Türleşme - 7: Evrim Hızı Tüm Canlılarda Aynı Mıdır, Farklı Mıdır? Neden?

Yazdır Türleşme - 7: Evrim Hızı Tüm Canlılarda Aynı Mıdır, Farklı Mıdır? Neden?

Türleşme yazı dizimizin bu yazısını daha önceden yazdığımız bir cevap ile birleştirerek vermek istiyoruz. Bu yazıyı biraz daha güncelleyerek sizlere aktarmak istiyoruz. Sayfamız üyelerinden Sayın Bersis İnan bize yönelttiği soru şöyleydi:

 

"İyi akşamlar. Canlı türleri evrim ağacında her biri ayrı kolda değişim geçirirlerken her tür farklı hızda mı evrilir?"

 

Evrim Ağacı olarak şöyle bir cevap vermek istiyoruz:

 

Sayın Bersis İnan,

 

Bu güzel sorunuz için teşekkür ederiz. Gerçekten çok önemli bir konu ve bazı bilim-dışı kaynak ve kişilerin sürekli olarak "X milyon yıllık fosil bulundu, günümüzdekinin tıpatıp aynısı, evrim yalan!" gibi kışkırtmalarının ve açıkçası da boş hayat emellerinin temel dayanaklarının merkezini oluşturmaktadır. Bu konuda şuradan okuyabileceğiniz kapsamlı bir yazımız bulunuyor. Eğer ki evrime bilimsel temelde olamasa da şahsi düşünceler temelinde karşı olan biriyle tartışacak olursanız (ya da günümüzde herhangi bir “metro-altı seyyar sahte-müzesine” uğrayacak olursanız) konunun geleceği yer sonunda sözde “milyonlarca yıldır aynı kalan, evrimleşmeyen türler” olacaktır. Bu yazımızda bu bilim düşmanlarının iddialarını ele almak yerine, konuya bilimsel bir çerçeveden bakarak evrimin tüm türlerde aynı hızda olup olmadığını anlatmaya ve farklılıkların sebeplerini göstermeye çalışacağız. Bu kişi ve kurumlarca yayınlanan belgelerin çok büyük bir kısmı yanlış olmakla birlikte, bir kısmı algıda seçiciliği kullanarak benzerlikleri, sınıflandırma konusunda yetkin olmayan gözlerimize göstererek bizleri kandırma amacı gütmektedir. Çok küçük bir kımsı ise, temel ve saptırılmış doğrular içermektedir.


Her ne kadar bu iddialar üzerinden gitmeyecek olsak da, bilgi olması açısından şunu söyleyebiliriz: hiçbir türe ait hiçbir fosil, sadece dış hatlarının benzerliği üzerinden giderek analiz edilmez. Dolayısıyla, hele ki konunun uzmanı olmayan bir gözün bir fosil ile günümüzde yaşayan bir canlının dış hatlarının birbirine benzemesi üzerinden yapacağı çıkarımların tamamı geçersiz olacaktır. Bu yüzden, eğer ki birileri size “Bak, fosile ne kadar da benziyor, demek ki evrim geçirmemiş, evrim yok.” diyecek olursa, bir saniyeliğine kendi kendinize düşününüz. Siz (veya iddiada bulunan şahıs) arkeometri, paleobiyoloji, paleontoloji, arkeoloji ve benzeri alanlarda herhangi bir akademik eğitime sahip misiniz? Sadece dışarıdan bakmayla bırakın iki yapı arasındaki benzerliği fark etmeyi, tek bir fosilin hangi türe ait olduğunu, yaşadığı dönemi, yaşadığı dönemin koşullarını, bu koşulların günümüze kadar olan değişimini ve benzeri durumları değerlendirebilecek arka plana sahip misiniz? Eğer ki bu soruların en az 1 tanesine cevabınız “Hayır, yeterli akademik donanımım yok.” ise, o zaman o tür hakkında hiçbir yargılayıcı değerlendirmeye varamayacağınızı bilmelisiniz. Nasıl ki "Karnımda bir ağrı var." diyen birine bilgisizce "Bir şey olmaz, ağrır öyle." demek kişinin apandisit ya da benzer bir hastalık sebebiyle ölümüne neden olabilecekse, bir fosil ile yaşayan bir canlıyı bilgisizce dış hatlarıyla kıyaslayıp "Evrimleşmemişler, demek ki evrim yok." demek bilimsel bir katliamdır. Bu tür iddialarla karşılaştığınızda kendi (ve iddia sahibinin) akademik yetkinliğinizi sorgulamanız, sözde-bilim sahtekarlarının zamanınızı çalmasına ve sahte bilgilerle zihinlerinizi bulandırmasına engel olacaktır.


Evet, canlıların evrimleşme hızları gerçekten de birbirinden son derece farklıdır. Bu sebeple de bazı türler milyonlarca yıl boyunca göreceli olarak az evrim geçirirler ve dolayısıyla atalarına diğer nesillerden daha çok benzerler. Örneğin Proceedings of the Royal Society'de yayımlanan bir araştırma Çin'de bulunan bir balık türünün, sadece 3 nesilde atalarından farklılaştığı, yani evrim geçirdiği ortaya koymaktadır. Yani sadece 3 yıl gibi bir sürede, su sıcaklığına bağlı bir evrim tespit edilmiştir. Ancak bazı canlılar ise, birkaç on veya birkaç yüz milyon yıl boyunca pek az değişerek günümüze kadar varlıklarını sürdürmüşlerdir. Örneğin geçtiğimiz günlerde Nature dergisinde yayınlanan ve yaşayan fosil olarak bilinen, yani atalarından pek az değişerek günümüze ulaşan türlerden olan sölekantların genom dizileri yayınlanmış ve evrimsel biyolojinin de öngördüğü yavaş evrimsel süreç bu yaşayan fosil türlerde ispatlanmıştır. Yani anlaşılması gereken şey şudur: bu, ne evrime karşı bir kanıt olarak gösterilebilir, ne de evrimi zor durumda bırakacak bir durumdur. Tam tersine, evrimsel kuramların bilimsel öngörü gücünü ortaya koyacak niteliktedir. İzah etmemize izin verin:

 

Daha önce burada ve burada açıkladığımız üzere, evrimin ve mekanizmalarının önceden belirlenmiş bir yönü yoktur ve evrimin tüm mekanizmaları, çevresel koşulların kısıtlamalarından etkilenmektedir. Yani kurak ve sıcak bir alandaki canlılar üzerindeki çevresel baskı ile deniz ortamındaki canlılar üzerindeki çevresel baskılar kıyaslanamayacak ölçüde farklı ve çeşitlidir. Bu sebepledir ki evrimin bir yönünü önceden tayin etmek mümkün olamamaktadır. Fakat buna rağmen, evrimsel doğa yasalarından faydalanarak belirli bir çevredeki türlerin nesiller içerisinde yaklaşık olarak ne tür değişimler geçirebileceğini öngörebiliriz. Benzer bir şekilde, çevresel değişimleri paleoekolojik olarak analiz ederek ve genetik çalışmalarla genlerin değişimini araştırarak, günümüzdeki türlerin nasıl evrimsel süreçlerden geçerek bugünlere ulaştıklarını ortaya çıkarabiliriz. Günümüzdeki türlerin evrimsel öngörülerimiz dahilinde evrimleşip evrimleşmeyeceğini deneysel evrim çalışmaları sayesinde ispatlayabilmekteyiz (ve şimdiye kadar istisnasız olarak hep başarılı sonuçlar alındı). Öte yandan günümüzdeki türlerin geçmişte geçirdikleri evrimsel değişimleriyle ilgili öngörülerimizi, nadir olarak çıkarılabilen fosillerle ispatlayabilmekteyiz. Bu alanda da keşfedilen tüm fosiller, belli başlı düzeltmelere sebep olabilmekle birlikte hep tatmin edici ve evrimsel analizle tam olarak uyumlu sonuçlar vermiştir.

 

İşte ekolojik ve genetik olarak analiz edilerek evrimsel geçmişi ortaya çıkarılan, sonradan da fosillerle bu geçmişe dair çıkarımlarımızın test edildiği canlılardan bazıları, göreceli olarak az miktarda değişim göstermiştir. Bunun birçok sebebi olabilmektedir ve az sonra değineceğiz. Ancak genellikle karşımıza çıkan neden hep aynıdır: av-avcı ilişkilerinde avcıların etkisinin azalması (yani av olan türler üzerindeki baskının çok az olması) veya içinde yaşanılan ortamın (habitatın) milyonlarca yıl da geçse çok az miktarda değişiyor olması… Bu iki durum, genellikle türlerin yavaş evriminin ana sorumlusu olmaktadır. Burada da bir noktanın altını çizmemizde fayda var: her tür evrimleşmek zorundadır! Bunu bu kadar açık ve net söyleyebiliriz. Eğer ki yeterli süreler tanınacak olursa, tüm koşullar sabit kalacak olsa bile türler mutlaka evrimleşeceklerdir. Bu evrim her zaman gözle görünür morfolojik değişimlere neden olmaz; ancak bu, evrimin gerçekleşmediği anlamına da gelmez. Çünkü evrimin tek mekanizması seçilim mekanizmaları değildir. Örneğin genetik sürüklenme gibi genetik dağılımı değiştirebilen ve seçilim baskılarından tamamen bağımsız olan mekanizmalar da bulunmaktadır. Dolayısıyla her tür belli zamanlar tanındığı sürece evrimleşir; fakat bu her zaman gözle görülür morfolojik farklılıklar yaratmaz. Genetik analizlerdeyse evrim net olarak görülebilir ve istisnasız olarak, her zaman da görülmüştür.

Göreceli olarak az değişen canlılara en iyi ve bilindik iki örnek timsahlar ve köpekbalıkları olacaktır. Bu iki hayvan grubu, kendi besin zincirlerinin en üst basamağındadırlar. Yani teknik olarak avcıları yoktur (insan ve kimi zaman kendi türleri haricinde). Ayrıca son birkaç milyon yıldır yaşadıkları çevre oldukça sabittir (özellikle de köpekbalıkları için). Bu iki neden bir araya geldiğinden, belli bir evrimsel başarıya ulaşabilmiş bu türler son birkaç milyon yıldır diğer türlere göre daha yavaş bir evrimsel değişimden geçmektedirler. Peki bu türler hiç mi evrimleşmemektedir? Hayır, genetik yapıları her nesilde atalarından farklılaşmaktadır; fakat bu morfolojilerine çok az yansımaktadır. Örneğin az önce bahsettiğim sölekantlar, köpekbalıklarından bile daha yavaş evrim geçirmektedirler; ancak yine de evrimleşmektedirler.





Üstelik, bu göreceli olarak az evrimleşen canlılar da mutlaka ama mutlaka evrimleşmiştir, yeni türler oluşturmasalar da farklılaşmış oldukları net olarak bilinmektedir. Çünkü mutlaka öyle ya da böyle çevresel bazı değişimler yaşanmıştır ve buna en çok adapte olabilen bireyler hayatta kalarak bu yönde bir seçilim sağlamışlardır (directional selection - yönlü seçilim). Ancak bunu, fosil kayıtlarına bakan sıradan bir göz göremezken, paleontologlar, sistematikçiler, doğa bilginleri ve biyologlar bunu kolayca ya da bazı teknikler kullanarak bilebilmektedirler. Bu tıpkı iki farklı arabaya bakıp, "Eh, aynı gözüküyorlar." dedikten sonra, birinin 1.2 motora sahip olduğunun ortaya çıkması, diğerinin 3.0 V6 motora sahip olduğunun ortaya çıkması gibidir. Araştırmadan ve bilim adamlarına danışmadan bilmek mümkün değildir.

 

Bu noktada, canlıların evrimleşme hızlarını nelerin arttırdığına bir göz atabiliriz. Bir türün evrimleşme hızını kabaca analiz edebilmeniz için sizlere pratik bir yöntem sunabiliriz: bir türün üzerindeki çevresel baskı ne kadar fazlaysa, evrimleşme hızı da o kadar fazladır. Bu, neredeyse her zaman doğrulanan bir kural olmakla birlikte, çok nadiren de olsa istisnaları olabileceği unutulmamalıdır. Fakat iki türün evrim hızını kıyaslarken, eğer ki kıyaslanabilir özelliklere sahiplerse, üzerlerindeki çevresel baskı miktarından yola çıkarak kabaca bir analiz yapabilirsiniz. Sadava ve arkadaşlarının yazdığı Life: The Science of Biology kitabında bu durum dört ana çevresel baskı üzerinden açıklanmaktadır. Bunlara değinerek örneklendirelim:

 


1) Yayılma Kabiliyeti

 

Her türün Dünya üzerinde yayılım gösterdiği alan tespit edilebilir sınırlarla çevrilidir. Bu alanlar, evrimsel değişimlere bağlı olarak genişleyebilir veya daralabilir. Ancak az önce bahsettiğim kuralı doğrular bir şekilde, eğer ki bir türün yaşadığı ortam kısıtlı ise, tür üzerinde daha büyük bir baskı var demektir; çünkü çok daha dar bir alanın koşullarına adapte olarak o imkanlarla hayatta kalmak durumundadır. Bunun en güzel örneği, adalardaki canlı çeşitliliğidir. Örneğin Hawaii adaları gibi son derece sınırlı bir bölgede, Dünya’nın başka bir yerinde görülmeyen kadar, 1000 civarında farklı sümüklüböcek türü yaşar. Bunda hem ada koşullarının kısıtlı olmasının, hem de sümüklüböceklerin yayılma kabiliyetlerinin sınırlı olması etkendir. Bu durum, hızlı evrime neden olmaktadır ve türleşme imkanını arttırmaktadır.



 


2) Beslenmenin Özelleşme Miktarı

 

Her canlının, belirli bir diyeti mevcuttur. Bazı türler neredeyse her bulduğunu yerken, bazıları inanılmaz seçici olabilmektedir. Başta verdiğimiz kuralı yine doğrular bir şekilde, daha kısıtlı bir diyete sahip olan bir tür, bulduğu hemen her şeyi yiyen bir türe göre daha fazla ve daha hızlı evrimleşmeye meyilli olacaktır. Çünkü özellikle seçtiği besinleri bulmak için daha sıkı bir baskı altında olacaktır. Maryland Üniversitesi Entomoloji Bölümü'nden Prof. Charles Mitter ve ekip arkadaşlarının böceklerin evrimi üzerine yaptıkları çalışmalarla da bu durum doğrulanmıştır. Gerçek böceklerin (Hemiptera) en son yaşamış ortak atalarının bir etçil olduğu bilinmektedir. Ancak daha sonradan türleşen canlı gruplarının bazıları otçul bir diyet evrimleştirmiştir. Bu grubun içerisinde bazılarıysa, özellikle belli tip bitkilerle diyetini sınırlandırmıştır. Bu seçici türlerin türleşme ve evrimleşme hızı diğer tüm gerçek böceklere göre çok daha hızlı olmuş ve çok daha fazla sayıda tür evrimleşmiştir.



 


3) Tozlaşma Tipi

 

Bitkiler, temel olarak ya rüzgar ve su gibi cansız ve rastlantısallığın daha yüksek olduğu varlıklarla ya da hayvanların yardımıyla tozlaşırlar. Yine yukarıdaki kural dahilinde, daha kısıtlanmış olanlar, daha çok evrimleşmeye yatkın olacaktır. Örneğin orkide gibi bazı bitki grupları, sadece sinekkuşlarıyla tozlaşacak kadar özelleşmişlerdir ve bunun sonucunda oluşan baskıdan ötürü evrim hızları son derece yüksektir. Gerçekten de, yapılan analizlerde hayvanlarla tozlaşan bitkilerin tür sayısı, hava ve su gibi daha genel yollarla tozlaşanlara göre 2.4 kat fazladır. 



 


4) Cinsel Seçilim

 

Doğada, bir dişi ve erkeğe sahip olan hemen hemen tüm canlılarda cinsel seçilim gözlenmektedir. Pek çok canlının dişisi, erkekleri belirli özelliklere göre seçmektedir. Kimi durumda erkekler dişileri seçer; insanın da içinde olduğu bazı türlerde ise seçim karşılıklıdır. Ancak ne olursa olursun, Evrim'in mekanizmalarından biri olan Cinsel Seçilim, her zaman önemli bir rol oynamıştır. Bu noktada da, yine yukarıdaki kuralımız dahilinde, daha kısıtlanan, yani cinsel seçilimin daha şiddetli ve etkili olarak görüldüğü canlılarda türleşme hızı, cinsel seçilimin görülmediği veya az görüldüğü canlılara göre çok daha fazladır. Örneğin, cinsel seçilimin aşırı yoğun olduğu bir canlı grubu olarak kuşları örnek verebiliriz. Örneğin cinsel iki-biçimlilik (sexual dimorphism: dişi ve erkeğin farklı bireyler olduğu) görülen cennet kuşlarının Papua Yeni Gine'de 33 farklı türü bulunmaktadır. Pek çok kuş-gözlemcisi, sırf bu kuşların çiftleşme öncesi yaptığı büyüleyici kur danslarını ve hareketlerini gözlemek için binlerce kilometre yol kat etmektedirler. Ancak aynı bölgede, cinsel tek-biçimli (sexual monomorphism: bu tip canlılarda erkekler ve dişiler birbirinden morfolojik olarak ayırt edilemeyecek kadar benzerdir) olarak görülen manukot kuşlarının sadece 5 türü bulunur. Yani cinsel seçilimin olduğu çift-biçimli canlılarda türleşme hızı çok daha yüksektir.

 



Uzun lafın kısası, canlılarda türleşme ve evrimleşme hızları çok farklı olabilmektedir. Önemli olan, bilgili bir gözün canlıları incelemesi ve mümkünse genetik ve moleküler kanıtlar takip edilerek türlerin birbirinden ayırt edilmesidir.

 

Peki, son olarak, bir tür neden bu şekilde kısıtlanır? Bunun tek bir cevabı yoktur ve upuzun bir başka yazıda anlatılabilir. Fakat kısaca değinmek gerekirse, çoğunlukla bunun sebebi zorunluluk ya da kazanılan avantajdır. Örneğin cinsel seçilimin yoğun olması, türler üzerinde çevresel bir baskı oluştursa da, en sağlıklı ve avantajlı bireylerin çiftleşmesini garantileyerek yavrularının da evrimsel açıdan avantajlı olma şansını arttırmaktadır. Dolayısıyla evrimsel süreçte desteklenen bir yük olmaktadır. Kimi zamansa tamamen elde olmayan sebeplerle, şans eseri aynı bölgede bulunan türlerin karşılıklı olarak evrimleşmesi sonucu bu kısıtlanma gelebilir. Örneğin sinekkuşları ile orkidelerin evrimi bu şekilde bir karşılıklı evrim örneğin olarak gösterilebilir. Dolayısıyla, bir türün evrimsel geçmişi ve ortamı çok iyi analiz edilmeli ve ondan sonra kararlar alınmalıdır. Bir türün evrimleşip evrimleşmediğine sadece dışarıdan bakarak karar vermek imkansız olduğu gibi, nasıl evrimleştiğini anlamak için de çok kapsamlı teknikler uygulamak gerekmektedir.

 

Umarız faydalı olmuştur.

 

En içten saygılarımızla.

 

Yazan: ÇMB (Evrim Ağacı)

 

---


Türleşme Yazı Dizisinin Diğer Yazıları:

 

Türleşme - 1: Tür Nedir? Tür Tanımları Üzerine...

Türleşme - 2: Türleşme Nedir? Farklı Türler Nasıl Oluşur? Allopatrik Türleşme Ne Demektir?

Türleşme - 3: Türleşme Nedir? Farklı Türler Nasıl Oluşur? Simpatrik Türleşme Ne Demektir?

Türleşme - 4: Türleşme Nedir? Farklı Türler Nasıl Oluşur? Parapatrik ve Peripatrik Türleşmeler Ne Demektir?

Türleşme - 5: Zigot-Öncesi Üreme Bariyerleri

Türleşme - 6: Zigot-Sonrası Üreme Bariyerleri ve Hibritler

Türleşme - 7: Evrim Hızı Tüm Canlılarda Aynı Mıdır, Farklı Mıdır? Neden?

Türleşme - 8: Güncel Türleşme ve Evrim Örnekleri



Kaynaklar ve İleri Okuma:


  1. Talk Origins
  2. Premier Biosoft
  3. Proceeding of the Royal Society
  4. Nature
  5. Life: The Science of Biology (Sadava, et. al), 2011
  6. Wikipedia "Species" Makalesi
  7. Ahearn, J. N. 1980. Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris. Experientia. 36:63-64.
  8. Barton, N. H., J. S. Jones and J. Mallet. 1988. No barriers to speciation. Nature. 336:13-14.
  9. Baum, D. 1992. Phylogenetic species concepts. Trends in Ecology and Evolution. 7:1-3.
  10. Boraas, M. E. 1983. Predator induced evolution in chemostat culture. EOS. Transactions of the American Geophysical Union. 64:1102.
  11. Breeuwer, J. A. J. and J. H. Werren. 1990. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 346:558-560.
  12. Budd, A. F. and B. D. Mishler. 1990. Species and evolution in clonal organisms -- a summary and discussion. Systematic Botany 15:166-171.
  13. Bullini, L. and G. Nascetti. 1990. Speciation by hybridization in phasmids and other insects. Canadian Journal of Zoology. 68:1747-1760.
  14. Butters, F. K. 1941. Hybrid Woodsias in Minnesota. Amer. Fern. J. 31:15-21.
  15. Butters, F. K. and R. M. Tryon, jr. 1948. A fertile mutant of a Woodsia hybrid. American Journal of Botany. 35:138.
  16. Brock, T. D. and M. T. Madigan. 1988. Biology of Microorganisms (5th edition). Prentice Hall, Englewood, NJ.
  17. Callaghan, C. A. 1987. Instances of observed speciation. The American Biology Teacher. 49:3436.
  18. Castenholz, R. W. 1992. Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology 28:737-745.
  19. Clausen, J., D. D. Keck and W. M. Hiesey. 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institute Washington Publication, 564:1-174.
  20. Cracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In Otte, E. and J. A. Endler [eds.] Speciation and its consequences. Sinauer Associates, Sunderland, MA. pp. 28-59.
  21. Craig, T. P., J. K. Itami, W. G. Abrahamson and J. D. Horner. 1993. Behavioral evidence for host-race fromation in Eurosta solidaginis. Evolution. 47:1696-1710.
  22. Cronquist, A. 1978. Once again, what is a species? Biosystematics in agriculture. Beltsville Symposia in Agricultural Research 2:3-20.
  23. Cronquist, A. 1988. The evolution and classification of flowering plants (2nd edition). The New York Botanical Garden, Bronx, NY.
  24. Crossley, S. A. 1974. Changes in mating behavior produced by selection for ethological isolation between ebony and vestigial mutants of Drosophilia melanogaster. Evolution. 28:631-647.
  25. de Oliveira, A. K. and A. R. Cordeiro. 1980. Adaptation of Drosophila willistoni experimental populations to extreme pH medium. II. Development of incipient reproductive isolation. Heredity. 44:123-130.
  26. de Queiroz, K. and M. Donoghue. 1988. Phylogenetic systematics and the species problem. Cladistics. 4:317-338.
  27. de Queiroz, K. and M. Donoghue. 1990. Phylogenetic systematics and species revisited. Cladistics. 6:83-90.
  28. de Vries, H. 1905. Species and varieties, their origin by mutation.
  29. de Wet, J. M. J. 1971. Polyploidy and evolution in plants. Taxon. 20:29-35.
  30. del Solar, E. 1966. Sexual isolation caused by selection for positive and negative phototaxis and geotaxis in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences (US). 56:484-487.
  31. Digby, L. 1912. The cytology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26:357-388.
  32. Dobzhansky, T. 1937. Genetics and the origin of species. Columbia University Press, New York.
  33. Dobzhansky, T. 1951. Genetics and the origin of species (3rd edition). Columbia University Press, New York.
  34. Dobzhansky, T. and O. Pavlovsky. 1971. Experimentally created incipient species of Drosophila. Nature. 230:289-292.
  35. Dobzhansky, T. 1972. Species of Drosophila: new excitement in an old field. Science. 177:664-669.
  36. Dodd, D. M. B. 1989. Reproductive isolation as a consequence of adaptive divergence in Drosophila melanogaster. Evolution 43:1308-1311.
  37. Dodd, D. M. B. and J. R. Powell. 1985. Founder-flush speciation: an update of experimental results with Drosophila. Evolution 39:1388-1392.
  38. Donoghue, M. J. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172-181.
  39. Du Rietz, G. E. 1930. The fundamental units of biological taxonomy. Svensk. Bot. Tidskr. 24:333-428.
  40. Ehrman, E. 1971. Natural selection for the origin of reproductive isolation. The American Naturalist. 105:479-483.
  41. Ehrman, E. 1973. More on natural selection for the origin of reproductive isolation. The American Naturalist. 107:318-319.
  42. Feder, J. L., C. A. Chilcote and G. L. Bush. 1988. Genetic differentiation between sympatric host races of the apple maggot fly, Rhagoletis pomonella. Nature. 336:61-64.
  43. Feder, J. L. and G. L. Bush. 1989. A field test of differential host-plant usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera:Tephritidae) and its consequences for sympatric models of speciation. Evolution 43:1813-1819.
  44. Frandsen, K. J. 1943. The experimental formation of Brassica juncea Czern. et Coss. Dansk. Bot. Arkiv., No. 4, 11:1-17.
  45. Frandsen, K. J. 1947. The experimental formation of Brassica napus L. var. oleifera DC and Brassica carinata Braun. Dansk. Bot. Arkiv., No. 7, 12:1-16.
  46. Galiana, A., A. Moya and F. J. Alaya. 1993. Founder-flush speciation in Drosophila pseudoobscura: a large scale experiment. Evolution. 47432-444.
  47. Gottleib, L. D. 1973. Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeira. American Journal of Botany. 60: 545-553.
  48. Halliburton, R. and G. A. E. Gall. 1981. Disruptive selection and assortative mating in Tribolium castaneum. Evolution. 35:829-843.
  49. Hurd, L. E., and R. M. Eisenberg. 1975. Divergent selection for geotactic response and evolution of reproductive isolation in sympatric and allopatric populations of houseflies. The American Naturalist. 109:353-358.
  50. Karpchenko, G. D. 1927. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Bull. Appl. Botany. 17:305-408.
  51. Karpchenko, G. D. 1928. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Z. Indukt. Abstami-a Verenbungsi. 48:1-85.
  52. Kilias, G., S. N. Alahiotis and M. Delecanos. 1980. A multifactorial investigation of speciation theory using Drosophila melanogaster. Evolution. 34:730-737.
  53. Knight, G. R., A. Robertson and C. H. Waddington. 1956. Selection for sexual isolation within a species. Evolution. 10:14-22.
  54. Koopman, K. F. 1950. Natural selection for reproductive isolation between Drosophila pseudoobscura and Drosophila persimilis. Evolution. 4:135-148.
  55. Lee, R. E. 1989. Phycology (2nd edition) Cambridge University Press, Cambridge, UK
  56. Levin, D. A. 1979. The nature of plant species. Science 204:381-384.
  57. Lokki, J. and A. Saura. 1980. Polyploidy in insect evolution. In: W. H. Lewis (ed.) Polyploidy: Biological Relevance. Plenum Press, New York.
  58. Macnair, M. R. 1981. Tolerance of higher plants to toxic materials. In: J. A. Bishop and L. M. Cook (eds.). Genetic consequences of man made change. Pp.177-297. Academic Press, New York.
  59. Macnair, M. R. and P. Christie. 1983. Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Heredity. 50:295-302.
  60. Manhart, J. R. and R. M. McCourt. 1992. Molecular data and species concepts in the algae. Journal of Phycology. 28:730-737.
  61. Mayr, E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York.
  62. Mayr, E. 1982. The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, MA. McCourt, R. M. and R. W. Hoshaw. 1990. Noncorrespondence of breeding groups, morphology and monophyletic groups in Spirogyra (Zygnemataceae; Chlorophyta) and the application of species concepts. Systematic Botany. 15:69-78.
  63. McPheron, B. A., D. C. Smith and S. H. Berlocher. 1988. Genetic differentiation between host races of Rhagoletis pomonella. Nature. 336:64-66.
  64. Meffert, L. M. and E. H. Bryant. 1991. Mating propensity and courtship behavior in serially bottlenecked lines of the housefly. Evolution 45:293-306.
  65. Mishler, B. D. 1985. The morphological, developmental and phylogenetic basis of species concepts in the bryophytes. Bryologist. 88:207-214.
  66. Mishler, B. D. and M. J. Donoghue. 1982. Species concepts: a case for pluralism. Systematic Zoology. 31:491-503.
  67. Muntzing, A. 1932. Cytogenetic investigations on the synthetic Galeopsis tetrahit. Hereditas. 16:105-154.
  68. Nelson, G. 1989. Cladistics and evolutionary models. Cladistics. 5:275-289.
  69. Newton, W. C. F. and C. Pellew. 1929. Primula kewensis and its derivatives. J. Genetics. 20:405-467.
  70. Otte, E. and J. A. Endler (eds.). 1989. Speciation and its consequences. Sinauer Associates. Sunderland, MA.
  71. Owenby, M. 1950. Natural hybridization and amphiploidy in the genus Tragopogon. Am. J. Bot. 37:487-499.
  72. Pasterniani, E. 1969. Selection for reproductive isolation between two populations of maize, Zea mays L. Evolution. 23:534-547.
  73. Powell, J. R. 1978. The founder-flush speciation theory: an experimental approach. Evolution. 32:465-474.
  74. Prokopy, R. J., S. R. Diehl, and S. H. Cooley. 1988. Oecologia. 76:138.
  75. Rabe, E. W. and C. H. Haufler. 1992. Incipient polyploid speciation in the maidenhair fern (Adiantum pedatum, adiantaceae)? American Journal of Botany. 79:701-707.
  76. Rice, W. R. 1985. Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment. Evolution. 39:645-646.
  77. Rice, W. R. and E. E. Hostert. 1993. Laboratory experiments on speciation: What have we learned in forty years? Evolution. 47:1637-1653.
  78. Rice, W. R. and G. W. Salt. 1988. Speciation via disruptive selection on habitat preference: experimental evidence. The American Naturalist. 131:911-917.
  79. Rice, W. R. and G. W. Salt. 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution. 44:1140-1152.
  80. Ringo, J., D. Wood, R. Rockwell, and H. Dowse. 1989. An experiment testing two hypotheses of speciation. The American Naturalist. 126:642-661.
  81. Schluter, D. and L. M. Nagel. 1995. Parallel speciation by natural selection. American Naturalist. 146:292-301.
  82. Shikano, S., L. S. Luckinbill and Y. Kurihara. 1990. Changes of traits in a bacterial population associated with protozoal predation. Microbial Ecology. 20:75-84.
  83. Smith, D. C. 1988. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature. 336:66-67.
  84. Soans, A. B., D. Pimentel and J. S. Soans. 1974. Evolution of reproductive isolation in allopatric and sympatric populations. The American Naturalist. 108:117-124.
  85. Sokal, R. R. and T. J. Crovello. 1970. The biological species concept: a critical evaluation. The American Naturalist. 104:127-153.
  86. Soltis, D. E. and P. S. Soltis. 1989. Allopolyploid speciation in Tragopogon: Insights from chloroplast DNA. American Journal of Botany. 76:1119-1124.
  87. Stuessy, T. F. 1990. Plant taxonomy. Columbia University Press, New York.
  88. Thoday, J. M. and J. B. Gibson. 1962. Isolation by disruptive selection. Nature. 193:1164-1166.
  89. Thoday, J. M. and J. B. Gibson. 1970. The probability of isolation by disruptive selection. The American Naturalist. 104:219-230.
  90. Thompson, J. N. 1987. Symbiont-induced speciation. Biological Journal of the Linnean Society. 32:385-393.
  91. Vrijenhoek, R. C. 1994. Unisexual fish: Model systems for studying ecology and evolution. Annual Review of Ecology and Systematics. 25:71-96.
  92. Waring, G. L., W. G. Abrahamson and D. J. Howard. 1990. Genetic differentiation in the gall former Eurosta solidaginis (Diptera:Tephritidae) along host plant lines. Evolution. 44:1648-1655.
  93. Weinberg, J. R., V. R. Starczak and P. Jora. 1992. Evidence for rapid speciation following a founder event in the laboratory. Evolution. 46:1214-1220.
  94. Wood, A. M. and T. Leatham. 1992. The species concept in phytoplankton ecology. Journal of Phycology. 28:723-729.
  95. Yen, J. H. and A. R. Barr. 1971. New hypotheses of the cause of cytoplasmic incompatability in Culex pipiens L.
6 Yorum