Türleşme - 5: Zigot-Öncesi Üreme Bariyerleri

Yazdır Türleşme - 5: Zigot-Öncesi Üreme Bariyerleri

Yazı dizimizin bu yazısında, bir önceki yazılarımızda açıkladığımız türleşme olaylarının meydana gelmesi sonucu oluşan yeni türlerin, çiftleştirilmeye çalışılmaları sonucu neler olabileceğini ve neden Biyolojik Tür Tanımı ile Filogenetik Tür Tanımı'nın kalbinde "verimli döl verebilen bireyler" ibaresinin yer aldığını göreceğiz.

 

Dünya çapında bilim dünyasınca en çok kabul edilen tür tanımının üreme üzerine olmasının çok önemli gerekçeleri vardır. Bunların başında da, doğada görülen üreme bariyerleri gelir. Üreme bariyeri, tanımı gereği, iki canlının çiftleşmesine engel olan mekanizma, durum, sebep demektir.

 

Üremenin en önemli noktaları, cinsel birleşmeden sonra spermlerin (veya bitkilerde polenlerin), dişi yumurtasını bulması ve kaynaşabilmesi sonucu meydana gelen döllenme ve bunun sonucunda meydana gelen ilk hücre olan zigot oluşumudur. Bu sebeple, üreme bariyerlerini iki önemli kısımda incelememiz gerekir:

 


1) Zigot-Öncesi Bariyerler

 

Zigot öncesi bariyerler (ya da daha önceki makalelerimizde kullandığımız şekliyle izolasyonlar), adından da anlaşılabileceği gibi, canlıların çiftleşmesini daha zigotun oluşmasından önce engelleyen doğal bariyerlerdir. Yani bu tip bariyerlerin bulunması durumunda, canlılar zaten cinsel birleşme yaşayamazlar ve bunun sonucunda da zigot meydana gelemez. Bu bariyerleri tek tek inceleyelim: 

 


   1-A) Habitat İzolasyonu:

 

Bu tip bariyerler, popülasyonların ya da türlerin, türleşme öncesi, sırasında veya sonrasında, yaşadıkları ortamı ve genel olarak ortamsal alışkanlıklarını değiştirmeleri sonucu meydana gelir. Simpatrik Türleşme ilgili yazımızda, Rhigoletis cinsi sinekleri hatırlayın: Farklı meyveler üzerinde yaşamaya ve üremeye alışan türler, tercihlerini oluşturan meyvelerin farklı mevsimler ve aylarda olgunlaşması sebebiyle, habitat olarak izole olurlar ve birbirleriyle üreyemez hale gelirler. Bu tip izolasyon, zigot oluşumuna engel olduğu için (farklı habitatlarda yaşayan canlılar çiftleşme fırsatı bulamaz), zigot-öncesi bariyerlerden biri olarak sayılmaktadır.



 


   1-B) Zamansal İzolasyon:

 

Pek çok canlının üremek için tercih ettiği zamanlar mevcuttur. Bir diğer deyişle, her canlı, her mevsimde veya dönemde çiftleşmezler. Bu, daha önceki notlarımızdan birinde bir miktar değindiğimiz ('Mart Ayı', Kediler ve Genel Olarak Memeliler'de Cinsel Döngü Üzerine...) cinsel döngüden kaynaklanmaktadır. İşte birbirine yakın olan türler veya bir türün alt türlerinin cinsel üreme dönemleri birbirinden zamansal olarak farklı ise, birbirleriyle çiftleşemezler ve bunun sonucunda yine türleşme meydana gelir. Bu da, zigot oluşumundan önce çoğalmaya engel olduğu için, zigot-öncesi bariyer olarak bilinir. Tipik bir örneği, Güney Amerika'da yaşayan 3 yakın tür leopar kurbağasıdır. Bu 3 türün, çiftleşme zamanları birbirinden tamamen olmasa da farklıdır. Az miktarda bulunan zamansal çakışmada da, genellikle türler arası çiftleşme meydana gelmez. Bu, türleşmeyi tetikler.



 

 

  1-C) Mekanik İzolasyon

 

Farklı tür bireylerde, uzun nesiller boyunca farklılaşmadan ötürü cinsel organların boyu ve şekli değişebilir. Bu, erkeklerin organları ile dişilerin organlarının birbirine uymaması durumunu ortaya çıkarır. Buna, mekanik izolasyon denir. Örneğin bir at ile kedinin çiftleşememesi -bazı başka önemli genetik sebepler haricinde- bundandır. Köpeklerde yaygın olarak görülen bu izolasyona dair bir videoyu buraya tıklayarak izleyebilirsiniz. Farklı köpek cinsleri, ilerleyen zamanlarda türleşecek canlılara en güçlü adaylardandır. Gözümüzün önünde evrimleşmektedirler. Bitkilerdeki mekanik izolasyon ise, genellikle tozlaştırıcı hayvanın (pollinator) yapısının uygunsuzluğundan kaynaklanır. Örneğin Cryptostylis isimli bir orkide türü, yaban arılarının dişilerinin görünümüznde ve kokusundadır. Erkek yabanarısı, orkideyi dişi bir yabanarısı sanar ve çfitleşmeye çalışır. Ancak üreme gerçekleşmez. Bu sırada orkide, polenlerini erkek yabanarısına yapıştırmayı başarır.



 


   1-D) Davranışsal İzolasyon

 

Birbirinden farklılaşan türler, birbirleriyle çiftleşmeyi istemeyebilirler veya çiftleşme çağrılarına uymayabilirler. Bu, davranışsal bir izolasyonu beraberinde getirir. Örneğin, bir türe ait erkek kurbağanın üreme çağrısı, aynı türün dişileri tarafından kolaylıkla algılanır ve genellikle uyulur. Aynı türden olan dişiler, erkeği bulur ve çiftleşirler. Ancak farklı ya da farklılaşmış türlerden olan kurbağalar, bu çağrıya cevap vermezler. Richard Dawkins, Ataların Hikayesi isimli kitabında bundan ayrıntısıyla bahsetmektedir. Bitkilerde ise, tozlaştırıcı hayvanın davranış ve beslenme biçimi de bu izolasyona sebep olabilir. Örneğin Kaliforniya dağlarında yaşayan bir bitki cinsi olan Aquilegia'ya ait iki türde farklılaşmış renk, şekil ve duruş gözlenir. Aquilegia formosa askı şeklinde ve kısa bir çiçeğe sahiptir ve arıkuşu tarafından tozlaştırılır (arıkuşunun gagası da kısadır ve kafasını yukarıya kaldırarak beslenir, bu da bitki çiçeğinin duruşu ve uzunluğu ile uyumludur). Öte yandan Aquilegia pubescens türünün uzun, açık renkli ve yukarıya bakan çiçekleri vardır. Bu bitki, aşağıya doğru bakarak beslenen ve uzun bir beslenme organı bulunan şahin güveleri tarafından tozlaştırılır. Güvenin yapısı ve beslenme biçimi, çiçeğin duruşu ve boyu ile uyumludur. Örnekler, sayıca ve biçimce çoğaltılabilir.



 


   1-E) Gametik İzolasyon

 

Belki de zigot-öncesi bariyerlerden en önemlisi gametik izolasyondur. Daha önceden, türleşme sonucunda sadece belirli görünen organların değil, üreme sisteminin de, uzun süre ata bireylerle çiftleşmemekten dolayı farklılaşabileceğinden bahsetmiştik. İşte bu farklılaşma sonucunda, çoğu zaman, sperm ve yumurtaya ait biyokimyasal yapı da değişir. Bu farklılaşma sonucu, bir noktadan sonra eskiden tek bir tür ve popülasyon olan canlılar, bir araya getirilseler ve cinsel birleşme meydana gelse dahi, sperm ile yumurtanın biyokimyasal ve genetik yapıları uyumlu olmayacağı için zigot oluşamaz. Bunun başlıca sebepleri, spermin, yumurtanın salgıladığı ve spermlerin onu bulmasını sağlayan kimyasalı tanımaması veya yumurtayı bulmalarına rağmen yumurtaya kaynaması için kullandıkları kimyasalların artık birbiriyle uyumsuz olması gösterilebilir. Bu ve benzeri sebeplerden dolayı sperm ve yumurta birbirine kaynayamaz ve zigot oluşmaz. Strongylocentrotus franciscanus türü deniz kestanelerinde bu tür bir izolasyondan ötürü evrimleşmenin olduğu bilinmektedir.



 

Bu noktada, yazının uzamaması adına, zigot-sonrası bariyerleri bir sonraki yazımıza bırakıyoruz. Okurlarımızdan, bu izolasyın tiplerini sindirmelerini ve hayattaki örneklerini düşünmelerini rica ediyoruz.

 

Umarız faydalı olmuştur.

 

Saygılarımızla.

 

Yazan: ÇMB (Evrim Ağacı)

 

---


Türleşme Yazı Dizisinin Diğer Yazıları:

 

Türleşme - 1: Tür Nedir? Tür Tanımları Üzerine...

Türleşme - 2: Türleşme Nedir? Farklı Türler Nasıl Oluşur? Allopatrik Türleşme Ne Demektir?

Türleşme - 3: Türleşme Nedir? Farklı Türler Nasıl Oluşur? Simpatrik Türleşme Ne Demektir?

Türleşme - 4: Türleşme Nedir? Farklı Türler Nasıl Oluşur? Parapatrik ve Peripatrik Türleşmeler Ne Demektir?

Türleşme - 5: Zigot-Öncesi Üreme Bariyerleri

Türleşme - 6: Zigot-Sonrası Üreme Bariyerleri ve Hibritler

Türleşme - 7: Evrim Hızı Tüm Canlılarda Aynı Mıdır, Farklı Mıdır? Neden?

Türleşme - 8: Güncel Türleşme ve Evrim Örnekleri



Kaynaklar ve İleri Okuma:


  1. Talk Origins
  2. Premier Biosoft
  3. Life: The Science of Biology (Sadava, et. al), 2011
  4. Wikipedia "Species" Makalesi
  5. Ahearn, J. N. 1980. Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris. Experientia. 36:63-64.
  6. Barton, N. H., J. S. Jones and J. Mallet. 1988. No barriers to speciation. Nature. 336:13-14.
  7. Baum, D. 1992. Phylogenetic species concepts. Trends in Ecology and Evolution. 7:1-3.
  8. Boraas, M. E. 1983. Predator induced evolution in chemostat culture. EOS. Transactions of the American Geophysical Union. 64:1102.
  9. Breeuwer, J. A. J. and J. H. Werren. 1990. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 346:558-560.
  10. Budd, A. F. and B. D. Mishler. 1990. Species and evolution in clonal organisms -- a summary and discussion. Systematic Botany 15:166-171.
  11. Bullini, L. and G. Nascetti. 1990. Speciation by hybridization in phasmids and other insects. Canadian Journal of Zoology. 68:1747-1760.
  12. Butters, F. K. 1941. Hybrid Woodsias in Minnesota. Amer. Fern. J. 31:15-21.
  13. Butters, F. K. and R. M. Tryon, jr. 1948. A fertile mutant of a Woodsia hybrid. American Journal of Botany. 35:138.
  14. Brock, T. D. and M. T. Madigan. 1988. Biology of Microorganisms (5th edition). Prentice Hall, Englewood, NJ.
  15. Callaghan, C. A. 1987. Instances of observed speciation. The American Biology Teacher. 49:3436.
  16. Castenholz, R. W. 1992. Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology 28:737-745.
  17. Clausen, J., D. D. Keck and W. M. Hiesey. 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institute Washington Publication, 564:1-174.
  18. Cracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In Otte, E. and J. A. Endler [eds.] Speciation and its consequences. Sinauer Associates, Sunderland, MA. pp. 28-59.
  19. Craig, T. P., J. K. Itami, W. G. Abrahamson and J. D. Horner. 1993. Behavioral evidence for host-race fromation in Eurosta solidaginis. Evolution. 47:1696-1710.
  20. Cronquist, A. 1978. Once again, what is a species? Biosystematics in agriculture. Beltsville Symposia in Agricultural Research 2:3-20.
  21. Cronquist, A. 1988. The evolution and classification of flowering plants (2nd edition). The New York Botanical Garden, Bronx, NY.
  22. Crossley, S. A. 1974. Changes in mating behavior produced by selection for ethological isolation between ebony and vestigial mutants of Drosophilia melanogaster. Evolution. 28:631-647.
  23. de Oliveira, A. K. and A. R. Cordeiro. 1980. Adaptation of Drosophila willistoni experimental populations to extreme pH medium. II. Development of incipient reproductive isolation. Heredity. 44:123-130.
  24. de Queiroz, K. and M. Donoghue. 1988. Phylogenetic systematics and the species problem. Cladistics. 4:317-338.
  25. de Queiroz, K. and M. Donoghue. 1990. Phylogenetic systematics and species revisited. Cladistics. 6:83-90.
  26. de Vries, H. 1905. Species and varieties, their origin by mutation.
  27. de Wet, J. M. J. 1971. Polyploidy and evolution in plants. Taxon. 20:29-35.
  28. del Solar, E. 1966. Sexual isolation caused by selection for positive and negative phototaxis and geotaxis in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences (US). 56:484-487.
  29. Digby, L. 1912. The cytology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26:357-388.
  30. Dobzhansky, T. 1937. Genetics and the origin of species. Columbia University Press, New York.
  31. Dobzhansky, T. 1951. Genetics and the origin of species (3rd edition). Columbia University Press, New York.
  32. Dobzhansky, T. and O. Pavlovsky. 1971. Experimentally created incipient species of Drosophila. Nature. 230:289-292.
  33. Dobzhansky, T. 1972. Species of Drosophila: new excitement in an old field. Science. 177:664-669.
  34. Dodd, D. M. B. 1989. Reproductive isolation as a consequence of adaptive divergence in Drosophila melanogaster. Evolution 43:1308-1311.
  35. Dodd, D. M. B. and J. R. Powell. 1985. Founder-flush speciation: an update of experimental results with Drosophila. Evolution 39:1388-1392.
  36. Donoghue, M. J. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172-181.
  37. Du Rietz, G. E. 1930. The fundamental units of biological taxonomy. Svensk. Bot. Tidskr. 24:333-428.
  38. Ehrman, E. 1971. Natural selection for the origin of reproductive isolation. The American Naturalist. 105:479-483.
  39. Ehrman, E. 1973. More on natural selection for the origin of reproductive isolation. The American Naturalist. 107:318-319.
  40. Feder, J. L., C. A. Chilcote and G. L. Bush. 1988. Genetic differentiation between sympatric host races of the apple maggot fly, Rhagoletis pomonella. Nature. 336:61-64.
  41. Feder, J. L. and G. L. Bush. 1989. A field test of differential host-plant usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera:Tephritidae) and its consequences for sympatric models of speciation. Evolution 43:1813-1819.
  42. Frandsen, K. J. 1943. The experimental formation of Brassica juncea Czern. et Coss. Dansk. Bot. Arkiv., No. 4, 11:1-17.
  43. Frandsen, K. J. 1947. The experimental formation of Brassica napus L. var. oleifera DC and Brassica carinata Braun. Dansk. Bot. Arkiv., No. 7, 12:1-16.
  44. Galiana, A., A. Moya and F. J. Alaya. 1993. Founder-flush speciation in Drosophila pseudoobscura: a large scale experiment. Evolution. 47432-444.
  45. Gottleib, L. D. 1973. Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeira. American Journal of Botany. 60: 545-553.
  46. Halliburton, R. and G. A. E. Gall. 1981. Disruptive selection and assortative mating in Tribolium castaneum. Evolution. 35:829-843.
  47. Hurd, L. E., and R. M. Eisenberg. 1975. Divergent selection for geotactic response and evolution of reproductive isolation in sympatric and allopatric populations of houseflies. The American Naturalist. 109:353-358.
  48. Karpchenko, G. D. 1927. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Bull. Appl. Botany. 17:305-408.
  49. Karpchenko, G. D. 1928. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Z. Indukt. Abstami-a Verenbungsi. 48:1-85.
  50. Kilias, G., S. N. Alahiotis and M. Delecanos. 1980. A multifactorial investigation of speciation theory using Drosophila melanogaster. Evolution. 34:730-737.
  51. Knight, G. R., A. Robertson and C. H. Waddington. 1956. Selection for sexual isolation within a species. Evolution. 10:14-22.
  52. Koopman, K. F. 1950. Natural selection for reproductive isolation between Drosophila pseudoobscura and Drosophila persimilis. Evolution. 4:135-148.
  53. Lee, R. E. 1989. Phycology (2nd edition) Cambridge University Press, Cambridge, UK
  54. Levin, D. A. 1979. The nature of plant species. Science 204:381-384.
  55. Lokki, J. and A. Saura. 1980. Polyploidy in insect evolution. In: W. H. Lewis (ed.) Polyploidy: Biological Relevance. Plenum Press, New York.
  56. Macnair, M. R. 1981. Tolerance of higher plants to toxic materials. In: J. A. Bishop and L. M. Cook (eds.). Genetic consequences of man made change. Pp.177-297. Academic Press, New York.
  57. Macnair, M. R. and P. Christie. 1983. Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Heredity. 50:295-302.
  58. Manhart, J. R. and R. M. McCourt. 1992. Molecular data and species concepts in the algae. Journal of Phycology. 28:730-737.
  59. Mayr, E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York.
  60. Mayr, E. 1982. The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, MA. McCourt, R. M. and R. W. Hoshaw. 1990. Noncorrespondence of breeding groups, morphology and monophyletic groups in Spirogyra (Zygnemataceae; Chlorophyta) and the application of species concepts. Systematic Botany. 15:69-78.
  61. McPheron, B. A., D. C. Smith and S. H. Berlocher. 1988. Genetic differentiation between host races of Rhagoletis pomonella. Nature. 336:64-66.
  62. Meffert, L. M. and E. H. Bryant. 1991. Mating propensity and courtship behavior in serially bottlenecked lines of the housefly. Evolution 45:293-306.
  63. Mishler, B. D. 1985. The morphological, developmental and phylogenetic basis of species concepts in the bryophytes. Bryologist. 88:207-214.
  64. Mishler, B. D. and M. J. Donoghue. 1982. Species concepts: a case for pluralism. Systematic Zoology. 31:491-503.
  65. Muntzing, A. 1932. Cytogenetic investigations on the synthetic Galeopsis tetrahit. Hereditas. 16:105-154.
  66. Nelson, G. 1989. Cladistics and evolutionary models. Cladistics. 5:275-289.
  67. Newton, W. C. F. and C. Pellew. 1929. Primula kewensis and its derivatives. J. Genetics. 20:405-467.
  68. Otte, E. and J. A. Endler (eds.). 1989. Speciation and its consequences. Sinauer Associates. Sunderland, MA.
  69. Owenby, M. 1950. Natural hybridization and amphiploidy in the genus Tragopogon. Am. J. Bot. 37:487-499.
  70. Pasterniani, E. 1969. Selection for reproductive isolation between two populations of maize, Zea mays L. Evolution. 23:534-547.
  71. Powell, J. R. 1978. The founder-flush speciation theory: an experimental approach. Evolution. 32:465-474.
  72. Prokopy, R. J., S. R. Diehl, and S. H. Cooley. 1988. Oecologia. 76:138.
  73. Rabe, E. W. and C. H. Haufler. 1992. Incipient polyploid speciation in the maidenhair fern (Adiantum pedatum, adiantaceae)? American Journal of Botany. 79:701-707.
  74. Rice, W. R. 1985. Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment. Evolution. 39:645-646.
  75. Rice, W. R. and E. E. Hostert. 1993. Laboratory experiments on speciation: What have we learned in forty years? Evolution. 47:1637-1653.
  76. Rice, W. R. and G. W. Salt. 1988. Speciation via disruptive selection on habitat preference: experimental evidence. The American Naturalist. 131:911-917.
  77. Rice, W. R. and G. W. Salt. 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution. 44:1140-1152.
  78. Ringo, J., D. Wood, R. Rockwell, and H. Dowse. 1989. An experiment testing two hypotheses of speciation. The American Naturalist. 126:642-661.
  79. Schluter, D. and L. M. Nagel. 1995. Parallel speciation by natural selection. American Naturalist. 146:292-301.
  80. Shikano, S., L. S. Luckinbill and Y. Kurihara. 1990. Changes of traits in a bacterial population associated with protozoal predation. Microbial Ecology. 20:75-84.
  81. Smith, D. C. 1988. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature. 336:66-67.
  82. Soans, A. B., D. Pimentel and J. S. Soans. 1974. Evolution of reproductive isolation in allopatric and sympatric populations. The American Naturalist. 108:117-124.
  83. Sokal, R. R. and T. J. Crovello. 1970. The biological species concept: a critical evaluation. The American Naturalist. 104:127-153.
  84. Soltis, D. E. and P. S. Soltis. 1989. Allopolyploid speciation in Tragopogon: Insights from chloroplast DNA. American Journal of Botany. 76:1119-1124.
  85. Stuessy, T. F. 1990. Plant taxonomy. Columbia University Press, New York.
  86. Thoday, J. M. and J. B. Gibson. 1962. Isolation by disruptive selection. Nature. 193:1164-1166.
  87. Thoday, J. M. and J. B. Gibson. 1970. The probability of isolation by disruptive selection. The American Naturalist. 104:219-230.
  88. Thompson, J. N. 1987. Symbiont-induced speciation. Biological Journal of the Linnean Society. 32:385-393.
  89. Vrijenhoek, R. C. 1994. Unisexual fish: Model systems for studying ecology and evolution. Annual Review of Ecology and Systematics. 25:71-96.
  90. Waring, G. L., W. G. Abrahamson and D. J. Howard. 1990. Genetic differentiation in the gall former Eurosta solidaginis (Diptera:Tephritidae) along host plant lines. Evolution. 44:1648-1655.
  91. Weinberg, J. R., V. R. Starczak and P. Jora. 1992. Evidence for rapid speciation following a founder event in the laboratory. Evolution. 46:1214-1220.
  92. Wood, A. M. and T. Leatham. 1992. The species concept in phytoplankton ecology. Journal of Phycology. 28:723-729.
  93. Yen, J. H. and A. R. Barr. 1971. New hypotheses of the cause of cytoplasmic incompatability in Culex pipiens L.
6 Yorum