Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Zayıf Kuvvet Nedir? Yıldızların Yakıtını ve Yeni Elementlerin Doğumunu Mümkün Kılan Zayıf Etkileşimler Nelerdir?

10 dakika
9,915
Zayıf Kuvvet Nedir? Yıldızların Yakıtını ve Yeni Elementlerin Doğumunu Mümkün Kılan Zayıf Etkileşimler Nelerdir?
Tüm Reklamları Kapat

Zayıf kuvvet (veya zayıf etkileşim), evrendeki tüm maddeyi yöneten dört temel kuvvetten biridir; diğer üçü kütleçekimi, elektromanyetizma ve güçlü kuvvettir. Diğer güçler, bir şeyleri bir arada tutarken, zayıf güç, şeylerin parçalanmasında veya bozunmasında daha büyük rol oynar.

Zayıf kuvvet, kütleçekiminden daha güçlüdür; ancak yalnızca çok kısa mesafelerde etkilidir. Atom altı seviyede hareket eder ve yıldızlara yakıt olmada ve elementler yaratmada çok önemli bir rol oynar. Thomas Jefferson Ulusal Hızlandırıcı Tesisi'ne (Jefferson Lab) göre, evrendeki doğal radyasyonun çoğundan da sorumludur.

Zayıf kuvvet ilk olarak 1896'da, Henri Becquerel'in uranyum radyoaktivitesi deneylerinde gözlemlenmiştir. Daha sonrasında 1929'da Pauli, "nötrino" isimli parçacıkların varlığını öngörmüş, 1956'da ise nötrinolar ilk defa gözlemlenmiştir.

Tüm Reklamları Kapat

İtalyan fizikçi Enrico Fermi, 1933'te beta bozunmasını açıklamak için bir teori geliştirdi; bu, bir çekirdekteki bir nötronun protona dönüştüğü ve bu bağlamda genellikle beta parçacığı olarak adlandırılan bir elektronu dışarı attığı süreçtir. İtalyan fizik tarihçisi Giulio Maltese, 2013'te Lettera Matematica dergisinde yayınlanan "Particles of Man" adlı makalesine şöyle yazıyor:

Bozulmadan sorumlu olan ve temel süreci bir nötronu protona, elektrona ve nötrinoya dönüştüren zayıf etkileşim denen yeni bir güç türü tanımladı.
Becguerel'in varsaydığı Beta bozunumun temel bir diyagramı.
Becguerel'in varsaydığı Beta bozunumun temel bir diyagramı.
The Road to Reality (Kitap, sayfa 668)
Fermi'nin öngördüğü, zayıf etkileşimler aracılı gerçekleşen (Bu durumda W- bozonu) Beta bozunum.
Fermi'nin öngördüğü, zayıf etkileşimler aracılı gerçekleşen (Bu durumda W- bozonu) Beta bozunum.
The Road To Reality (Sayfa 669)

Maltese'ye göre, Fermi başlangıçta bunun sıfır mesafe veya yapışma kuvveti anlamına gelen şeyi içerdiğini düşünüyordu; bu sayede kuvvetin çalışması için iki parçacığın gerçekten birbirine değmesi gerekiyordu.

Standart Model'de Parçacıklar ve Zayıf Kuvvetin Yeri

Avrupa Nükleer Araştırma Örgütü olarak bilinen CERN'e göre, zayıf kuvvet, maddenin temel yapısını "zarif denklemler dizisi" kullanarak tanımlayan, parçacık fiziğinin hüküm süren teorisi Standart Model'in bir parçasıdır. Standart Model kapsamında, daha küçük parçalara ayrılamayanlar temel parçacıklar, evrenin yapı taşlarıdır.

Bu parçacıklardan biri kuarktır. Bilim insanları kuarktan daha küçük bir şey olduğuna dair herhangi bir belirti görmediler, ama hala aramaktalar. Kuarkların altı türü veya "çeşnisi" vardır; kütleye göre artan sırada: yukarı, aşağı, garip, tılsım, alt ve üst.

Tüm Reklamları Kapat

Pittsburgh Süper Hesaplama Merkezi'ne göre, farklı kombinasyonlarda atom altı parçacık hayvanat bahçesinin birçok farklı türünü oluştururlar. Örneğin, bir atom çekirdeğinin "büyük" parçacıkları olan protonlar ve nötronlar, her biri üç kuarktan oluşan demetlerden oluşur. İki yukarı ve bir aşağı bir proton oluşturur; bir yukarı ve iki aşağı bir nötron oluşturur. Bir kuarkın "çeşnisini" değiştirmek bir protonu bir nötron haline getirebilir, böylece elementi farklı bir elemente dönüştürebilir.

Bir başka temel parçacık türü bozondur. Bunlar, enerji demetlerinden oluşan kuvvet taşıyıcı parçacıklardır. Fotonlar bir tür bozondur; gluonlarsa bir başka türüdür. Dört kuvvetin her biri, kuvvet taşıyıcı parçacıkların değişiminden kaynaklanır. Güçlü kuvvet gluon tarafından taşınırken, elektromanyetik kuvvet foton tarafından taşınır. Graviton, teorik olarak yer çekiminin kuvvet taşıyan parçacığıdır; ancak henüz bulunamamıştır.

W ve Z Bozonlar Nedir?

Zayıf kuvvet, W ve Z bozonları tarafından taşınır. Bu parçacıklar 1960'larda Nobel ödüllü Steven Weinberg, Sheldon Salam ve Abdus Glashow tarafından tahmin edildi ve 1983'te CERN'de keşfedildi. W ve Z bozonları birlikte zayıf veya daha genel olarak ara vektör bozonları olarak bilinir. Bu temel parçacıklar zayıf etkileşime aracılık eder; ilgili semboller W + , W− ve Z0.

W± Bozonlar, pozitif veya negatif 1 temel yüke sahip elektrik yüküne sahiptir ve birbirlerinin antiparçacıklarıdır. Z0 bozon elektriksel olarak nötrdür ve kendi antiparçacığıdır. Üç parçacığın dönüşü 1'dir. W± bozonların manyetik bir momenti vardır, ancak Z0'ın yoktur. Bu parçacıkların üçü de çok kısa ömürlüdür ve yaklaşık 3 × 10-25 saniyelik bir yarılanma ömrü vardır.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

İki W bozonu, nötrino emilimi ve emisyonunun doğrulanmış aracılarıdır. Bu işlemler sırasında, W± Bozonlarının yükü elektron veya pozitron emisyonunu veya absorpsiyonunu indükleyerek nükleer dönüşüme neden olur. Z Bozon, nötrinolar maddeden elastik olarak saçıldığında (yükü koruyan bir süreç) momentum, spin ve enerji transferine aracılık eder. Z Bozon, elektronların veya pozitronların emiliminde veya emisyonunda yer almaz. Bir elektron, kinetik enerjiyle aniden hareket eden yeni bir serbest parçacık olarak gözlemlendiğinde, bu davranış, nötrino ışını mevcut olduğunda daha sık meydana geldiğinden, elektronla doğrudan etkileşime giren bir nötrinonun sonucu olduğu sonucuna varılır. Bu süreçte nötrino basitçe elektrona çarpar ve sonra ondan uzaklaşarak nötrino momentumunun bir kısmını elektrona aktarır.

W bozonları elektrik yüklüdür ve sembolleri ile belirtilir: W+ (pozitif yüklü) ve W− (negatif yüklü). W bozonu, parçacıkların yapısını değiştirir. Elektrik yüklü bir W bozonu yayarak, zayıf kuvvet kuarkın "aromasını" değiştirir ve bu da bir protonun bir nötron olarak değişmesine neden olur veya bunun tersi de geçerlidir. CERN'e göre, nükleer füzyonu tetikleyen ve yıldızların yanmasına neden olan şey budur. Yanma; bitkiler, insanlar ve dünyadaki diğer her şeyle birlikte gezegenler için yapı taşları haline gelmek üzere, süpernova patlamalarında uzaya fırlatılan, daha ağır elementler yaratır.

Z bozonu nötr olarak yüklüdür ve zayıf bir nötr akım taşır. Parçacıklarla etkileşimini tespit etmek zordur. W ve Z bozonlarını bulmaya yönelik deneyler, 1960'larda elektromanyetik kuvvet ile zayıf kuvveti birleşik bir "elektrozayıf kuvveti" adı altında birleştiren bir teoriye yol açtı. Bununla birlikte, teori, kuvvet taşıyan parçacıkların kütlesiz olmasını gerektiriyordu ve bilim adamları, kısa menzilini hesaba katmak için teorik W bozonunun ağır olması gerektiğini biliyorlardı. CERN'e göre, teorisyenler, bir Higgs bozonunun varlığını gerektiren, Higgs mekanizması olarak adlandırılan, görünmeyen bir mekanizma sunarak W'nin kütlesini açıkladılar. 2012'de CERN, dünyanın en büyük atom parçalayıcısını kullanan bilim adamları "Higgs bozonu görünümüyle tutarlı" yeni bir parçacık gözlemlediklerini bildirdi.

Beta Bozunumu ile Zayıf Kuvvetin İlişkisi

Bir nötronun protona dönüştüğü ve bunun tersinin gerçekleştiği sürece beta bozunumu denir. Lawrence Berkeley Ulusal Laboratuvarı (LBL) şöyle diyor:

Beta bozunumu, çok fazla proton veya çok fazla nötron içeren bir çekirdekte proton veya nötronlardan biri diğerine dönüştüğünde meydana gelir.

W ve Z bozonlar, kuarklar "çeşni" değiştirirken; nötrino, anti-nötrino, elektron veya pozitron emisyonu yaparak parçacıklar arasında momentum ve enerji aktarımına izin veren "zayıf etkileşimleri" oluşturmaktan görevlidir.

LBL'ye göre beta bozunumu iki yolla gerçekleşebilir. Bazen β bozunması olarak tanımlanan beta eksi bozunmada, bir nötron bozunarak bir protona, bir elektrona ve bir antinötrinoya dönüşür. Bazen β+ bozunması olarak tanımlanan beta artı bozunumunda, bir proton bozunarak bir nötron, bir pozitron ve bir nötrinoya dönüşür. Bir element, nötronlarından biri kendiliğinden beta eksi bozunum yoluyla bir protona dönüştüğünde veya protonlarından biri kendiliğinden beta artı bozunma yoluyla bir nötron haline geldiğinde başka bir elemente dönüşebilir.

Tüm Reklamları Kapat

Bir nötronun bir ara ağır W− bozonu aracılığıyla bir proton, elektron ve elektron antinötrinoya beta eksi bozunmasının Feynman diyagramında gösterimi
Bir nötronun bir ara ağır W− bozonu aracılığıyla bir proton, elektron ve elektron antinötrinoya beta eksi bozunmasının Feynman diyagramında gösterimi
Wikipedia

Elektron Yakalama ile Beta Bozunum Benzerliği

Protonlar ayrıca elektron yakalama veya K-yakalama adı verilen bir işlemle nötrona dönüşebilirler. Bir çekirdekteki nötron sayısına göre fazla sayıda proton olduğunda, genellikle en içteki elektron kabuğundan (K-Shell) bir elektron, çekirdeğin içine çekilir. Massachusetts Teknoloji Enstitüsü'nde nükleer mühendislik bölümünde profesör olan Jacquelyn Yanch'a göre, 2001'de "Bozunum Mekanizmaları" adlı makalesinde dediği üzere:

Elektron yakalamada, yörüngesel bir elektron ana çekirdek tarafından yakalanır ve ürünler yavru bir çekirdek ile bir nötrinodur.

Ortaya çıkan yavru çekirdeğinin atom numarası 1 azalır, ancak toplam proton ve nötron sayısı aynı kalır.

Her durumda β+ Bir çekirdeğin bozunmasına (pozitron emisyonu) enerjik olarak izin verilir, bu yüzden elektron yakalamasına da izin verilir. Bu, bir çekirdeğin atomik elektronlarından birini yakaladığı ve bir nötrino emisyonuyla sonuçlandığı bir süreçtir.

Tüm Reklamları Kapat

Yayılan nötrinoların tümü aynı enerjiye sahiptir. Başlangıç ​​ve son durumlar arasındaki enerji farkının 2mec22m_ec^2 'den az olduğu proton açısından zengin çekirdeklerde, β+ bozunma enerjisel olarak mümkün değildir ve elektron yakalama tek bozunum yoludur.

Elektron yakalama bozunması için önde gelen Feynman diyagramları. Bir elektron, bir aşağı kuark ve elektron nötrinosu oluşturmak için bir W bozonu aracılığıyla çekirdekteki bir yukarı kuarkla etkileşime girer. İki diyagram önde gelen sırayı içerir, ancak sanal bir parçacık olarak W-bozonun türü (ve yükü) ayırt edilemez.
Elektron yakalama bozunması için önde gelen Feynman diyagramları. Bir elektron, bir aşağı kuark ve elektron nötrinosu oluşturmak için bir W bozonu aracılığıyla çekirdekteki bir yukarı kuarkla etkileşime girer. İki diyagram önde gelen sırayı içerir, ancak sanal bir parçacık olarak W-bozonun türü (ve yükü) ayırt edilemez.
Wikipedia

Nükleer Füzyonda Zayıf Etkileşimin Rolü

Zayıf kuvvet, güneşe ve termonükleer (hidrojen) bombalarına güç veren nükleer füzyonda önemli bir rol oynar. Hidrojen füzyonundaki ilk adım, iki protonu elektromanyetik kuvvet nedeniyle yaşadıkları karşılıklı itmenin üstesinden gelmek için yeterli enerjiyle birlikte çarpıştırmaktır. İki parçacık birbirine yeterince yaklaştırılabilirse, güçlü kuvvet onları birbirine bağlayabilir. Bu, iki proton ve iki nötron içeren stabil helyum formunun (4He) aksine, iki protonlu bir çekirdeğe sahip kararsız bir helyum formu (2He) oluşturur.

Bir sonraki adım, zayıf gücün devreye girdiği yerdir. Protonların fazlalığı nedeniyle, çiftlerden biri beta bozunmasına uğrar. Bundan sonra, 3He'nin ara oluşumu ve füzyonu dahil olmak üzere diğer müteakip reaksiyonlar sonunda kararlı 4He oluşturur.

Bu işlemler gerçekleşirken, iki protonun bir araya gelip bir proton, bir nötronluk bir yavru çekirdeğe dönüşmesini sağlayan basamakta zayıf kuvvetler aktif rol alırlar. İki proton aynı yüke sahip olduğu için birbirini epey kuvvetlice itecektir ancak yeteri kadar yakınlaşmaları mümkün olursa (Çarpışma hızları sayesinde) zayıf kuvvetler protonlardan birini nötrona bozacak ve iki baryonun bir arada kalabilmesini sağlayacaktır.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Gerçekten Bilmeniz Gereken 50 Ekonomi Fikri

TÜM DÜNYADA BİR MİLYONDAN FAZLA SATAN SERİDEN

Büyük fikirleri kolay anlaşılır ve etkileyici bir üslupla okura sunmaktaki başarısıyla dünyada bir milyondan fazla satışa ulaşmış 50 Fikir serisinin beşinci kitabında, Edmund Conway bizi ekonominin merkezini oluşturan fikir ve akımlarla tanıştırıyor. Gerçekten Bilmeniz Gereken 50 Ekonomi Fikri, Adam Smith’in “görünmez el”i ve arz talep kanunu gibi temel doktrinlerden servet ile mutluluk arasındaki ilişkiyi sorgulayan son dönem araştırmalarına, Keynes’in 20. yüzyılın akıbetini değiştiren “Genel Teori”sinden irrasyonel doğamızı hesaba katmak için ekonomi ile psikolojiyi birleştiren davranışsal iktisada ve hatta gelecekte belirleyici olacak alternatif ekonomi akımlarına kadar uzanıyor. Bize ekonomideki güç dengelerini, bankaların işleyişini, dünyanın uzak bir köşesinde belirip soframıza kadar giren finansal krizleri, neden futbolcuların bu kadar çok kazandığını, piyasanın “ayı” ve “boğa”larını, yaratıcı yıkımı, küreselleşmeyi, eşitsizliği, toplu piyasa hezeyanlarını ve bitmeyen emeklilik yaşı pazarlıklarını anlamamızı sağlayacak alet çantasını sunuyor.
Gerçek hayattan pek çok örnek ile desteklenmiş Gerçekten Bilmeniz Gereken 50 Ekonomi Fikri, ekonominin her bir gün her birimizin hayatını nasıl derinden etkilediğini anlamak ve etkilerine karşı biraz olsun hazırlıklı olmak için güzel bir rehber.

Devamını Göster
₺229.00
Gerçekten Bilmeniz Gereken 50 Ekonomi Fikri
  • Dış Sitelerde Paylaş

Yıldızlardaki nükleer füzyon'un basamakları. İlk dönüşümde, yani nötrino ve pozitron çıkan yerde Beta pozitif bozunum gerçekleşir.
Yıldızlardaki nükleer füzyon'un basamakları. İlk dönüşümde, yani nötrino ve pozitron çıkan yerde Beta pozitif bozunum gerçekleşir.
Wikipedia

Zayıf Etkileşim (Kuvvet) Türleri

Zayıf etkileşimlerin aracıları (QED'deki fotonlara ve QCD'deki gluonlara benzer) W'ler (W+ ve W-) ve Z0'dır. Kütlesiz foton ve gluonların aksine, bu "ara vektör bozonları" son derece ağırdır. Bugüne kadar tespit edilen en ağır temel parçacıklar bozonlardır. Deneysel olarak:

MW=82±2GeV/c2M_W = 82 \pm 2 GeV / c^2 , MZ=92±2GeV/c2M_Z = 92 \pm 2 GeV / c^2

Yüklü Zayıf Etkileşimler

"Yüklü" zayıf etkileşimler teorisi (W'lerin aracılık ettiği) "nötr" olanlardan (Z'nin aracılık ettiği) daha basittir. W’lerin leptonlarla, kuarklarla ve hadronlarla eşleşmeleri yüklü zayıf etkileşimlere girer.

Temel leptonik vertex'i:

Burada bir elektron, müon veya tau, bir W- emisyonu (veya W + absorpsiyonu) ile ilişkili nötrinoya dönüştürülür.
Burada bir elektron, müon veya tau, bir W- emisyonu (veya W + absorpsiyonu) ile ilişkili nötrinoya dönüştürülür.
Introduction to Elementary Particles ( Kitap )

Feynman kuralları, vertex faktörü hariç olmak üzere, kuantum elektrodinamikleri ile aynıdır:

igw22γμ(1−γ5)\frac{ig_w}{2\sqrt{2}} \gamma^\mu(1-\gamma^5) (Zayıf vertex faktörü)

Bir tür yüklü akım etkileşiminde, yüklü bir lepton (−1 yüke sahip bir elektron veya bir müon gibi) bir W + bozon (+1 yüklü bir parçacık) ve böylece karşılık gelen bir nötrinoya (0 yüklü) dönüştürülür, burada nötrino (elektron, müon veya tau) türü ("lezzet") etkileşimdeki leptonun türüyle, örneğin:

μ−+W+→υμ\mu^- + W^+ \to \upsilon_\mu

Benzer şekilde, aşağı tip bir kuark (- 1⁄3 yüke sahip d), yukarı tip kuarka (u, + 2⁄3 yük ile) W- bozon yayarak veya W+ bozon soğurarak dönüşebilir. Daha doğrusu, aşağı tip kuark, yukarı tip kuarkların bir kuantum süperpozisyonu haline gelir: yani, CKM matris tablolarında verilen olasılıklarla, üç yukarı tip kuarktan herhangi biri olma olasılığı vardır. Tersine, yukarı tip bir kuark bir W + bozonu yayabilir veya bir W− bozonu soğurabilir ve böylece aşağı tip bir kuarka dönüştürülebilir, örneğin:

d→υ+W−d \to \upsilon + W^-

Tüm Reklamları Kapat

d+W+→υd+ W^+ \to \upsilon

c→s+W+c \to s + W^+

c+W−→sc + W^- \to s

Bir nötronun sözde beta bozunmasında, nötron içindeki bir aşağı kuark sanal bir W− bozonu yayar ve böylece bir yukarı kuarka dönüştürülerek nötron bir protona dönüştürülür. Sürece dahil olan enerji nedeniyle (yani, aşağı kuark ve yukarı kuark arasındaki kütle farkı), W− bozonu yalnızca bir elektrona ve bir elektron-antinötrinoya dönüştürülebilir. Kuark seviyesinde süreç şu şekilde temsil edilebilir:

Tüm Reklamları Kapat

d→μ+e−+νed \to \mu + e^- + \nu_e

Nötr Yüklü Etkileşimler

Nötr akım etkileşimlerinde, bir kuark veya bir lepton (örneğin bir elektron veya bir müon) nötr bir Z bozonu yayar veya soğurur. Genelde Z bozonun yaptığı temel şey, bir müonu anti-müon'a çevirmek veya bir pozitronu bir elektrona çevirmektir. Örneğin:

e+→e−−+Z0e^+ \to e^--+ Z^0

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
37
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Bilim Budur! 13
  • Tebrikler! 4
  • Mmm... Çok sapyoseksüel! 3
  • Merak Uyandırıcı! 3
  • Muhteşem! 2
  • İnanılmaz 2
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  1. Türev İçerik Kaynağı: Live Science | Arşiv Bağlantısı
  • D. J. Griffiths. (1987). Introduction To Elementary Particles. ISBN: 9780471603863. Yayınevi: Wiley-Vch.
  • R. Penrose. (2007). The Road To Reality: A Complete Guide To The Laws Of The Universe. ISBN: 9780679776314. Yayınevi: Vintage.
  • S. Weinberg. (2003). The Discovery Of Subatomic Particles. ISBN: 9780521823517. Yayınevi: Cambridge University Press.
  • CERN. The Standart Model. (6 Aralık 2020). Alındığı Tarih: 6 Aralık 2020. Alındığı Yer: home.cern | Arşiv Bağlantısı
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 07/12/2024 23:26:31 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9669

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Algı
Hominid
Evrim Tarihi
Malzeme
Ay Görevleri
İklim Değişikliği
Ornitoloji
Uygulama
Stephen Hawking
Periyodik Cetvel
Sinir Sistemi
Diş
Eşeyli Üreme
Küresel
Hidrotermal Baca
Büyük
Renk
Grip
Zehir
Asteroid
İnfografik
Sağlık Bilimleri
Aminoasit
Yemek
Doğa Yasası
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
J. Lucas, et al. Zayıf Kuvvet Nedir? Yıldızların Yakıtını ve Yeni Elementlerin Doğumunu Mümkün Kılan Zayıf Etkileşimler Nelerdir?. (6 Aralık 2020). Alındığı Tarih: 7 Aralık 2024. Alındığı Yer: https://evrimagaci.org/s/9669
Lucas, J., Polat, G. K., Bakırcı, Ç. M. (2020, December 06). Zayıf Kuvvet Nedir? Yıldızların Yakıtını ve Yeni Elementlerin Doğumunu Mümkün Kılan Zayıf Etkileşimler Nelerdir?. Evrim Ağacı. Retrieved December 07, 2024. from https://evrimagaci.org/s/9669
J. Lucas, et al. “Zayıf Kuvvet Nedir? Yıldızların Yakıtını ve Yeni Elementlerin Doğumunu Mümkün Kılan Zayıf Etkileşimler Nelerdir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 06 Dec. 2020, https://evrimagaci.org/s/9669.
Lucas, Jim. Polat, Gencay Kaan. Bakırcı, Çağrı Mert. “Zayıf Kuvvet Nedir? Yıldızların Yakıtını ve Yeni Elementlerin Doğumunu Mümkün Kılan Zayıf Etkileşimler Nelerdir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, December 06, 2020. https://evrimagaci.org/s/9669.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close