduğunu hayal edelim; bu tam sayı değeri "a" , antipartikülünün tam sayı değeri ise "-a" olsun. Bu durumda Majorana fermiyonunun değeri 0 olurdu.

Yoğun madde fiziğinde bağlı Majorana fermiyonları, süperiletkenler içinde kuasipartikül uyarımları gibi görünebilir. Tek bir partikülün değil, birkaç bireysel partikülün kolektif hareketi halindedir.

Plazmon

Plazmon (İng. "Plasmon") Langmuir dalgalarının , diğer adıyla plazma salınımlarının, kuantasıdır. Plazma veya metal elektron denizi gibi iletken ortamlardaki salınımların kuantizasyonundan kaynaklanan kuasiparçacıktır. Yüzey plazmonları fotonlarla birleşerek yüzey plazmon polaritonu oluşturabilir.

Yüzey Plazmonu
Yüzey Plazmonu
Wikipedia

Polariton

Polariton (İng. "Polariton"), foton ile başka bir kuantum parçacığın etkileşiminden doğan kuasiparçacıktır. Fotonun frekansı ile fotonla birleşecek parçacığın titreşim frekansı, bu iki parçacığın birbiriyle rezonans yapabilecek düzeyde benzer olursa bir polariton oluşur. Polaritonlar için "kütleli fotonlar" da diyebiliriz.

Tüm Reklamları Kapat

Fotonun diğer kuasi parçacıklar ile birleşimi ile oluşan polariton örnekleri:

  • Fonon polaritonları, bir kızılötesi fotonun bir optik fononla birleşmesi sonucu oluşur.
  • Eksiton polaritonları, görünür ışık fotonunun bir eksitonla birleşmesi sonucu oluşur.
  • Yüzey plazmon polaritonları, yüzey plazmonlarının fotonla birleşmesi sonucu oluşur.[6]

Kuasi Parçacıklar Niçin Önemli?

Kuasi Parçacıklar Teorisi elektronların yoğun madde üzerindeki hareketini ve davranışlarını etkileyen uyarılmalar, metalin iletkenliğini etkileyen uyarılmalar, atomların titreşimini etkileyen uyarılmalar, manyetizma davranışını etkileyen uyarılmalar gibi elektrik iletimini doğrudan veya dolaylı olarak etkileyen yarı parçacıkları açıklamaya çalışan katı hal fiziğinin fenomen konusudur. Özellikle oda sıcaklığında süperiletkenlik için önem taşır. Daha hızlı veri iletimi, veri depolama, iletişim teknolojileri, ulaşım teknolojileri, endüstriyel teknolojiler, parçacık hızlandırıcıları, enerji tasarrufu gibi birçok alana katkı sağlamakta olan ve sağlayacak olan süperiletkenlik için yarı parçacıklardan yararlanmak ve onların doğasını iyi anlamak gerekiyor.

Süperiletkenlik

Süperiletkenlik kritik sıcaklığının altına inen süperiletken maddelerin elektriğe direnç göstermemesi durumudur. Oda sıcaklığında herhangi bir iletken maddeden bir elektrik akımı geçirmeye çalışırsak bu akımdan tamamen verim alamayız. Çünkü titreşim yapan atomlar yüzünden elektrik enerjisinin bir kısmı yolda kaybolur ve ısı enerjisine dönüşür. Isı enerjisi de elektronik devrelerde başka sorunlara sebep olur. Mesela bir bilgisayarı ele alalım. Çalışır halde olan bilgisayar bir süre sonra ısınacak, ısınmanın engellenmesi için fazladan elektrik harcanarak bilgisayarın fanı çalışacak. Üstelik ısınma diğer bilgisayar donanımlarına da zarar verecek.

Tüm Reklamları Kapat

O halde daha verimli devreler istiyorsak atomların titreşimini azaltmak adına iletkeni soğutmak hatta mümkünse mutlak sıfıra olabildiğince yaklaştırmak gerekir. Ancak devrelerde yaygın olarak kullanılan bakır, gümüş gibi iletken metallerde sıcaklık neredeyse 0 kelvin olsa bile metalin tamamen saf olmamasından dolayı 0 dirençten söz edilemez. Bu yüzden bu metaller süperiletken olma niteliği taşımaz.[7]

Sıcaklığa bağlı direnç değişimini gösteren grafik
Sıcaklığa bağlı direnç değişimini gösteren grafik
Ankara Üniversitesi

Süperiletken maddelerin kritik sıcaklığı birbirlerinden farklıdır. Aşağıda bazı süperiletken maddelerin kritik sıcaklığı verilmiştir:

  • Cıva: 4.2 Kelvin
  • Alüminyum: 1.2 Kelvin
  • Kalay: 3.7 Kelvin
  • Galyum: 1.1 Kelvin
  • Niyobyum:9.3 Kelvin

Görüleceği üzere kritik sıcaklık değerleri günlük hayatta pek rastlanmayacak değerler olduğu için sıradan teknolojik cihazlarda süperiletkenler işlevsel olarak kullanılamıyor. Özelleştirilmiş ortamlarda süperiletkenlerden faydalanmak da soğuk veya yüksek basınçlı ortamlar gerektirdiğinden enerji israfına neden olacağı için pratik bir yol değil. Bu yüzden süperiletkenlerin oda sıcaklığında da kullanılması adına kritik sıcaklığı yüksek iletkenlerin keşfi ya da laboratuvarda üretilebilecek sentetik iletkenler önem taşıyor. Yarı parçacıklar da oda sıcaklığında süperiletkenlik çalışmalarına yön verecek gibi gözüküyor.[8]

Okundu Olarak İşaretle
1
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Raporla
Mantık Hatası Bildir
Yukarı Zıpla
Bu Blog Yazısı Sana Ne Hissettirdi?
  • Muhteşem! 1
  • Tebrikler! 1
  • Bilim Budur! 1
  • İnanılmaz 1
  • Merak Uyandırıcı! 1
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 18/05/2025 09:10:48 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/17446

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün bilimseverlerle ne paylaşmak istersin?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Size Özel
Makaleler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Bize Ulaşın

ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close