Paylaşım Yap
Tüm Reklamları Kapat

Oyun Teorisi - 2: ''En İyi Cevap'' Konsepti ve Nash Dengesi

14 dakika
46,761
Oyun Teorisi - 2: ''En İyi Cevap'' Konsepti ve Nash Dengesi Know Your Meme
Evrim Ağacı Akademi: Oyun Teorisi Yazı Dizisi

Bu yazı, Oyun Teorisi yazı dizisinin 2 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Oyun Teorisi - 1: Oyunlar ve Oyunların Modellenmesi" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Oyun Teorisi yazı dizimizin ikinci kısmında, yavaş yavaş oyunları ve oyuncuların davranışlarını analiz etmeye başlayacağız. Bu kısım, Oyun Teorisi’nin temel kavramlarını okurlarla tanıştıracağı için, büyük öneme sahiptir. Bu yüzden önerimiz, okurlarımızın bu yazımızı büyük bir dikkatle okumaları, tamamen anlayana kadar tekrar tekrar üstünden geçmeleri, ve akıllarına takılan her türlü soruyu bizlere iletmekten çekinmemeleri yönündedir.

Giriş

Sizce, oynayan bir oyuncu olarak değil, ama dışarıdan bir göz olarak bir oyunu analiz ederken neye bakmamız gerekiyor?

Dışarıdan bir gözün ilgileneceği birinci nokta, oyunun sonucu olacaktır, yani oyuncuların seçecekleri aksiyonların bizi nereye götüreceği. Bunun için, tabii ki de, oyuncuların hangi aksiyonları seçecekleri konusunda bir fikir sahibi olmamız lazım.

Tüm Reklamları Kapat

Ama oyuncuların seçecekleri aksiyonlar mutlak mıdır? Bir oyun üzerine yapacağımız bir analizi, aynı oyunun her oynanışına genelleyebilir miyiz? Oyunlara, evrensel bir “çözüm” bulabilir miyiz?

Bu, çözümden anladığımız şeye göre değişir. Ancak cevap: Evet. Gelin bakalım.

Keynes Güzellik Yarışması

Popüler bir örnek olarak, İngiliz iktisatçı John Maynard Keynes (1883 – 1946) tarafından ortaya atılan Keynes Güzellik Yarışması’nı inceleyelim.

Bu yarışmada, bir gazete, okurlarından yüz farklı insanın yüzü arasından en güzelini seçmelerini istiyor. En çok beğenilen yüzü seçenler ise ödüllendiriliyor.

Tüm Reklamları Kapat

Birkaç dakikalığına dışarıdan bir göz olmayı bırakıp bu yarışmaya katılacak bir okur gibi düşünelim. Şüphesiz, gazetenin sizden istediği, kendi güzellik algınıza göre en beğendiğiniz yüzü belirtmenizdir. Ancak bu, gerçekten kazanmak istiyorsanız iyi bir strateji midir? Tabii ki hayır! İnsanların güzellik algısı büyük farklılıklar gösterebilir, ve sizin algınız toplumda -ya da spesifik olarak o gazetenin okur kitlesi içinde- hakim olan güzellik algısından çok farklı olabilir.

O zaman, ne yapmanız gerektiği açıktır: Gözlemlerinize, tahminlerinize dayanarak yarışmaya katılan insanların en çok beğeneceği yüz hakkında bir öngörüde bulunmak ve ona oy vermek, kazanma şansınızı artıracaktır.

Şimdi, bu yarışmanın daha somut, daha rahat analiz edilebilir bir çeşidine bakalım. Bu sefer, yarışmanın her katılımcısının 1 ile 100 arasında (1 ve 100 dahil) bir tam sayı seçmeleri gerekmektedir. Seçilen sayıların ortalamasının ⅔’üne en yakın sayıyı seçen katılımcı yarışmayı kazanacaktır. Beraberlikler ise rastgele bir biçimde bozulacaktır. (Örneğin, eğer iki kişi ortalamaya en yakın sayıyı söylemişse, yazı-tura atılarak içlerinden biri seçilecektir.)

Eğer bu yarışmayı kazanmak için de, güzellik yarışmasındakine benzer bir yöntem uygulamanız gerekmektedir: Ortalamanın ne çıkacağına dair bir tahminde bulunacaksınız, ve bu tahminin ⅔’ünü (ya da ona en yakın sayıyı) söyleyeceksiniz. Bir başka deyişle, diğer oyuncuların ne yapacağını kestirmeye çalışacak ve ona uygun bir cevap vereceksiniz. Peki, diğer oyuncuların ne yapacağını nasıl bilebiliriz?

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

Biraz akıl yürütelim. Diyelim ki, bir oyuncu, ortalamanın X olacağına inanıyor.

Her oyuncu 1’den 100’e kadar olan sayılardan seçmek zorunda olduğu için, kazanabilecek sayı (optimum strateji) en fazla 100 * ⅔ = 67 olabilir.

Eğer tüm oyuncular biraz düşünerek oynarsa, o zaman söylenen tüm sayılar 67’den küçük olacaktır. Yani, oyuncular 1 ile 67 arasında sayılar söyleyeceklerdir.

O zaman, optimum strateji en fazla 67 * ⅔ = 45 olabilir.

Tüm oyuncuların bu şekilde akıl yürütmeye ve tamamen mantıklı oynamaya devam ettiğini düşünürsek:

Optimum strateji < 45 ise, X<45.

Tüm Reklamları Kapat

X < 45 ise, optimum strateji < 45 * ⅔ = 30.

Optimum strateji < 30 ise, X < 30...

Bu şekilde devam edebiliriz. Açıkça görüldüğü üzere, bu mantığın her aşamasında kazanacak sayının (yani optimum stratejinin) maksimum değeri daha da küçülüyor. Böyle devam edersek, sonuçta 1 sayısına, yani oyuncuların önerebileceği en küçük sayıya ulaşacağız. Bir başka deyişle, eğer tüm oyuncular oyunu anlarsa ve kazanma şanslarını maksimum yapacak şekilde hareket ederlerse -ve diğer herkesin bunu yapacağını biliyorlarsa- herkes 1 sayısını söyleyecektir.

Tüm Reklamları Kapat

Herkesin 1 demesi, bu yarışmanın/oyunun tek dengesidir.

Peki, bunun böyle olacağını, her oyuncunun bu şekilde akıl yürüteceğini varsaymak ne kadar doğrudur? Bunun için, biraz denge kavramına göz atmakta fayda var.

Görseldeki gibi bir sarkacı düşünelim. Bu sarkacın ipinin ucundaki topu, eğer açılı bir şekildeyken bırakırsak, bu dengede midir? Hayır! Top bırakıldığında, yerinde sabit durmayacak ve salınım hareketine başlayacaktır. Eğer hava sürtünmesi yoksa, sonsuza kadar iki taraf arasında, maksimum bırakıldığı açıya kadar yükselerek sallanmaya devam edecektir, ve asla bir dengeye ulaşamayacaktır. Eğer hava sürtünmesi var ise, o zaman giderek yavaşlayacak (daha az yükselecek) ve nihayetinde yere doksan derecelik bir açı ile, ip (daha doğrusu, gerilim vektörü) ile kendi hareketini sağlayan yerçekimi kuvveti paralel olacak şekilde duracaktır. Durduğu an, dengeye ulaştığı an olacaktır. Çünkü denge, tanımı gereği, bir değişim eğiliminin olmadığı durumlardır.

Yukarıdaki oyundaki denge de, aynen budur. Bu denge, birazdan daha net bir şekilde tanımlayacağımız Nash dengesidir. Nash dengesi bozulmaz, çünkü hiçbir oyuncu tercihini değiştirmek istemez. Ve Nash dengesi, oyunların çözümlenmesinde kritik öneme sahip bir kavramdır.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Uykusuz Ayı Monti

Kış kapıya dayandı. Ayı Monti uzun, tatlı bir kış uykusuna yatmaya hazır. Mağarası sıcacık, yastığı pofuduk, midesi tıka basa dolu ama bir sorun var: Ne kadar uğraşırsa uğraşsın, bir türlü UYKUYA DALAMIYOR. Ormandaki arkadaşları da yardım edemezse, Ayı Monti’yi uzun ve zorlu bir kış bekliyor.
Çocukların sevgilisi Ayı Monti harika bir uyku öncesi hikâyesi ile dönüyor.

Devamını Göster
₺160.00
Uykusuz Ayı Monti
  • Dış Sitelerde Paylaş

Sorumuza dönecek olursak, bu gerçekçi bir beklenti midir? Denge gerçekten oynanır mı?

Nasıl bir sarkaç açılı bırakıldığında önce farklı noktalarda bulunuyor, ancak zamanla dengeye ulaşıyorsa, oyunlarda da aynı şeyi bekleriz.

Nash dengesinin oynanmadığı bir durumu ele alalım. Örneğin, oyun oynanıyor, ve pratikte her oyuncu ilk seferde bizim yukarıda yaptığımız analizi yapmayacağı için, ortalama 34, kazanan 23 çıkıyor. Bu sonucu gören ve 23’ten çok daha büyük sayılar söyleyen oyuncular, oyun bir daha oynandığında, tahminlerini düşüreceklerdir. Çünkü, katılımcıların eğiliminin (ya da oyunun doğasının) bunu gerektirdiğini fark etmişlerdir. Ancak, o oyuncuların söylediklerini düşürmeleri ile, ortalama da düşecektir. Böylece, yine büyük sayıları söyleyenler, bir daha oynanırsa yine tahminlerini düşürecektir. Oyun tekrarlandıkça, giderek daha fazla oyuncu Nash dengesi olan 1’e yaklaşacaktır… Taa ki, herkes 1’i söyleyene, ve böylece herkes “kazanana” kadar. O noktadan sonra kimse 1’den başka bir rakamı söylemeyecektir ve böylece stabil bir durum elde edilmiş olacaktır.

(Eğer diğer herkes 1 derken sizin başka bir sayıyı söylemenizin kazanma ihtimali yaratacağını düşünüyorsanız, en ekstrem duruma bakalım: İki oyuncusunuz, karşınızdaki 1, siz ise 100 diyorsunuz. Ortalama 50 olacaktır, ve 50’nin ⅔’ü olan 33’e daha yakın olduğu için yine 1 kazanacaktır.)

Buradan gördüğümüz sonuç, Nash dengesinin her zaman oynanmasını beklemek hatalı olsa da, denge-dışı durumların zamanla kaybolacağıdır. Nash dengesinden daha etraflıca bahsetmeden önce, onun temelinde yatan en iyi cevap konseptine bakalım.

En İyi Cevap

Cinsiyetlerin Savaşı oyununa geri dönelim. Diyelim ki siz erkek tarafısınız, ve dişinin kesinlikle operaya gideceğini biliyorsunuz. (Çoktan biletini aldı, ya da içeri girdi bile, vs.) Bunu değiştirmek için yapabileceğiniz hiçbir şey yok, rakibiniz hamlesini yaptı ya da yapacağı hamleyi biliyorsunuz.

Ne yapmanız gerekir? Açıkça, partnerinizle farklı yerlerde, farklı aktiviteleri yapıyor olmak hiç hoşunuza gitmeyeceği için, siz de operaya gitmelisiniz. Belki opera çok hoşunuza giden bir aktivite değil ve sevgilinizle bir film izlemek size çok daha fazla zevk verecek, ama bunu asla yapamayacağınız için, o anki duruma göre hareket etmek zorundasınız. O anki durumda da, maksimum kazanç almak için yapmanız gereken, operayı sinemaya tercih etmek ve partnerinizle aynı yerde olmaktır.

Daha matematiksel olarak bakarsak, dişi hamlesini yaptığı için, dört muhtemel sonuçtan gerçekleşebilecek sadece iki tane kalmıştır.

Oyun artık budur, ve sizin de buna göre oynamanız gerekmektedir. Bu durumda, operaya gitmek, sizin dişinin hamlesine karşı verebileceğiniz en iyi cevaptır.

En iyi cevap dediğimiz kavram, adından da anlaşılacağı üzere, diğer oyuncuların yapacakları hamlelerin ya da uygulayacakları stratejilerin bilindiği durumda, sizin maksimum fayda almak için yapmanız gereken/yapacağınız hamledir. Örneğin, Karşılaşan Arabalar oyununda, eğer karşınızdaki araç direksiyonu sola kırmışsa, sizin de sola kırmanız verebileceğiniz en iyi cevap olacaktır. Devrim Oyunu’nda, eğer 2 milyondan çok daha az kişinin ayaklanacağını önceden biliyorsanız, devrimin başarısız olacağını da bileceğiniz için, sesinizi çıkarmamak en iyi cevabınızdır. Ama eğer, bir şekilde tam olarak 1,999,999 kişinin ayaklanacağını biliyorsanız, katılımınız devrimi başarıya ulaştıracaktır ve en iyi cevabınız da budur.

Tüm Reklamları Kapat

Nash Dengesi

Keynes Güzellik Yarışması örneğinde gördüğümüz Nash Dengesi, önümüzdeki yazıda diğerlerinden farkını göreceğimiz saf strateji Nash dengelerine bir örnektir. Saf strateji Nash dengesi, her bir oyuncunun diğer oyuncuların aksiyonlarına en iyi cevabı verdiği durumdur. Yani bir başka deyişle, hiçbir oyuncu seçtiği aksiyonu değiştirerek daha fazla kazanç elde edemez.

Nash dengesi, Oyun Teorisi’nin en temel kavramlarından biridir, bu yüzden de kritik öneme sahiptir. Pek çok oyunun analizi, Nash dengesi veya varyantları kullanılarak yapılır. İlk başta biraz soyut gözükebilecek olan bu kavramı daha iyi anlamak için, ilk yazımızda bahsettiğimiz oyunlardaki saf strateji Nash dengelerine bakalım.

Örnek: Tutuklu İkilemi

Tutuklu ikileminde, seçebileceğiniz iki aksiyon bulunmaktadır: Ya suç arkadaşınızla işbirliği yapacaksınız, ya da döneklik edecek ve onu satacaksınız.

Arkadaşınızın işbirliği yaptığını varsayalım. O zaman, eğer siz de susarsanız, polis elinde kayda değer bir kanıt olmadığı ama suçlayacak birilerine de ihtiyacı olduğu için sizi de arkadaşınızı da ufak bir cezaya çarptıracaktır. Lakin, eğer siz arkadaşınızı satmayı seçerseniz, bu defa polisin elinde güçlü bir kanıt olacaktır ve suç arkadaşınıza yüklenecektir. Siz de, karakoldan hiçbir ceza yemeden kurtulabileceksinizdir. Matematiksel olarak, -1 kayıp yerine 0 kazanca sahip olacaksınız.

Tüm Reklamları Kapat

Eğer arkadaşınız döneklik ederse, ve siz susarsanız, bu defa tüm suç size yıkılacak. Ancak eğer siz de arkadaşınızı satarsanız, ikinizin de suçlu olduğu anlaşılacak ve ceza paylaştırılacaktır. (Örneğin, eğer suç iki kişinin öldürülmesi ise, ve birini siz birini de arkadaşınız öldürmüşse, tüm suç size atıldığında siz iki kişinin ölümünden sorumlu olacaksınız. Ancak ikinizin de suçlu olduğu anlaşıldığında ikiniz de birer ölümden sorumlu tutulacaksınız.) Matematiksel olarak, -5 kayıp yerine -3 kaybınız olacak.

Her iki durumda da en iyi cevabınız döneklik etmektir. Yani, döneklik etmek, arkadaşınız ne yaparsa yapsın size daha fazla kazanç getirecektir. Döneklik aksiyonu, sizin baskın stratejinizdir.

Oyuncu 2’nin gözünden bakacak olursak da, oyun simetrik olduğu için, yine döneklik etmenin baskın strateji, her durumda en iyi cevap olduğunu göreceğiz. Bu yüzden, (Döneklik, Döneklik) olarak da ifade edilebilecek olan (-3,-3) kazançlı sonuç, Tutsak İkilemi’nin tek Nash dengesidir.

Eminiz buradaki problemi siz de fark etmişsinizdir: Oyunun tek Nash dengesi, yani kimsenin kararını değiştirme eğilimi olmayan tek sonucu, iki oyuncu için de açık bir şekilde (-1,-1) kazançlı ikisinin de işbirliği yaptığı sonuçtan daha kötü bir sonuçtur. O zaman nasıl oluyor da, bu bir denge oluyor ve oyuncular hallerinden memnun oluyor?

Tüm Reklamları Kapat

Bunu anlamak için, Nash dengesinin tanımında her bir oyuncuyu ayrı ayrı irdelediğini hatırlamak lazım. Nash dengesinde herkes, diğerlerine en iyi cevabı verir, ama bu en iyi cevapların ortaya çıkardığı sonucun “en iyi” sonuç olması şart değildir.

Bunun yerine, oyunun stabilitesi olarak düşünecek olursak da, (-3,-3) dışındaki her bir durumda oyuncuların birinde kararını değiştirme eğilimi olduğunu görürüz, yukarıda da bahsettiğimiz gibi. (-1,-1) sonucu (-3,-3) sonucundan daha iyi olsa bile, Oyuncu 1 için (0,-5) sonucundan daha kötüdür ve bu yüzden de Oyuncu 1 döneklik etmeyi tercih edecektir. Her diğer sonuçta, başka bir sonuca gitme eğilimi vardır. Bunu, matris üzerinde şöyle de gösterebiliriz:

Peki, bu sonuç daima doğru mu olacaktır? Taraflar, asla işbirliği yapmaya yanaşmayacaklar mıdır? Bunun böyle olmadığını ve belli koşullar altında işbirliği yapmanın da Nash dengesi olabileceğini, ilerleyen makalelerimizde, oyunun tekrarlandığı durumda göreceğiz.

Örnek: Karşılaşan Arabalar

Karşılaşan Arabalar gibi simetrik bir işbirliği oyununda, iki Nash dengesi vardır ve bunlar işbirliğinin başarıldığı durumlardır. Yani, iki arabanın da kendilerine göre sola ya da kendilerine göre sağa gittiği sonuçlar stabildir, değişme eğilimi olmaz. Karşınızdaki arabadan kaçabiliyorken onunla burun buruna çarpışmayı tercih etmek elbette ki akılcı bir hareket olmayacaktır.

Tüm Reklamları Kapat

Örnek: Cinsiyetlerin Savaşı

Cinsiyetlerin Savaşı’ndaki en iyi cevaplardan bahsetmiştik: Partnerinizin nereye gideceğini biliyorsanız, bu sizin tercih ettiğiniz aktivite olmasa bile, onunla ayrı düşmemek için onun yanına gitmeniz gerekmektedir. Bu, iki taraf için de geçerlidir. Bu yüzden Cinsiyetlerin Savaşı oyununun iki adet saf strateji Nash dengesi vardır ve bunlar, çiftlerin ikisinin de aynı aktiviteyi yaptıkları durumlardır.

Örnek: Para Eşleme

Para Eşleme gibi bir saf rekabet oyununda, bir saf strateji Nash Dengesi’nden bahsetmemiz mümkün değildir. Yukarıdaki görselde de görebileceğiniz gibi, her sonuçta oyunculardan biri hamlesini değiştirerek kazanmayı başarabilir. Bu da, bize tercihlerin sürekli değişmesi sonucunda dört sonucun arasında gidip gelen bir döngü oluşturur. İlk oyuncu yazı demişse, ikinci tura diyecektir, ama ikinci tura derse ilki de tura der, bu yüzden ikincinin yazı demesi gerekmektedir, ve böyle gider… Peki, Para Eşleme oyununda hiçbir şekilde dengeden söz edilemez mi? Edilebilir. Bundan, yani karma strateji Nash dengelerinden bir sonraki yazımızda bahsedeceğiz.

Son olarak da, yeni bir oyuna bakalım. Bu oyun, aynı zamanda evrimsel biyoloji ile de bağdaştırılabileceği için, oldukça güzel bir örnektir.

Örnek: Şahin-Güvercin Oyunu

Aynı bölgede yaşayan ve aynı kaynaklar için savaşan iki hayvanı (ya da yorumlamaya göre, iki türü) düşünelim. Bu türler, kaynakları elde etmek için agresif “şahin” veya uzlaşmacı “güvercin” stratejilerini kullanabilirler. Şahin stratejisi diğer türlerle ya da aynı türün bireyleriyle fiziksel olarak çatışmayı işaret ederken, güvercin stratejisinde ise taraflar anlaşma, kur yapma, ya da yeni kaynaklar arama gibi fiziksel bir çatışma olmayan yöntemlere başvururlar. Somut bir örnek olarak: Aynı türe mensup iki erkek canlı, dişileri elde etmek için birbirleri ile dövüşebilirler (şahin stratejisi) ya da dişiye kur yapmak veya başka dişilerle şanslarını denemek gibi uzlaşmacı, şiddet içermeyen yolları deneyebilirler (güvercin stratejisi).

Tüm Reklamları Kapat

Eğer iki canlı da şahin stratejisini uygulayarak birbirleri ile çatışırlarsa, kaynakları eşit olarak bölüşüyorlar, ancak aldıkları yaralar sebebiyle büyük bir zarara uğruyorlar.

Eğer iki canlı da güvercin stratejisini uygulayarak uzlaşmacı bir yola giderse, kaynaklar eşit olarak paylaşılıyor ancak yine bir miktar enerji harcıyorlar. Bu, yeni kaynaklar aramanın ya da kur yapmanın bedeli olarak düşünülebilir. Taraflara herhangi bir zarar gelmiyor.

Eğer canlılardan biri şahin, biri güvercin stratejisini uygularsa, şahin stratejisini uygulayan tüm kaynakları elde ediyor. Hiçbir taraf bir zarar görmüyor ya da enerji harcamıyor.

Şimdi, bu hikayeyi bir oyun olarak ifade edelim. Toplam kaynakların 10 birim, çatışmanın bedelinin 6 birim, ve harcanan enerjinin de 4 birim olduğunu varsayalım.

Tüm Reklamları Kapat

Oyunumuz tamamen simetrik olduğu için, yapacağımız analizin sonuçları iki oyuncu için de geçerli olacaktır.

Eğer Oyuncu 2 “şahin” hamlesini yaparsa, Oyuncu 1’in de “şahin” olarak cevap vermesi, bir miktar kaynak elde etmesine rağmen büyük yaralarla sonuçlanacaktır ve Oyuncu 1, -1 hasarla ayrılacaktır. Eğer “güvercin” hamlesiyle karşılık verirse ise, hiçbir kaynak kazanamamakla beraber bir zarara da uğramayacaktır ve 0 kazançla oyunu tamamlayacaktır. Yani, “şahin” aksiyonuna verilecek en iyi cevap “güvercin” aksiyonunu seçmek, “geri çekilmek”tir.

Eğer Oyuncu 2 “güvercin” hamlesini tercih ederse, Oyuncu 1’in en iyi cevabı açıkça görüldüğü üzere “şahin” aksiyonunu seçerek, rakibinin zayıflığından yararlanıp ortamdaki kaynaklara sahip olmaktır.

Bulduğumuz sonuçlar iki oyuncu için de geçerli olduğundan, Şahin-Güvercin oyununun iki Nash dengesi olduğunu ve bunların (Şahin, Güvercin) ya da (Güvercin, Şahin) olduğunu söyleyebiliriz.

Tüm Reklamları Kapat

Oyuncuları türler olarak yorumlayarak analiz edecek olursak, bu sonuç bize, evrimsel süreçte hem agresif, hem de uzlaşmacı yöntemler geliştirmiş canlı türlerinin nasıl bir arada yaşayabildikleri konusunda da bir fikir vermektedir. Uzlaşmacı stratejiler, agresif olanlara yer yer “ezilse” de, iki agresif türün bir arada yaşaması çok daha zor olacaktır ve bu yüzden türlerden biri uzlaşmacı bir strateji izlemeye zorlanacaktır.

Not edilmelidir ki, yukarıda bahsettiklerimiz bize “evrimsel süreçte türlerin sahip olacakları özellikleri seçtiklerini” söylememektedir. Şahin-Güvercin oyununu, bir normal formda oyun olarak inceleyip bunu türlerin olarak yorumladığımızda gördüğümüz, sadece bulduğumuz dengenin evrimsel süreçte de ortaya çıkmasının ve stabil kalmasının mümkün olduğudur.

Sonuç

Oyun Teorisi yazı dizisinin bu ikinci kısmında, teorinin temel kavramlarından olan Nash dengesinin ne olduğundan kısaca bahsettik. Bundan sonraki yazımızda da karma strateji Nash dengelerinden bahsedecek, dengeyi bir “aksiyonlar kümesi” değil de bir “stratejiler kümesi” olarak yorumlayacak ve bu şekilde biraz daha derine dalacağız.

Bu yazıda anlatılanlar Oyun Teorisi’nin katacağı ve gerektirdiği düşünce tarzının en kritik ögelerinden olması bakımından çok önemlidir. Yazının başında da bahsettiğimiz gibi, hiçbir okurumuzun Nash dengesi ve en iyi cevap kavramlarını tam olarak anlamadan geçmemesini, akıllarına takılan soruları da bize iletmelerini öneriyoruz.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Oyun Teorisi Yazı Dizisi

Bu yazı, Oyun Teorisi yazı dizisinin 2 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Oyun Teorisi - 1: Oyunlar ve Oyunların Modellenmesi" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
55
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 38
  • Merak Uyandırıcı! 19
  • Tebrikler! 18
  • İnanılmaz 16
  • Mmm... Çok sapyoseksüel! 11
  • Bilim Budur! 8
  • Umut Verici! 6
  • Güldürdü 2
  • Üzücü! 1
  • Grrr... *@$# 1
  • İğrenç! 1
  • Korkutucu! 1
Kaynaklar ve İleri Okuma
  • Y. Shoham, et al. Game Theory. (2 Eylül 2019). Alındığı Tarih: 2 Eylül 2019. Alındığı Yer: Coursera | Arşiv Bağlantısı
  • Y. Shoham, et al. Game Theory Ii: Advanced. (2 Eylül 2019). Alındığı Tarih: 2 Eylül 2019. Alındığı Yer: Coursera | Arşiv Bağlantısı
  • S. Tadelis. (2013). Game Theory: An Introduction. ISBN: 0691129088. Yayınevi: Princeton University Press.
  • M. O. Jackson. A Brief Introduction To The Basics Of Game Theory. (2 Eylül 2019). Alındığı Tarih: 2 Eylül 2019. Alındığı Yer: ETH Zurich | Arşiv Bağlantısı
  • M. O. Jackson. Mechanism Theory. (8 Aralık 2003). Alındığı Tarih: 2 Eylül 2019. Alındığı Yer: Stanford University | Arşiv Bağlantısı
  • M. O. Jackson. Matching, Auctions, And Market Design. (22 Kasım 2013). Alındığı Tarih: 2 Eylül 2019. Alındığı Yer: Research Gate | Arşiv Bağlantısı
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 22/11/2024 01:47:00 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/446

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Canlılık
Balık
Yayılım
Kafatası
Algoritma
Balıkçılık
Nöroloji
Meyve
Ornitoloji
Canlılık Ve Cansızlık Arasındaki Farklar
Hastalık
Maske
Homo Sapiens
Yok Oluş
Astrobiyoloji
Mutasyon
Toprak
Kimyasal Bağ
Görelilik
Bellek
Kütle
Uçma
Beslenme Davranışları
Makale
Köpekbalığı
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün bilimseverlerle ne paylaşmak istersin?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Z. D. Erden, et al. Oyun Teorisi - 2: ''En İyi Cevap'' Konsepti ve Nash Dengesi. (15 Kasım 2016). Alındığı Tarih: 22 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/446
Erden, Z. D., Bakırcı, Ç. M. (2016, November 15). Oyun Teorisi - 2: ''En İyi Cevap'' Konsepti ve Nash Dengesi. Evrim Ağacı. Retrieved November 22, 2024. from https://evrimagaci.org/s/446
Z. D. Erden, et al. “Oyun Teorisi - 2: ''En İyi Cevap'' Konsepti ve Nash Dengesi.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 15 Nov. 2016, https://evrimagaci.org/s/446.
Erden, Zeki Doruk. Bakırcı, Çağrı Mert. “Oyun Teorisi - 2: ''En İyi Cevap'' Konsepti ve Nash Dengesi.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, November 15, 2016. https://evrimagaci.org/s/446.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close