Su İçindeki Kabarcıklar, Kozmolojik Yasaları Keşfetmemizi Sağlıyor!
Bir damla, musluktan (veya herhangi bir yerde) her damladığında, doğada, sihirli bir numara daha gerçekleşir. Bu sihir, bir damlanın ikiye bölünmesinde de kendisini gösterir; bölünme esnasında fiziksel niceliklerin sonsuzlukla flört ettiği tek bir nokta olan tekillikten geçiş çağrısı yapıyor demektir. İki damlayı birbirine bağlayan ve bu damlalar arasında köprü görevi gören o ince "boyun" ise artık hiçbir şeye bağlanamayacak kadar incelip kaybolmak üzereyken, sıvı basıncı ve hızı, sanki sıfıra bölünmüşcesine sonsuzluğa doğru fırlar. Bu noktada, akışkanları tanımlamak için kullanılan denklemler adeta matematiksel bir patlamaya maruz kalmaktadır.
Damlaların bölünmesiyle beraber, değişen düzenin yerini alacak bir yenisi ancak âni bir kırılmadan sonra (damlalar arasındaki bağlantı olan boynun kopuş süreci) geri döner. Buradaki düzen (mevcut bir damlanın ikiye bölünmesi ve iki ayrı damla oluşması veya mevcut bir damlanın diğerinden kopması sürecini kapsar), termodinamik yasalarının ifade ettiği gibidir; yani her değişen/dönüşen mevcut düzen/düzenlilik hâli daima bir miktar farklı bir forma dönüşerek evrenin entropisinde artışa yol açmasına benzer.
Yıllar önce, bu fenomeni inceleyen fizikçiler, bu dağınık ve şiddetli sürecin, gizli bir düzenlilik getirdiğinin farkına vardılar: Dünya'daki her damla, birkaç karakteristik boyun şeklinden birine sahipti!
Yerçekimi, musluk tasarımı, sulama biçimi, teknik aksaklıklar veya yaprak üzerinde biriken suyun kayarak düşmesi şeklinde doğada herhangi bir biçimde kendi oluşum gereği gibi çeşitli faktörler damlamayı başlatmış olabilir; fakat nasıl başlarsa başlasın sonuçta önemli olan şey, sıvının yüzey gerilimi ile damlalar arasındaki boynun ataleti -bu gerilime olan direnci- arasındaki mücadeledir. Chicago Üniversitesi'nden bir fizikçi olan Sidney Nagel, şöyle diyor:
Bu damla, Michigan Gölü kıyılarında yükselen bir dalganın tepesinden koparak oluşmuş olsa bile, damlanın dalgadan ayrılma noktası aynı görünür.
Damlacıklar, farklı malzemeler arasında ve büyük ölçüde farklı koşullar altında bile tamamen aynı şekilde ve aynı zamanda tekrar eden olayları tanımlayan "evrensellik" kavramının temel bir örneği haline geldiler.
Evrenselliğin öngörülebilirlik kapasitesi, birinci sınıf matematiksel modellerin her zaman tam olarak analiz edemediği (çatlama yüzeyleri gibi), dağınık ve değişen sistemlerin geniş çaplı davranışsal özelliklerini açıklamak için kullanılabilir. Evrensellik, araştırmacılara, işin zor yanı olan moleküler veya atomik detaylardan endişe etmeden bu olayları tarif edebilme imkânı sağlar. Emory Üniversitesi'ndeki yumuşak-madde fizikçisi olan Justin Burton şöyle ifade ediyor:
Evrensellik, her yerde bulunan ve karmaşık sistemleri basitleştirmemize yardımcı olan bir fikirdir.
Yeni bir çalışmada ise, dar bir tüpte hapsolan kabarcıklar kullanılarak oluşturulan yeni bir sistemde evrensellik tanımlandı. İşler burada sürpriz bir hâl alıyor, çünkü baloncuklar (kabarcıklar) tarihsel olarak (deneyler süresince kaydedilen aşamalar sayesinde) fizikçilere evrenselliğin sınırlarını öğreten sistem oldu. Artık araştırmacılar, bu tanımlı evrenselliği -deyim yerindeyse- açıp kapamak için bir yola sahipler (çünkü deneylerle oluşturulan sistemler bunu kontrol edebilmeyi sağlıyor).
En nihayetinde, umut, kabarcıklar gibi nispeten basit sistemlerde tekillikleri ve evrenselliği incelemenin, kozmosun gözlem ve inceleme yapma şansımızın daha az olduğu köşelerinde olup bitenler hakkında bize fikir vermesidir. Princeton Üniversitesi'nde makina mühendisi ve son çalışmaların ortak yazarı olan Amir Pahlavan, şöyle belirtiyor:
Damlacıklar ve baloncuklar... Bunları her gün görüyoruz; ancak kara delikleri incelemek ve gözlemlemek çok daha zor.
Evrenselliğin Sonu
Fizikçi Leo Kadanoff liderliğindeki evrensellik kavramının ilk öncüleri, kum yığınlarının üzerindeki kümelenmeden mıknatıslayıcı metallere kadar farklı sistemlerin çoklu ölçeklerde (küçükten büyüğe veya karmaşıklığa göre) çalıştığını keşfetti (Detaylı bilgi için: Sand Pile Avalanche Model ve Kadanoff Sand Pile Model). Bu sistemlerdeki bir devrilme noktasında, mevcut küçük yığınların peşi sıra büyük heyelanlar da oluşabilir (yani bir dizi küçük değişiklik veya olayın meydana geldiği nokta, daha büyük ve daha önemli bir değişikliğe neden olacak kadar önemli hâle gelir). Büyük yığınların sadece büyüklerle, küçük yığınların ise küçüklerle karışması eğilimi erir ve bir seviyede oluşan etkiler bir diğerine sorunsuzca taşınır.
Kısmen Kadanoff'un çalışmasıyla teşvik edilen 1990'ların başındaki fizikçiler, önce teorik olarak sonra da deneysel olarak damlacık oluşumunun evrensel bir fenomen olduğunu gösterdi.
Araştırmacılar, yıllar boyunca, yalnız moleküler bir teorinin, ayrışmayı/kırılmayı (burada damlacık veya kabarcıkların ayrışması, dağılması olarak da kullanabiliriz) tamamen tanımlayabileceğini varsaydılar; çünkü Navier-Stokes Denklemleri olarak bilinen pürüzsüz sıvının tanımı, basınç ve akışkanın hız nicelikleri belirli bir oranın üzerine çıktığında başarısız oluyor. Sistemlerde değişim öncesi ve sonrası (örneğin denklemde ya da deneylerde uygulanan sıkıştırma işlemi gibi veya bir damlacık oluşumu esnasında ayrılan parçanın, ayrılmadan önceki boyun bölgesinin oluşumu sanki bir sıkıştırma işlemine benzer, çünkü sıvının yüzey gerilimi ve boyunun atalet direnci buna neden olan faktörlerden biri) oluşan muntazam şekilleri garanti eden evrensellik sayesinde, Bristol Üniversitesi'nde fizikçi ve matematikçi olan Jens Eggers, moleküllerin kendilerini görmezden gelecek biçimde, akışkanlar dinamiğine dair matematiği tekillik boyunca genişletmenin bir yolunu buldu.
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
Bu gelişmelerin ardından, farklı miktarlar ve değişken kıvamlarda sıvı içeren düzenekler kullanılarak pek çok araştırma yapıldı. Bu aygıtların hassas ayarları, fizikçilerin, akışkanlar dinamiğinin açıklanamayan yönlerini incelemelerine ve her biri kendi karakteristik numaralarıyla tanımlanan farklı "evrensellik sınıflarına" erişerek, evrenselliğin sınırlarını keşfetmelerini sağladı.
Esas ses getiren gelişme, Nagel ve Chicago'daki meslektaşlarının düşen bir damlayı incelerken, deneyin etkilerini tersine çevirmeyi başardıklarında geldi: Bir sıvının içinde yükselen hava kabarcığı ile havadan düşen bir su damlasının yerlerini değiştirdiler.
Deneylerle inceltilmiş/seyreltilmiş damlacıkların etkileşiminden edinilen kavrayışın rehberliğinde, projeyi yöneten lisansüstü öğrenci, her bir olayın, aynı şekilde rol oynadığı (yani evrensellik) bir yol araştırarak, düzenek içerisinde her açıdan bölünen kabarcıkları fotoğraflamayı denedi. Yine de kabarcıklardaki her boğum(boyundaki sıkışma) farklı görünüyordu, çünkü kabarcıkların çevresini saran suda yada kabarcığın içerisindeki merkezi hava akımında meydana gelen ilk dalgalanmalar matematiksel açıdan tekilliğe kadar uzanıyordu ve bu durum, boynun Platonik simetrisini bozarak farklılığa neden oluyordu.
Sonunda, takım, kabarcıkların ayrışmasının evrensel olmadığı sonucuna varmak zorunda kaldı. Damlacıkların aksine, oluşan son kabarcık, meydana geldiği koşulları adeta hafızasına kaydederek o koşulları koruyan bir şekil alır. Yani evrenselliği genişletme süresi, bir miktar hava boşluğu ile durdurulmuş oldu (evrenselliğin tanımını tekrar hatırlayalım: farklı malzemeler arasında ve büyük ölçüde farklı koşullar altında bile tamamen aynı şekilde ve aynı zamanda tekrar eden olayları tanımlar). Bunun üzerine Nagel şunu ekliyor:
Size söylenenler tarafından kör edilmeden, deneyin neler söylediğine inanıyorsanız, doğanın aklında başka planları olduğunu göreceksiniz.
Öte yandan, yeni bir çalışma, evrenselliği kabarcıklara geri kazandırmanın bir yolunu ortaya koydu. Çalışma, o zamanlar MIT'deki Ruben Juanes Laboratuvarı'nın bir üyesi olan Pahlavan'ın, havanın, 1 milimetreden daha az genişlikteki tüplerden içeri girmesini sağlayan bir proje üzerinde çalıştığı zamanlarda başladı. Pahlavan, kabarcıkları tanımlayan denklemlerin, boynun, sıkışma noktasına yaklaşırken iki farklı aşamadan geçmesi gerektiğini önerdiğini fark etti. Bu aşamalardan biri, Chicago ekibinin erken çalışmalarında görülen profil ile aynı olacaktır ve diğeri ise tamamen yeni bir aşama olacaktır.
Ayrışmayı aşırı ağır çekimde görüntülediği zaman, Pahlavan, ayrışmadan 1 saniye önceki kabarcık boynunun şeklinin, ayrışma sonrası da kendine benzer olduğunu buldu. Böylece, eğrinin/kavisin (yani ayrışmadan hemen önce, boğum bölgesinde gelişen boynun oluşum sürecinde, sıkışmayla beraber damlada/kabarcıkta meydana gelen eğrilik) bir bölümünü yakınlaştırdıktan(yüksek görüntüleme teknolojisi kullanabildiği için) sonra, oluşan yeni eğrinin, daha büyük ölçekte olduğu gibi aynı görünmesi için sıkıştırılabileceği anladı (Fraktal benzeri kendi kendine benzerlik, evrensel sistemlerin ortak bir özelliğidir, çünkü sistemin özel bir ölçeğe sahip olmadığı kavramıyla ilgilidir). Yani, araştırmacıların daha önce reddetmesine rağmen, evrenselliğin kabarcıklara uygulanabileceğini keşfetti. Ayrıca, ayrışmadan 1 milisaniye önce, orijinal eğri üzerinde daha yakın bir görünüm elde etmek için gereken gerdirme/sıkıştırma tipi değişti; bu, boynun farklı bir kendi kendine benzerlik rejimine geçtiğini gösterir.
Düzenlenen yeni bir aşamada ise sistem, nozül (bir akışkanın akış yönünü kontrol etmeye yarayan parçaların genel adı) büyüklüğü gibi ayrıntıları silinerek, evrensel bir rol oynadı. Sonraki ikinci aşama, Chicago ekibinin evrensel olmayan sonuçlarıyla eşleşti; fakat ikinci aşamaya gelince, sistemde hatırlanacak(kabarcığın, meydana geldiği koşulları adeta hafızasına kaydederek o koşulları koruyan bir şekil almasında olduğu gibi) hiçbir ayrıntı kalmadı. Bu nedenle genel sistem evrensel olarak davrandı.
Ayrıca Pahlavan, kabarcık deneyinde, tüp ebadı ve sıvı yoğunluğunu/kıvamını bir düzine yolla değiştirmesine rağmen, her ayrışma aynı şekilde davrandı. Yani bu aşamalarda bir yandan, mevcut durumun tam tersi davranışları/koşulları teste tabi tutularak gerçekleşen her sonucun eşleştiği görülmüş oldu.
Bu çalışma, sistemlerin evrenselliği "açıp kapatabildiğini" kanıtlıyor ve onları kapalı bir sistemin içinde hapsetmek ise bunu yapmanın bir yoludur. Burton şöyle söylüyor:
Bu makalenin güzel bir şekilde gösterdiği şey, bir sınırlandırma/hapsetme etkisi uygulayarak evrenselliği geri kazanmanın bir yolu olduğudur.
Pahlavan ise şunu ekliyor:
Tekilllik oluşumu ilginçtir, çünkü evrensellik sınıfları(her biri kendi karakteristik numaralarıyla tanımlanan farklı sınırlar) buluyor ve başlangıçtaki ayrıntılara kayıtsız kalan şeylerden bahsediyorsunuz; bu yüzden, tekillik, üzerinde çalıştığınız problemden daha genel olmalı.
Buradan şunu anlıyoruz ki; bu sistemlerin, kara delikleri daha iyi anlamak için kullanılabilecekleri anlamına gelir.
Kozmik Tekilllikler
Her ne kadar evrenimizde kara delik açmamız imkânsıza yakın olsa da daha yüksek boyutlarla oyun oynayan teorisyenler, nesnelerin, beş ve üzeri boyuttaki teorik kuzenlerinin -ekstra boyutlardaki silindirik görünümleri için "kara sicim" olarak adlandırılan- daha istikrarsız/belirsiz bir yaşam sağlayacağını keşfetti.
Bu esrarengiz nesneler içe çöküp ikiye ayrılabilirler mi? Beş boyutta genel görelilik tam olarak çözülemeyecek kadar zor; ancak, 2010'da fizikçiler Luis Lehner ve Franz Pretorius kara sicimin akıbetini hesaplamak için bir bilgisayar modeli kullandı.
Pretorius, simülasyona dair, şaşırtıcı derecede tanıdık gelen bir video yayınladı.Sonuçlar tıpkı damlalarına ayrılan bir sıvı akışına benziyordu: Oluşan büyük kabarcıkların arasında meydana gelen akımların, bir noktada odaklanarak şişmesiyle oluşan daha küçük kabarcığın, sırasıyla, ardında meydana gelen daha ince akımların belli odaklarda tekrar şişerek kendisinden de küçük kabarcıklar meydana getirmesi ve bu sürecin devam etmesi. Sıvı davranışı, sicimlerin, sonunda küresel kara delik damlacıklarına dönüşmesi gerektiğini gösterdi. Ancak, parçacık içeren bir kuantum kütleçekimi teorisi olmadan, simülasyon sıkışma noktasına yaklaşırken çöker.
Kara sicimlerin ayrışımının evrensel bir süreç olduğu kanıtlanmadı (her ne kadar Pretorius'un, simülasyonların bunun olması gerektiği konusunda ip ucu verdiğini imâ etmesine rağmen); ancak eğer öyleyse, bir ihtimal, tıpkı fizikçilerin kabarcık oluşumunun moleküler detaylarından kaçınmayı başardıkları gibi, teorisyenlerin de kuantum kütleçekimi ayrıntılarını görmezden gelebileceğini düşünüyor. Pretorius şöyle diyor:
Klasik genel görelilikten tamamen ayrılmadan önce ve sonra ne olur belki çözebiliriz.
Proterius'a göre, kabarcıklar arasındaki boynun evrimi ayrışma noktasına yaklaşırken, teorik nesnelerin(teorisyenlerin incelediği farklı boyutlardaki yapılar), kuantum kütleçekimi hakkında söyleyecek ilginç şeyleri olabilir.
Teorik kara sicimlerin ötesinde, evren, tekil ayrılıklar yaşayan olgular/oluşumlarla doludur. Örneğin, dönen bir gaz bulutu yavaş yavaş ikiye bölündüğünde ikili yıldız sistemleri oluşabilir ve nükleer fisyon sırasında atomun ayrılması ise matematiksel bağlamda bir sıvı gibi işlem görebilir (kabarcık deneylerini göz önünde bulundurmak açısından).
Evrenin dinamikleri içerisindeki farklı kuvvetler bu olayları yönlendirir, böylece matematiksel açıklamaları da değişir ve Chicago ekibinin öğrendiği gibi, tüm tekilliklerin evrensel olması şart değildir. Ancak, fizikçiler, damla ve kabarcıkları inceleyerek, başka türden tekilliklerin analizine yardımcı olacak genel bir problem çözme stratejileri oluşturdular. Laboratuvarda gözlemlenebilecek tekillikleri anlamaya çalışırken yaşanan sıkıntılar, bu teknikleri geliştirmek ve genişletmek adına teşvik edici bir neden olacaktır. Burton şöyle ifade ediyor:
Büyük Patlama'dan -ki bu tüm zamanların en özgün tekilliğine benziyor- bir kabarcığın ayrışmasına kadar, bu şeyler her yerde ortaya çıkıyor. Onların temel fiziğini anlamaya çalışmak gerçekten önemli bir meydan okumadır.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 7
- 3
- 3
- 1
- 1
- 1
- 1
- 0
- 0
- 0
- 0
- 0
- Çeviri Kaynağı: Quanta Magazine | Arşiv Bağlantısı
- S. Nagel, et al. (2001). Shadows And Ephemera. The University of Chicago Press Journals. | Arşiv Bağlantısı
- R. Cho, et al. (2017). Universality Of Periodicity As Revealed From Interlayer-Mediated Cracks. Nature. | Arşiv Bağlantısı
- A. Pahlavan, et al. (2019). Restoring Universality To The Pinch-Off Of A Bubble. PNAS. | Arşiv Bağlantısı
- J. Eggers, et al. (1998). Theory Of Drop Formation. AIP. | Arşiv Bağlantısı
- F. Pretorius, et al. (2010). Black Strings, Low Viscosity Fluids, And Violation Of Cosmic Censorship. Arxiv. | Arşiv Bağlantısı
- J. Osriker, et al. Fission And The Origin Of Binary Stars. (19 Ağustos 2019). Alındığı Tarih: 19 Ağustos 2019. Alındığı Yer: springer | Arşiv Bağlantısı
- R. Nave, et al. Liquid Drop Model Of Nucleus. (19 Ağustos 2019). Alındığı Tarih: 19 Ağustos 2019. Alındığı Yer: Hyperphysics | Arşiv Bağlantısı
- Francisco Esquembre. Sand Pile Avalanche Model. (12 Haziran 2014). Alındığı Tarih: 6 Aralık 2019. Alındığı Yer: Open Source Physics | Arşiv Bağlantısı
- Kevin Perrot, et al. (2013). Kadanoff Sand Pile Model. Avalanche Structure And Wave Shape. ScienceDirect, sf: 52-72. | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/01/2025 15:19:44 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/7928
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.
This work is an exact translation of the article originally published in Quanta Magazine. Evrim Ağacı is a popular science organization which seeks to increase scientific awareness and knowledge in Turkey, and this translation is a part of those efforts. If you are the author/owner of this article and if you choose it to be taken down, please contact us and we will immediately remove your content. Thank you for your cooperation and understanding.