Faydalı mutasyon konusu aslında kolay bir konudur. Ancak evrim karşıtları faydalı mutasyon konusunu çeşitli çarpıtmalar ile insanlara anlattığı için bazı kişiler gerçekten faydalı mutasyon olmadığına inanıyorlar.
Bu eğitimsizliğin bir ürünüdür. Çünkü 8. Sınıf öğrencisi bile her mutasyonun zararlı etki göstermediğini bilir.
Faydalı Mustasyon: Canlıların çevreye uyum sağlamasına, yaşam ve üreme şansını arttırmaya yarayan mutasyonlardır.
Tüm Reklamları Kapat
Bu tanıma uyan tüm mutasyonlar faydalı mutasyon olarak kabul edilir. Faydalı mutasyonları daha iyi anlamak istiyorsanız bu yazıyı öneririm: https://evrimagaci.org/mutasyon-nedir-110
Faydalı Mutasyon Örnekleri:
Orak Hücre Anemisi
HIV (AIDS Virüsü) Direnci
E. coli Bakterilerinde Sıcaklık Değişimine Bağlı Evrim
Chlamydomonas Cinsi Algde Karanlığa Adaptasyon
bunlar gibi birçok faydalı mutasyon örneği verilebilir.
8,726 görüntülenme
Kaynaklar
Yazar Yok. 2018-2019 8. Sınıf Fen Bilimleri Kitabı. (23 Kasım 2019). Alındığı Tarih: 23 Kasım 2019. Alındığı Yer: Bağlantı
| Arşiv Bağlantısı
Yazar Yok. Faydalı, Zararlı Ve Nötr Mutasyonlar Ne Sıklıkla Gerçekleşir, Evrime Nasıl Etki Eder?. (23 Kasım 2019). Alındığı Tarih: 23 Kasım 2019. Alındığı Yer: Bağlantı
| Arşiv Bağlantısı
Yazar Yok. Mutasyon Nedir?. (23 Kasım 2019). Alındığı Tarih: 23 Kasım 2019. Alındığı Yer: Bağlantı
| Arşiv Bağlantısı
Yazar Yok. Faydalı Mutasyonlar Ve Tasarım İllüzyonu: Evren'Deki Her Şey İnsanlar İçin Mi Var?. (23 Kasım 2019). Alındığı Tarih: 23 Kasım 2019. Alındığı Yer: Bağlantı
| Arşiv Bağlantısı
Bu cevap, soru sahibi tarafından en iyi cevap seçilmiştir. Ancak bu, cevabın doğru olduğunu garanti etmez.
Öncelikle, mutasyonlar başlangıçta zararlı bile olsalar evrimsel süreçte yarara dönüşebilirler. Ya da bir ortamda zararlıyken başka bir ortamda yararlı bir durum yaratabilirler. Canlının geninde oluşan bir mutasyon, eğer o canlıya bir fayda sağlıyorsa, yani bulunduğu ortam şartlarında yaşamını ve üremesini kolaylaştırıyorsa, sonraki nesillere aktarılır. Böylece bu mutasyona uğramış genin popülasyondaki sayısı artar. Aksi şekilde, eğer mutasyon bu şartları kolaylaştırmıyor ve canlının üremesine katkı sağlamıyorsa, o canlı zaten üreyemeyeceği için zamanla mutasyona uğramış genler azalır ve yok olur, ayıklanır. Böylece, yararlı genlerle zararlı genler ayıklanarak yaşadığı ortama daha iyi uyum sağlamış canlılar gelişir. Mutasyon denince akla hemen zararlı olan değişiklikler gelse de, canlı için faydalı olan mutasyonlar da vardır.
Tüm Reklamları Kapat
(Burada basit ama bir o kadar da önemli bir ayrımı yapmak gerekiyor, bir mutasyonun “faydalı” olması, mutasyonun gerçekleştiği gene sahip canlı için kullanılan bir kavramdır, faydalı mutasyon denilerek, o canlıdaki mutasyonun “insana” faydalı olmasından bahsedilmemektedir. Örneğin insan genlerindeki bir mutasyon, eğer insan için faydalıysa buna faydalı mutasyon denir; aynı şekilde örneğin bir bakteride meydana gelen mutasyon bakterinin yaşamını iyileştiriyorsa, yine faydalı mutasyon denir. Bakterideki faydalı mutasyon, bakterinin üremesini kolaylaştırdığı için insana zararlı olabilir ama bundan dolayı ona zararlı mutasyon DENMEZ. Yani gerçekleştiği canlıya göre fayda-zarar ilişkisi gözetilir.)
Aşağıda bu faydalı mutasyonlardan bazılarını maddeler halinde bulacaksınız:
CCR5 genindeki mutasyon:
CCR5 genindeki mutasyon HIV’den AIDS’e geçişi yavaşlatır ve aynı gende gerçekleşen iki mutasyon bir kimsenin HIV enfeksiyonuna karşı direncini arttırır. Bugün, büyük bir evrim deneyinin içinde yaşıyoruz. Gözlerimizin önünde evrim geçirmekte olan ve AIDS hastalığına neden olan HIV salgını. HIV denilen virüs, 19. yüzyılda bilinmeyen, ancak şimdi çok tanıdık hale gelen bir organizma.
Tüm Reklamları Kapat
Evrim karşıtları için bile, HIV, değişerek üremenin kanıtıdır, çünkü bu sürecin gerçekleşmesine tanık oluyorlar. Kısacık geçmişinde virüsün yapısı değişim gösterdi ve karşılaştığı yeni durumlara karşı uyum sağlamayı başardı. Ölüm yaklaştığında hasta, kendisini enfekte etmiş virüsten, insanla kuyruksuz maymunlar arasındaki fark kadar değişiklik gösterebilen, virüsün torunlarının yuvası olmuştur artık.
Konumuz insandaki bir genin uğradığı mutasyondur. C-C kemokin reseptör5 (CCR5) , insanlarda CCR5 geniyle kodlanmış bir proteindir. CCR5 , baskın olarak T hücrelerinde, makrofajlarda, dendritik hücrelerde ve mikrogliada etki gösterir. Bu genin insandaki enflamatuar cevapta rol oynadığı düşünülmektedir.
Bazı popülasyonlar, Delta32 mutasyonunu kazanmıştır ki bu mutasyon CCR5 genindeki genetik bilginin bir kısmının silinmesine sebep olmuştur (32-bp segment silinmesi). Bu mutasyonu taşıyan homozigot bireyler, HIV enfeksiyonuna karşı tamamen ya da kısmen dirençlidir (yukarda söylediğimiz gibi, homo-heterozigot olmasına göre değişir).
HIV, saldıracağı hücrelere girmek için bir ön reseptör olarak çoğunlukla CCR5 veya CXCR4’i kullanır. Delta32 mutasyonu ile, reseptör çalışamaz hale geldiği için HIV virüsünün tutunması ve hücreye girmesi engellenir, bu alel genlerden 2 kopya olması , HIV için daha da yüksek bir direnç oluşturur. Bu aleller, Avrupalılarda %5-14 oranında bulunur, Afrika ve Asya’da ise nadirdir. Birçok çalışma, bu alellerden sadece birinin varlığının bile, HIV taşıyıcısı kişilerde AİDS hastalığının oluşmasını 2 yıl geciktirdiğini göstermektedir.
Klamidya ve karanlığa uyum
Graham Bell isimli meşhur popülasyon genetikçisi (isim sadece bir tesadüftür, telefonu icat eden Bell ile alakası yoktur) fotosentetik bir alg olan Chlamydomonas ile çalışmıştır. Bu cins, aydınlıkta normal bir şekilde yaşayıp büyür. Ancak karanlıkta da, eğer ortamda asetat varsa, bunu karbon kaynağı olarak kullanarak büyümeyi sürdürebilir. Bell, birkaç yüz nesil bekleyerek hangi alglerin karanlıkta büyüme konusunda başarılı, hangisinin başarısız olduğunu tespit etti ve bunlardan örnekler alarak birbirlerinden ayırdı. Daha sonra karanlıkta büyüme konusunda başarısız olanları karanlıkta ve zorlu şartlarda bıraktı. Belli bir kırılma yaşandıktan sonra, popülasyonun normal yaşam süreci ve nesilleri içerisinde meydana gelen mutasyonlardan bazılarının karanlıkta yaşama ve asetatı kullanma açısından avantaj sağladığını gördü. Sadece 600 nesilde ilk başta başarısız olan algler, nesiller içerisinde belli tip mutasyona sahip olanların avantajlı konuma geçip üremeleri sayesinde karanlıkta yaşamaya adapte olmayı başardı. Bu da faydalı mutasyonlara örnek olarak verilebilir.
Domuz gribi virüsü H1N1′in geçirdiği mutasyon
California Teknoloji Enstitüsü’nden -Nobel ödüllü- Prof. David Baltimore ve ekibi, domuz gribi virüsünün yayılmasını sağlayan bir mutasyonu tanımladı ve Science dergisinde yayınladı. Domuz gribi virüsü diye bilinen H1N1′in bazı örneklerinin zaten yararlı bir mutasyon taşıdığı biliniyordu. Bu mutasyon, virüsün, çoğalmasını engelleyen bir ilaca (oseltamivir, piyasa ismi Tamiflu) karşı bağışıklık kazanmasını sağlıyor, ama yan etki olarak virüsün yayılmasını yavaşlatıyordu. Bu nedenle de fazla yayılamıyor ve pek de ciddi bir sağlık sorununa dönüşecekmiş gibi durmuyordu.
Ancak 2007-2008 sezonundaki domuz gribi, hem dirençliydi, hem de hızla yayıldı. Yavaş olması beklenen dirençli virüs nasıl olup da bu kadar hızlanmıştı? Antibiyotik direncini sağlayan mutasyona ek olarak bu virüsler, iki ayrı mutasyon daha geçirmişler, ve hızla çoğalma yeteneğini kazanmışlardı.
Bu iki yararlı mutasyon, dirençsiz bir virüste birbiri ardına meydana gelmiş ve direnç kazandıran mutasyonun yavaşlatıcı etkisini baştan azaltmıştı. Böylelikle bunun ardından meydana gelen direnç kazandırıcı mutasyon bir zarar vermeden canlıya yarar sağlamıştı. Bu üç mutasyon, virüse o kadar yarar sağladı ki virüs tüm dünyaya kısa sürede yayıldı.
Tüm Reklamları Kapat
Klebsiella aerogenes bakterisi ve fucose isomeraz enzimi
Robert Mortlock, Klebsiella aerogenes bakterisinin mutasyon geçirerek, daha önce bünyesinde sürekli üretilmeyen bir enzimi (fucose isomeraz enzimi) , sürekli üretmeye başladığını bulmuştur. Her daim kullanılmayan bu enzimin, sürekli olarak üretilmesine yönelik bu mutasyon, zararlı gibi görünmektedir çünkü bakteri için enerji ve kaynak israfıdır. Ancak bu enzimin her an vücutta bulunmasıyla Klebsiella aerogenes bakterisi, daha önce aralıklarla metabolize edebildiği besinleri, her an kullanabilir hale gelmiştir. Dolayısıyla başlangıçta zararlı bir mutasyon olarak ortaya çıkan durum, sonunda faydalı hale gelmiştir.
Bakterilerdeki antibiyotik direnci
Tüm Reklamları Kapat
Bildiğiniz gibi doktorlar, bir antibiyotik aldığınız zaman onu mutlaka ama mutlaka sonuna kadar (veya önerilen süre boyunca) kullanmanızı tembihlerler, asla erken kesmemeniz gerektiğini vurgularlar. Eğer erken keseceğiniz bir durum olacaksa da hiç başlamamanızı tavsiye ederler. Bunun çok basit bir nedeni vardır: Evrim. Vücudunuzdaki tipik bakterilere karşı geliştirilen antibiyotikler, bu bakterilerin ölmesini sağlayan kimyasalları içerir. Siz, antibiyotiği aldığınızda, ilaç vücudunuza yayılarak bakterilerin hücre zarlarında bulunan reseptörlere tutunur ve onları yok etmeye başlar veya savunma sisteminizin bu bakterileri daha kolay tanımasını sağlar. Ancak bakteriler, çok hızlı üreyen canlılar oldukları için ve hem üreme sırasında, hem üreme sonrasında prokaryotik yapıda olmalarından ötürü mutasyonlara çok açık olmalarından dolayı genetik yapıları çok hızlı değişebilmektedir; yani çok hızlı evrim geçirebilmektedirler. Bu sebeple kimi zaman, erkenden öldürülmezlerse, bireyin vücudu içerisinde üreyen bu bakterilerin reseptörleri değişim geçirir (genleri değiştiği için). Bu yüzden de antibiyotikler bu bakterileri öldüremez, çünkü tanıyamazlar. İşte tam olarak bu sebeple, hastalığın tesbitinden sonra en azından yaklaşık 5 gün boyunca, günde bir veya birkaç defa (doktorun reçetesine bağlı olarak) antibiyotik alınır ve bu bakteriler hemen, çok fazla bölünmelerine ve üremelerine izin vermeden öldürülmeye çalışılır. Bu müdahale geciktiği sürece, bakterilerin reseptörleri evrimsel süreçlerle farklılaşır. Antibiyotiğin kullanımı sırasında, ilk 2-3 gün, antibiyotiğin içerisindeki kimyasalın doğrudan tanıdığı bakteriler öldürülür -ki bunlar, genelde patojen (hastalık yapıcı) bakterilerin büyük bir kısmını oluşturur. Bu sebeple bu 2-3 günlük kullanım sonrasında hasta kendini iyi hissedebilir. İşte bu sırada ilaç kesilecek olursa ve savunma sistemine ek yardım ortadan kaldırılırsa, ilacın ilk etapta yok edemediği daha dirençli varyasyonlar (Evrimsel çeşitlilikten ötürü) hızla yeniden çoğalmaya başlarlar. Bu defa vücudu kuşatan popülasyon, ilaçtaki kimyasallara daha dirençli olan popülasyon ve torunları olacaktır. Yine ilaç alınır ve yine kullanım süresinden önce kesilirse, yine göreceli olarak dirençli olanların ölümü sağlanmadan kesilmiş olur ve giderek daha dirençli bakteriler hayatta kalır ve çoğalırlar. Bu konu, her zaman bilim düşmanları tarafından çarpıtılır ve sanki mutasyonların doğrudan faydalı etkisiyle bakteriler bir anda antibiyotik direnci kazanmışlar gibi lanse ederler. Halbuki bakterilerdeki bu çeşitliliğe çoğu zaman mutasyonlar katkı sağlasa da, diğer tüm çeşitlilik mekanizmaları da katkı sağlamaktadır.
Sineğin şiddetli rüzgârlar bulunan adalarda sağ kalma yeteneğini geliştirmektedir. Bu on yıllarca laboratuvarda radyasyona tutulan Drosophila’nın niye sadece daha az uygun mutantlar verdiğini açıklar: Bir popülasyonun normal çerçevesinde bütün mutasyonlar zararlı olmalıdır; çünkü popülasyon zaten ortamına son derece iyi uyum göstermiştir. Fakat organizmanın doğal ortamında zararlı olan mutasyonlar, bir popülasyonun coğrafi sınırlarında veya coğrafi ölçeğin tamamında oldukça büyük bir çevre değişikliği sonucunda (bir hortum bir adadaki bütün kanatlı Drosophila’ları ortadan kaldırabilir) faydalı bir hale gelebilir. Bu aynı zamanda evrimin niye jeolojik bir zaman ölçeğinde kesikli bir biçimde gerçekleşmesi gerektiğini de kısmen açıklar.
Sitrik asit tüketmeye başlayan bakteriler
Tüm Reklamları Kapat
Her ne kadar deneyde 12 soy hattının hiçbiri yok olmadıysa da, bunlardan 4'ünde DNA tamiri konusunda zararlı mutasyonlar meydana geldi. Bu oldukça ilginç bir sonuçtur, çünkü DNA tamirinin düzgün yapılamıyor olması, ilk bakışta son derece tehlikeli gözükmektedir. Ne var ki bu durum bile evrim tarafından avantajlı hale dönüştürülebilmektedir. Örneğin bu 4 soy hattında DNA tamirinin bozulması, bu nesillerde çok daha fazla mutasyon meydana gelmesine sebep oldu. Hatta öylesine hızlı mutasyonlar meydana geliyordu ki, bir gen bir mutasyon nedeniyle bozulsa da, yeni bir mutasyonla eski haline dönebiliyordu! Lenski, 20.000 nesil sonunda toplamda yüz milyonlarca nokta mutasyonu meydana geldiğini; ancak bunların 10 ila 20 tanesinin popülasyon içerisinde fayda sağladığı için sabitlendiğini ve toplamda, nötr mutasyonlarla birlikte kolonilerde 100 mutasyonun sabitlendiğini (popülasyon için norm haline geldiğini) tespit etmiştir. Bir diğer deyişle, zararlı mutasyonların hepsi, hızla popülasyondan elenmiştir.
2008 yılında ise Lenski ve arkadaşları çok daha ciddi, önemli ve heyecan verici bir adaptasyon keşfettiler. Bu adaptasyon, 12 popülasyondan sadece 1'inde meydana gelmişti: Bir soy hattındaki E. coli bakterileri, oksijenli ortamda olmalarına rağmen sitrat moleküllerini hücre içerisine alıp sindirerek enerji üretmeyi başaracak şekilde evrimleştiler!
20.000'inci nesilden önce aldıkları hiçbir bakteri, sitratı oksijenli ortamda sindirme özelliği evrimleştiremiyordu. Dolayısıyla 20.000'inci nesil civarında meydana gelen bir diğer mutasyon, sitratın sindirimine neden olan ikincil mutasyonun meydana gelme şansını arttırıyor olmalıydı. Gerçekten de, yaptıkları daha detaylı araştırmalar sonucunda deneyin başlangıcından 20.000 nesilden sonra meydana gelen bir ön-faydalı-mutasyonun sitrat sindirimine neden olan mutasyonu tetiklediğini keşfettiler.
Bu, şu demektir: Bu mutasyon, sitratı sindirebilmeye sebep olan ikinci mutasyonun gerçekleşme şansını arttırmaktadır. Dolayısıyla bu ilk mutasyonu geçiren bireyler, sitratı oksijenli ortamda da kolayca sindirebilmelerine sebep olacak mutasyona da açık olmaktadırlar. Ancak bu ilk mutasyona sahip olmayan bireylerin, tek seferde bu ana mutasyona ulaşmaları o kadar düşük bir ihtimaldir ki, hiçbir zaman gerçekleşmez. Ancak bir kere ilk mutasyon gerçekleşti mi, devasa önemdeki bir olayın gerçekleşmesini sağlayan ikinci mutasyon kolayca gerçekleşebilmektedir.
Lenski burada da durmadı ve sitrat sindiriminin evrimleştiği soy hattındaki (Ara(-)3 soy hattı) fosil kayıtlarındaki farklı zaman dilimlerinden aldıkları 29 bakterinin genomlarını tamamiyle, baştan sona diziledi. Daha sonra, bu canlıların evrimsel tarihini ortaya döktüler ve filogenetik bir harita (bir "Evrim Ağacı") oluşturmayı başardılar. Cit(+) adı verilen, oksijenli ortamda da sitratı sindirebilen bakteriler, bu filogenetik haritadaki 3 kladdan (alttür grubundan) sadece bir noktada evrimleşmişti (buna "Klad 3" adını verdiler). Bu araştırma, daha da ilginç bir sonucu doğurdu: Aslında sitrat sindirimini mümkün kılan mutasyonun şansını arttıran mutasyon, diğer 2 kladda da bulunuyordu. Fakat sitrat sindirimi sadece 3. kladda evrimleşiyordu. Daha dikkatli bir inceleme, aslında bu söz konusu özelliği ortaya çıkaran mutasyonun öncülü olan 1 değil, 2 farklı mutasyon olduğunu ortaya koydu. Yani oksijenli ortamda sitrat sindirme yeteneğini kazandıran mutasyon, kendinden önce gelen 2 mutasyon sayesinde hızla ortaya çıkabiliyordu. Bu durum, nötral mutasyonların bir araya gelerek evrime yön verebileceğine dair harika bir örnek teşkil etmektedir.
Prof. Richard Lenski’nin, laboratuvarda gözlenmiş bir mutasyonu tarif eden “uzun vadeli evrim deneyi: Bu deneyde, özetle, başlangıçta ortamdaki sitrik asiti enerji kaynağı olarak kullanamayan bakteriler, hiçbir müdahale altında kalmadan, kendiliğinden mutasyon geçirerek bu maddeden istifade edebilir hale geldi.
Bu deney 1988 yılında, 12 özdeş Escherischia coli (koli basili) ekiniyle başlatıldı, yani bakteri deney boyunca bir deney tüpünün içinde, kendisine uygun bir ortamda yetiştirildi. Her gün (yani 6-7 nesilde bir), eldeki bakterilerin yüzde onu yeni bir tüpe aktarılırken, geri kalan yüzde doksanı çöpe atıldı. Yalnız her 500 nesilde bir, normalde çöpe gidecek bu yüzde doksanlık kısım derin dondurucuya kondu. Bakterileri donuk şekilde saklamak, gerektiğinde çözüp üzerinde tahlil yapmak mümkün olduğundan, bakterilerin zaman içinde bir arşivi tutulmuş oldu. Deney boyunca bu bakteriler, içinde az miktarda glukoz ve bol miktarda sitrik asit bulunan sıvı ortamda yetiştirildiler, ancak sitrik asiti kullanma imkânları olmadığından yalnızca glukozla idare ettiler. Ne var ki, 33.127 nesil sonra tüplerin birindeki bakterilerin birden bire sitrik asiti kullanmaya başladıkları fark edildi. Bunun üzerine araştırmacılar donuk bakteri arşivlerini açıp önceki nesillerden bakterileri inceleyince gördüler ki sitrik asiti kullanabilen bakteriler yaklaşık 31.500’üncü nesilde ortaya çıkmış, ve sayıları biraz dalgalanıp 33.127’inci nesilde patlamış. Bu dalgalanmaları, bu bakterilerde tek bir mutasyonun değil, birden çok mutasyonun bu yeni beceriyi sağladığına yoruyorlar.
Bakterilerin yaşadığı fiziki şartlar deney boyunca sabit olduğundan ve bu bakterilere yatay gen aktarımını engellemek için hareketli genlerden arındırılmış ortamlar kullanıldığından, bu sitrik asit kullanma becerisinin kendiliğinden meydana gelen mutasyonlara bağlı olduğundan eminler.
Lenski ve meslektaşları şimdi bu sitrik asiti kullanma becerisinin tam olarak hangi genlerdeki mutasyonlara bağlı olduğunu ve bu genlerin hangi hücresel düzenekler yoluyla yarar sağladığını araştırıyorlar.
Bulundukları zeminin rengine uyum sağlayan fareler
Tüm Reklamları Kapat
Görsel 1. Hoekstra ve ekibi, aynı türden ama farklı renk tüy taşıyan farelerdeki yararlı değişinimi tanımladı. Bu fotoğrafta fareler doğadakine zıt zemin üzerinde görülüyor. (Fotoğraf: Emily Key)
Araştırma, ABD’deki bir kumulda ve etrafındaki toprak bölgede yaşayan fareler (Peromyscus maniculatus) üzerinde yapıldı . Bu farelerden, açık renkli kumul üzerinde yaşayanların açık renkli tüylere, koyu renkli topraklarda yaşayanların ise koyu renkli tüylere sahip olduğunu gören Dr. Hopi Hoekstra ve meslektaşları, bu durumun farelerin yırtıcı kuşlardan gizlenmelerini sağladığını ve dolayısıyla bu uyumun yararlı bir mutasyonun ürünü olduğunu öngördüler. Bunu sınamak için bu farelerin kalıtım bilgisini incelediklerinde, bu uyumdan tek bir gendeki (Agouti) mutasyonun sorumlu olduğunu buldular. Yaptıkları topluluk kalıtımı hesaplamaları bu mutasyonun bundan 4.000 yıl önce meydana geldiğini gösterdiği için, ve yerbilimsel çalışmalar bu coğrafi bölgenin 8.000-10.000 yıl önce oluştuğunu gösterdiği için, bu mutasyonun farelerin buraya göç etmesinden sonra meydana geldiği sonucuna vardılar.
Hoekstra ve ekibi bu mutasyonun etki şeklini de açıklığa kavuşturdu: Mutasyon, genin protein kodlayan kısmında değil, o proteinden ne kadar üretileceğini belirleyen kısmında meydana geldi. Yani fare aslında tamamen aynı proteinleri üretiyor ama daha fazla ürettiği için koyu renkli pigment (tüylere rengini veren madde) azalıyor ve tüyler daha açık renkli oluyor. Hoekstra’nın öğrencileri şimdi bu değişimlerin DNA’nın tam olarak neresinde meydana geldiğini bulmaya çalışıyor.
Lucilia cuprina türü sineklerin zehire karşı dirençleri
Tüm Reklamları Kapat
Lucilia cuprina türü sineklerin, zehire karşı dirençleri, bir nokta mutasyonuna bağlıdır. Bu zehir, asetilkolinesteraz adlı enzimi hedef alır, ona bağlanır ve onu görevini yerine getirmekten alıkoyar. Asetilkolinesteraz enziminin bu sinekteki karşılığı E3 üzerinde çalışan araştırmacılar, bu enzimden sorumlu olan geni incelediklerinde, beş ayrı nokta mutasyonu saptadılar. Bunlardan hangisinin veya hangilerinin bu dirençten sorumlu olduğunu araştırırken, ipucu, aynı direnci gösteren başka bir sinek türünden (Torpedo californica) geldi: Bu sinekler aynı direnci, bu beş mutasyondan yalnızca biri ile elde etmişlerdi. Ayrıca, ancak bu mutasyonla etkilenen amino asit, enzimin işlevini değiştirebilecek bir noktada yer alıyordu. Bunun üzerine araştırmacılar bu mutasyonlarla meydana gelen enzimlerden hangisinin organofosfatları parçalayabileceğini incelediler ve öngördükleri sonucu elde ettiler: Enzimin 137’nci amino asiti glisinden aspartik asite dönüşmüş, bu da GGT diziliminin GAT’ye dönüşmesiyle olmuştu . Ve bu mutasyon, bu enzime, kendini etkisizleştiren zehiri parçalama özelliği kazandırmıştı. Yani tek bir bazın değişimi, bu sinekleri ölümden kurtarmıştı.
Akdeniz Kansızlığı (=Thalasemi, AK) ve sıtmaya yakalanmayan bireyler
Bir kromozomda belirli bir genin iki kopyası (alel) bulunur. Akdeniz kansızlığı hastalığı, ilgili genin her iki aleli de mutasyon gerirmişse meydana gelir. Bu kişilerde alyuvarlardaki hemoglobin molekülü görevini yerine getiremez.
Görsel 2. Akdeniz kansızlığı geninin iki kopyasını taşıyan bireyler (kırmızı) bu hastalığa yakalanırken, tek kopyasını taşıyan bireyler (mor) Akdeniz kansızlığına yakalanmadan sıtma hastalığına karşı direnç kazanırlar. (Wikipedia’dan Türkçeleştirilmiştir.)
Tüm Reklamları Kapat
Bir mutasyona uğramış, bir normal alel taşıyan bireyler ise, AK’na yakalanmadıkları gibi, sıtma hastalığına karşı başka insanlarda görülmeyen bir direnç kazanırlar. Peki bu direnç nasıl oluşur? Bazı uzmanlar, AK genini taşıyan bireylerde sıtma mikrobunun ya daha az çoğalma fırsatı bulduğunu ya da içinde yuvalandıkları arızalı alyuvarların dalakta parçalanmasıyla öldürüldüklerini düşünüyorlar. Bunun nasıl olduğuna henüz kesin bir açıklama getirilmemiş olsa bile, bu mutasyonun yararlı etkisi ortada: Sıtmanın çok görüldüğü bölgelerdeki AK oranının, sıtmanın görülmediği bölgelere göre yüksek olduğu biliniyor. Belli ki sıtmaya yakalanmaktan koruyan bir gen, belirli şartlarda zararlı olmasına rağmen, sıtma karşısında yarar sağladığı için o canlıda barınabiliyor.
Naylon lineer oligomer hidrolaz enzimi
George Bakken tarafından hazırlanan şu rapora bakalım : "Mikroorganizmalar doğada hiçbir zaman oluşmayan toksik sanayi atıklarını (yani klorlanmış ve florlanmış hidrokarbonları) metabolize edecek yeni enzimler edinmişler ve bizlere kirliliği kontrol etmede önemi gittikçe artan yöntemler sunuyorlar.Susumi Ohno, çerçeve kayması mutasyonu sonucu oluşan böyle yeni bir enzim buldu: Naylon lineer oligomer hidrolaz. Çerçeve kayması mutasyonları genin tüm yapısını değiştirir; bu yüzden de ortaya çıkan enzim rasgele oluşmuş bir enzim oluyor! Bekleneceği gibi, bu yeni enzim kusursuz değil ve tipik bir enzimin sadece yüzde biri kadar etkin, fakat önemli olan çalışıyor olması".
Ohno tarafından belgelenen mutasyon, mikroorganizmaların adı geçen kısa naylon oligomerlerini birincil besin kaynağı olarak kullanmasını sağladığı için,rahatlıkla faydalı bir mutasyon olarak adlandırılabilir.Edinilen bu yeni metabolik etkinliğin laboratuvar ortamında tekrarlandığını bilimek ilginç. (Her ne kadar aynı tür mikroorganizmaların,aynı çerçeve kayması mutasyonunu veya aynı enzimin söz konusu olup olmadığı belli olmasa da) Richard Harter şuna dikkat çekmekte: "Deneylerde,naylonu metabolize edemeyen Pseudomonas suşları birincil besin kaynağı naylon oligomerleri olan bir ortamda büyütülmüş,naylonu sindirebilen bir metabolizma geliştirebilmişlerdir."
Tüm Reklamları Kapat
Beş Parmak
Günümüzdeki karasal omurgalıların çok büyük bir kısmının uzuvlarında 5 parmak bulunur; çünkü denizlerden karalara çıkan ilk dört ayaklıların (tetrapodların) uzuvlarında 5, 6, 7, hatta 8 parmak bulunmaktaydı; ancak bunlardan 5 parmaklı olanlar en fazla biyomekanik avantaja sahip olarak günümüze kadar var olmayı başardılar. Dolayısıyla biz de bu 5 parmaklılığı, o avantajlı atalarımızdan miras aldık. Yani atalarımıza 5 parmaklı olmayı veren mutasyon faydalı bir mutasyondu ve günümüze kadar ulaştı!
E. coli Bakterisinde Laktoz Kullanımı
E. coli bakterisi normal olarak laktozu parçalayamaz (laktoz intoleransı). Ancak Boston Üniversitesi'nden Prof. John Cairns ve ekip arkadaşlarının yaptıkları ve New Scientist dergisinde yayınlanan bir çalışma sonucu, Mu isimli bir bakteriyofaj (bakterileri enfekte eden bir virüs) kullanılarak genetik materyalde bulunan beta-galactosidase geninde meydana getirilen bir mutasyon sayesinde bakterilerin laktozu sindirebilmeye başladıkları ortaya çıkmıştır. Daha sonradan farklı yöntemlerle benzer deneyler tekrarlanmış ve aynı sonuçlara ulaşılmıştır. Bu da bakteriler açısından bir faydalı mutasyon örneği olarak karşımıza çıkmaktadır.
Tüm Reklamları Kapat
Orak Hücre Anemisi
Orak hücre anemisi, çoğumuzun bildiği üzere, vücudumuzda oksijen taşıyan hemoglobin molekülünde meydana gelen bir nokta mutasyon sonucunda, beta-globin genindeki tek bir Adenin'in Timin'e dönüşmesi sonucunda meydana gelir. Buna Tek Nükleotit Çokbiçimliliği (Single Nucleotide Polymorphism - SNP) denir. Bu mutasyon sonucu 6. pozisyondaki Glutamik Asit isimli bir aminoasit, Valine isimli bir diğerine dönüşür. Ancak ilginç bir şekilde, bu genetik bozukluğa heterozigot olarak sahip olan Sahara Altı Bölge'deki bireylerin, dişi sivrisinek ile taşınan sıtma (malaria) hastalığına dirençli oldukları keşfedilmiştir. Bu da faydalı mutasyonlara örnektir.
Bazı bilim düşmanı evrim karşıtları bu konuyu "faydalı mutasyonlar"dan saymamakta ısrar etmektedirler, çünkü orak hücre anemisinin yeterince kötü bir hastalık olduğunu, dolayısıyla sıtmaya engel olsa da bir şeyi değiştirmeyeceğini ileri sürerler. Bu, onların ne kadar bilimden uzak bir yaşam görüşü olduklarını göstermektedir. Elbette ki orak hücre anemisi kötü bir durumdur, bir hastalıktır, tereciye tere satmaya çalışmanın anlamı yok, bunu herkes biliyor. Ancak bu hastalığa tarafsız olarak bakıldığında ve doğrudan etkileri incelendiğinde, sıtma gibi bir hastalığa yaklanmaya engel olduğu görülmektedir. Üstelik sıtma, Afrika'daki ilaç bulamayan insanlar için orak hücre anemisinden çok daha ölümcüldür. Kaldı ki burada mutasyonun etkileri incelenmektedir ve bu mutasyon, zaten bir olumsuzluk doğurmaktadır; ancak öte yandan faydalı bir etkisi de vardır, ölüm sürelerini sayısal olarak düşürmektedir.
E. coli Bakterilerinde Sıcaklık Değişimine Bağlı Evrim
Tüm Reklamları Kapat
Bennett, Mittler ve Lenski'nin Evolution dergisinde yayınladıkları bir araştırmaya göre araştırmacılar 2.000 nesil boyunca 37 santigrat derecede yaşamaya uygun E. coli bakterisi yetiştirmişlerdir. Daha sonra bu popülasyondan 3 örnek popülasyon alınıp 32 derecede, 37 derecede ve 42 derecedeki ortamlara yerleştirilmiş ve bir 2.000 nesil daha geçmesi beklenmiştir. Bu nesillerin adaptif başarıları (evrimsel değişimleri) sürekli takip edilmiştir. İlk anda 32 dereceye bırakılan nesle göre, 2.000'inci nesil %10 daha adaptif başarıya sahip bireylerden oluşmuştur, yani popülasyon içerisinde yeni sıcaklığa yönelik bir evrim süreci gerçekleşmiştir. Benzer şekilde, 42 dereceye bırakılan ilk nesle göre, 2.000'inci nesil %20 daha başarılıdır. 37 derecede bırakılan bireylerde hiçbir adaptif değişim gözlenmemiştir. Bu durumun nesiller içerisinde meydana gelen mutasyonlara bağlı bir çeşitliliğin seçilmesinden ve birikmesinden kaynaklandığı tespit edilmiştir. Bu da faydalı mutasyonlara bir örnektir.
E. coli Bakterisinde Her 26 Mutasyondan 3'ü Faydalıdır!
Bilindiği gibi canlılarda mutasyonları değil de, etkilerini gözlemek çok zordur, çünkü çok uzun sürede, yüzlerce, binlerce, on binlerce nesil sonra etkileri görülebilir. Bu sebeple bakteri, alg ya da mantar gibi canlıları denek olarak kullanmak iyidir, çok hızlı ürerler ve nesilleri çok hızlı geçer, en azından bizimkine göre çok daha hızlı. İşte Lenski ve Remold, PNAS dergisinde 2001 yılında yayınladıkları bir makalede, E. coli bakterileri üzerinde yıllar yılı yaptıkları araştırmaların sonuçlarını yayınladılar ve bütün detaylarıyla verilen genetik araştırmaların, her 26 mutasyondan en azından 3 tanesinin nesle doğrudan faydalı bir etki yarattığı gösterilmiş oldu. Bu da %12'lik bir dilim demektir. Bu, bizlerin yukarıda tanımladığı yüzdelerin gerçekte daha da iyimser olabileceklerini göstermektedir. Hatırlayacak olursanız mutasyonların %70-90'ı nötr, %8-9'u ani zararlı, %1-2'si ani faydalı olarak tanımlanmıştı. Ancak bu araştırmada, faydalı mutasyonların oranının %12'ye kadar çıkabildiği gözlenmiş, geri kalan mutasyonların 20-21'inin nötr (yaklaşık %81'i), geri kalan %7 civarı da zararlı olduğu gösterilmiştir. Bunlar, mutasyonların düşündüğümüz kadarıyla zararlı veya nötr olmayabileceğini net bir şekilde ortaya koymaktadır.
PCB isimli bir kimyasal madde balıkları zehirlemesiyle meşhurdur. PCB maddesi hücredeki AHR-2 reseptörüne bağlanarak işlemi başlatır. Üzerine PCB bağlanan reseptör de DNA'yı gereksiz yere aşırı uyararak toksik yanıta neden olur. Ama AHR-2 reseptörünün PCB maddesine bağlandığı bölgeyi bozan bir mutasyon balığın hayatını kurtarır. PCB reseptöre bağlanamaz, reseptör de gidip DNA'yı uyaramaz ve balık hayatta kalmayı başarır.
Tomcod balıklarını inceleyen bilim insanları, PBC kimyasalıyla kontamine olmuş Hudson Nehri'ndeki balıklarda AHR-2 proteinin 2 aminoasidinin silinmiş olduğunu gördüler. Bu nasıl olmuştur? Rastgele mutasyonlar AHR proteinini değiştirmişlerdir, 2 aminoasidini silmişlerdir ve PCB'ye bağlanamayan bir protein varyantı oluşmuştur. Dünya'nın hemen her yerinde Tomcod balıkları PCB'ye maruz kalmaları halinde hemen ölüyorlar ama Hudson popülasyonundaki bu silinme mutasyonu sayesinde Hudson'daki balıklar zehir içinde rahatça yaşıyor.
100 sene kadar önce PCB yokken nehirdeki balıkların hepsi bu kimyasala duyarlıydı. Şimdi ise %95'inden fazlası dirençlidir. Yani rastgele mutasyon hayatta kalma ve üreme hızını artırdığı için popülasyon içindeki temsil oranını yükseltti. Kısaca bu da bir faydalı mutasyon örneğidir.
Mycobacterium tuberculosis'te 16 Kat Bakteri Direnci!
Tüm Reklamları Kapat
MIC, bir bakteri popülasyonunun %99'undan fazlasının çoğalmasını durdurmak için verilmesi gereken antibiyotik miktarı olarak tanımlanır. Dolayısıyla araştırmalarda, bir bakterinin direncini MIC'ye bakarak ölçebiliriz. Mycobacterium tuberculosis türü bakterisinde bulunan GidB geninin mutasyonlar sonucu silinmesi (delesyonu), bakterilerin streptomisin içerikli antibiyotiklere direncini tek bir seferde 16 katına çıkarmaktadır! Bu, faydalı mutasyonlara güzel bir örnektir.
Sonuçtan emin olmak için kromozomal gidB geni silinmiş bu bakteri suşuna plazmideklonlanmış bir GidB geni dışarıdan verilmiştir ve direnç anında, tamamen kaybolmuştur. Böylece GidB delesyonunun, yani tek bir mutasyonun, doğrudan faydalı sonuç verdiği ve direnci 16 kat (%1600) kadar devasa miktarda arttırabildiği kanıtlanmıştır. Bu gen üzerinde meydana gelebilecek yüzlerce potansiyel çerçeve kaydırıcı mutasyon, direnci 16 katına çıkarma şansına sahiptir.
4,858 görüntülenme
Kaynaklar
Kozmopolit Aydınlar. Faydalı Mutasyon Kavramı Ve Örnekleri. (10 Mart 2012). Alındığı Tarih: 19 Nisan 2020. Alındığı Yer: Evrim Teorisi Online
| Arşiv Bağlantısı
Bilim ve Gelecek Ekibi. Mutasyonlar Zararlı Mıdır, Evrime Engel Midir?. (16 Temmuz 2019). Alındığı Tarih: 19 Nisan 2020. Alındığı Yer: Bilim ve Gelecek
| Arşiv Bağlantısı
B. Kılıç. Faydalı Mutasyonlardan Biri: Naylon Lineer Oligomer Hidrolaz Enzimi. (7 Mart 2011). Alındığı Tarih: 19 Nisan 2020. Alındığı Yer: baharkilic.org
| Arşiv Bağlantısı
Ç. M. Bakırcı. Mutasyon Nedir?. (31 Mayıs 2011). Alındığı Tarih: 19 Nisan 2020. Alındığı Yer: Evrim Ağacı
| Arşiv Bağlantısı
Ç. M. Bakırcı. Faydalı Mutasyonlar Ve Tasarım İllüzyonu: Evren'deki Her Şey İnsanlar İçin Mi Var?. (29 Mayıs 2019). Alındığı Tarih: 19 Nisan 2020. Alındığı Yer: Evrim Ağacı
doi: 10.47023/ea.bilim.817.
| Arşiv Bağlantısı
Ç. M. Bakırcı. Deneysel Evrim: Lenski'nin Uzun Dönem ''E. Coli'' Deneyi. (17 Ağustos 2011). Alındığı Tarih: 19 Nisan 2020. Alındığı Yer: Evrim Ağacı
| Arşiv Bağlantısı
Bu cevabın içeriği ve doğruluğu, Evrim Ağacı editörleri tarafından kontrol edilmiş ve onaylanmıştır.
4
0
Paylaş
Alıntıla
Alıntıları Göster
Dış Sitelerde Paylaş
Raporla
Mantık Hatası Bildir
Daha Fazla Cevap Göster
Cevap Ver
Giriş Yap ve Cevap Ver
Evrim Ağacı Soru & Cevap Platformu, Türkiye'deki bilimseverler tarafından kolektif ve öz
denetime dayalı bir şekilde sürdürülen, özgür bir ortamdır. Evrim Ağacı tarafından
yayınlanan
makalelerin aksine, bu platforma girilen soru ve cevapların içeriği veya gerçek/doğru
olup
olmadıkları Evrim Ağacı yönetimi tarafından denetlenmemektedir. Evrim Ağacı, bu
platformda
yayınlanan cevapları herhangi bir şekilde desteklememekte veya doğruluğunu garanti
etmemektedir. Doğru olmadığını düşündüğünüz cevapları, size sunulan denetim araçlarıyla
işaretleyebilir, daha doğru olan cevapları kaynaklarıyla girebilir ve oylama araçlarıyla
platformun daha güvenilir bir ortama evrimleşmesine katkı sağlayabilirsiniz.
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim
Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç
katın.
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
2024 yılında da Evrim Ağacı'nın bilim ailesinin bir parçası olmaya hazır mısınız?
Bu yıl sayfamızda gezdiniz.
Evrim Ağacı olarak, 2024 yılında da Türkiye'de bilim iletişimini daha da genişletmek istiyoruz. Ancak bu hedefe ulaşabilmek için sizin gibi bilimseverlerin maddi desteğine ihtiyacımız var. Reklamlar yeterli değil! Dolayısıyla sadece sizin katkılarınızla Türkiye'nin en büyük bilim platformunu daha da ileriye taşıyabiliriz. 2024 yılında da bize destek olarak bu yolculuğumuza ortak olabilirsiniz. Tek seferlik destek olun veya daha iyisi, aylık destekçilerimiz
arasına şimdi katılın.
“Her kim olursa olsun, hayatında iyi bir romanın tadına hiç varmamış biri, dayanılmaz derecede aptal olmalıdır.” Jane Austen
Bilim İçin 30 Saniyeniz Var mı?
Evrim Ağacı, tamamen okur ve izleyen
desteğiyle sürdürülen, bağımsız bir bilim oluşumu.
Ücretsiz bir Evrim Ağacı üyeliği oluşturmanın çok sayıda
avantajından
biri, sitedeki reklamları %50 oranında azaltmak (destekçilerimiz arasına katılarak
reklamların %100'ünü kapatabilirsiniz). Evrim Ağacı'nda geçirdiğiniz zamanı
zenginleştirmek için, sadece 30 saniyenizi ayırarak üye olun (üyeyseniz, giriş
yapmanızı tavsiye ederiz).