Gece Modu

Bu yazı, Minute Physics isimli kaynaktan birebir çevrilmiştir. Çevirmen tarafından, metin içerisinde (varsa) açıkça belirtilen kısımlar haricinde, herhangi bir ekleme, çıkarma veya değişiklik yapılmamıştır. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Kara delikler kütlesi çok fazla olan astronomik nesnelerdir, bu da onlara birçok ilginç özellik verir. Ama kara deliğin oluşması için sadece kütle yeterli değildir. Çok yüksek bir yoğunluk gerekir, çok fazla kütlenin küçük bir hacme sıkışması yani. Tam olarak ne kadar kütlenin ya da hacmin gerektiği duruma göre değişir.

Kara deliğin oluşumu karmaşıktır, ama esasen iki olası yol vardır: Belli bir kütleyle başlayıp onu belli bir kritik noktaya kadar sıkıştırabilirsiniz, böylece bir kara delik oluşturacak denli bir yoğunluğa ulaşırsınız. Ki süpernovalar, süperdev yıldızların çekirdeklerini kara deliğe bu şekilde dönüştürürler. Ya da belli bir cisme kritik noktaya ulaşıncaya değin kütle eklemeye devam ederiz ki kara deliğe dönüşebilsin. Örneğin, iki nötron yıldızı birleşerek bir kara delik oluşturabilir.

Sadece iki şeyi bilerek bu kritik noktalar ile ilgili hesaplamalar yapabilirsiniz: Kara deliğin Schwarzchild yarıçapına yönelik bir denklem ile küresel bir cismin kütlesine dair bir denklem.

MinutePhysics, bu harika videosunda, karadeliklerin oluşması için gerekli olan kütleyi ve bu kütle sonucunda oluşan karadeliğin olay ufkunu belirleyen Schwarzschild yarıçapını anlatıyor. İyi seyirler.

Schwarzschild yarıçapı bir kara deliğin merkezine olan uzaklıktır ve bu mesafenin altında kalan hiçbir şeyin, ışığın bile, kurtuluşu yoktur. Büyüklüğü, sadece kara deliğin kütlesine bağlı olan "olay ufkunu" duymuş olmalısınız; Buradaki G ve (c2) sabitleri kilogramdan metreye dönüşüm yapmamıza yardım eden sabitlerdir. Yani denklem 1.49*10-27 kere kütle şeklinde de yazılabilir.

Önemli nokta şu ki, kara deliğin kütlesi ne kadar büyükse Schwarzschild yarıçapı da o kadar büyüktür. Bu arada, Schwarzschild Almanca'da "kara kalkan" anlamına geliyor. Adının kara deliklerin olay ufkuna verildiği bir fizikçiye (Karl Schwartzschild) ne kadar da yakışan bir isim!

Şimdi bu denklemi diğer cisimlerin Schwarzschild yarıçaplarını hesaplamak için kullanalım. Güneş'in Schwarzschild yarıçapı yaklaşık 3 km, Dünya'nın Schwarzschild yarıçapı yaklaşık 1 cm, ve bir kedinin Schwarzschild yarıçapı ise 0,01 yoktometre civarında. Bir insanı karadeliğe dönüştürmek içinse bir protonun 10 milyarda birine denk gelecek kadar sıkıştırmak gerekirdi!

Peki bunlar ne anlama geliyor? Aslında hiçbir şey, çünkü ne Güneş ne Dünya ne de kedi birer kara deliktir.

Ama...

İlkesel olarak, Schwarzschild yarıçapına kadar sıkıştırılan herhangi bir cisim kara deliğe dönüşür. Dünya'yı gerçekten bu büyüklüğe kadar sıkıştırmayı hayal etmek hayli zor; ama süper dev yıldızlar öldüklerinde, süpernova patlamaları o kadar güçlüdür ki yıldızların zaten yoğun olan çekirdeklerini daha da sıkıştırabilirler, böylece Schwarzschild kritik noktası aşılır ve kara delik oluşur. Diyelim ki süpernova derecesinde sıkıştırma gücünüz yok. Onun yerine, cisme kütle ekleyerek de kara delik oluşturabilirsiniz. Aradığınız denklem burada: Küresel bir cismin kütlesi, yoğunluğu ile hacminin çarpımına eşittir. Biraz düzenleyince görürüz ki denklem, bir kürenin yarıçapının kütlesinin küp kökü ile orantılı olduğunu söylemekte.

Bir cismin Schwarzschild yarıçapı cismin kütlesiyle doğru orantılı, küp kök kat sayısı yok yani. Diğer bir deyişle, cismin kütlesi artarken Schwarzschild yarıçapı cismin yarıçapından daha hızlı artar. Kütle iki katına çıkarken Schwarzschild yarıçapı iki katına, cismin yarıçapı ise sadece 1.26 katına çıkar. Schwarzschild yarıçapının ilk başta çok çok küçük bir büyüklükte olduğunu hatırlayalım. Tüm cisim Schwarzschild yarıçapının içine sığana kadar da pek bir şey ifade etmiyor aslında.

Ama şu matematiksel olarak kesindir ki düz çizgiler küp kökleri önünde sonunda yakalar. Yani sadece Dünya'ya daha fazla kütle eklemeliyiz. En sonunda da kendi Schwarzschild yarıçapıyla kesişip bir kara delik haline çöker!

Dünya'nın Schwarzschild Yarıçapı 9 milimetre kadardır. Eğer ki o çapa kadar sıkıştırılacak olsaydı, gezegenimiz de bir karadeliğe dönüşebilirdi. Normalde karadelikler, çok büyük kütleli bazı yıldızların çok küçük bir hacme sığacak biçimde
Dünya'nın Schwarzschild Yarıçapı 9 milimetre kadardır. Eğer ki o çapa kadar sıkıştırılacak olsaydı, gezegenimiz de bir karadeliğe dönüşebilirdi. Normalde karadelikler, çok büyük kütleli bazı yıldızların çok küçük bir hacme sığacak biçimde "içe çökmesi" sonucu oluşurlar. Belli bir kütlenin karadelik oluşturabilmesi için sıkıştırılması gereken bu hacmin yarıçapına Schwarzschild Yarıçapı denir. Dolayısıyla kütlesi olan her cismin bir Schwarzschild Yarıçapı vardır; ancak yalnızca aşırı büyük kütleli cisimler pratik olarak bu yarıçapa ulaşana kadar "içe çökebilirler". Diğer cisimlerin bunu başarması pratik olarak imkansızdır.
NASA

Kayalara özgü yoğunluğuna sahip Dünya için bu kritik nokta yaklaşık 140 milyon kilometrededir. Güneş'e olan uzaklık kadar yani. Dürüst olmak gerekirse kaya, gerekli olan basınca dayanacak kadar sağlam değildir; bu nedenle, o kadar büyüyemeden çok çok önce muhtemelen nötron yıldızı haline gelirdik.

Nötron yıldızlarına baktığımızda kritik seviye sayıları bize şunu söylüyor: Nötron yıldızları Güneş kütlesinin 6 katından fazlasına ulaşıp 20km çapa erişirse kara deliğe dönüşebilir. Bu basitleştirilmiş bir denklemin basit bir sonucu sadece. Yani nötron yıldızlarının sabit bir yoğunluğu filan yok. Bununla birlikte, nötron yıldızlarına yönelik astronomik gözlem ve karmaşık teorik yaklaşımlar sonucu elde edilen tahmini kütle ve büyüklüklere oldukça yakın. Belki biraz hata payı olabilir.

Toparlarsak, eğer kedinizi kara deliğe dönüştürmek istiyorsanız iki seçeneğiniz var: Ya atom çekirdeğinin trilyonda biri büyüklüğüne değin sıkıştırın, ya da "Güneş'in ötesine değin" varan bir kedi kümesi oluşturun. Dünya örneğinde olduğu gibi "hemen hemen Güneş'e kadar" değil de "Güneş'in ötesine değin" dediğimi farketmişsinizdir. Çünkü kediler kayalar kadar yoğun değildir, yani kara delik oluşturmak için farklı bir kritik noktaya sahiptirler.

Bakalım Schwarzschild yarıçapını ve küre denklemlerini kullanarak aradaki bağıntıyı bulabilecek misiniz?

Destek Olun

Bu video, MinutePhysics tarafından hazırlanmış, Evrim Ağacı tarafından altyazılandırılmıştır. Eğer içeriği beğendiyseniz, orijinal kaynağa destek olmak için, lütfen YouTube kanalına gidip videolarını beğenmeyi unutmayın.

Minute Physics kanalının bu videosunu orijinal dilinde ve İngilizce alt yazılı olarak buradan seyredebilirsiniz:

Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 1
  • Tebrikler! 0
  • Bilim Budur! 3
  • Mmm... Çok sapyoseksüel! 2
  • Güldürdü 0
  • İnanılmaz 1
  • Umut Verici! 0
  • Merak Uyandırıcı! 1
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 16/12/2019 17:20:10 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/5417

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Soru Sorun!
Öğrenmeye Devam Edin!
Evrim Ağacı %100 okur destekli bir bilim platformudur. Maddi destekte bulunarak Türkiye'de modern bilimin gelişmesine güç katmak ister misiniz?
Destek Ol
Gizle
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“İnsan için ileri sürülen en iyi tanım "nankör iki ayaklı"dır.”
Fyodor Dostoevsky
Geri Bildirim Gönder