Rahip Kirkman'ın Kız Öğrenci Problemi: İkişerli Gruplar Halinde Birden Fazla Defa Yan Yana Gelmek İstemeyen 15 Öğrenci Nasıl Sıralanabilir?

Rahip Kirkman'ın Kız Öğrenci Problemi: İkişerli Gruplar Halinde Birden Fazla Defa Yan Yana Gelmek İstemeyen 15 Öğrenci Nasıl Sıralanabilir?
Çağrı Mert Bakırcı Editör Çağrı Mert Bakırcı
6 dakika
3,166 Okunma Sayısı
Notlarım
Reklamı Kapat

Lady's and Gentleman's Diary, Company of Stationers tarafından 1841 ile 1871 arasında yıllık olarak yayımlanan ve çoğunlukla okuyucularının ortaya çıkardığı problemlerden ve sonraki ciltlerde verilen çözümlerden oluşan, aynı zamanda kelime bulmacaları ve şiir de içeren bir matematik dergisiydi. Derginin genel merkezi Londra'da bulunuyordu.

Tarihler 1850’yi gösterdiğinde, kilisede bir rahip olan Thomas Kirkman, Lady's and Gentleman's Diary dergisine, basitmiş gibi duran bir problem gönderdi. Problem şöyleydi:

Bir okuldaki on beş kız öğrenci, arka arkaya yedi gün boyunca üç kişilik gruplar halinde yan yana yürüyecektir. Kız öğrencilerden ikisi yan yana iki kez yürümeyecek şekilde nasıl sıralayabiliriz?

Bu problemi bir kez okuyunca çok da zor olmadığı anlaşılıyor; ancak soru, görünenden çok daha zor. Çünkü deneyecek olursanı, henüz 3. ya da 4. günde kafaların karıştığı ve işin içinden çıkılamaz bir hal aldığını görmeniz olasıdır.

Problemin hem kısa olması hem de çok uğraş gerektirmesi, problemi popüler yapmıştı. Problem elbette eğlenceli; ancak bunun gibi problem türleri, bu tarz dergilerde oldukça fazla yayımlanmıştır, dolayısıyla burada sıra dışı bir durum yok. Ama bu problemi diğerlerinden ayıran, Kombinatoryal Tasarım Teorisi adı verilen bir matematik alanını başlatmış olmakla kalmayıp, o zamandan beri deney tasarımında, hata düzeltme kodlarında, kriptografide ve hatta piyangoda uygulama alanı bulmuş olmasıdır.

Reklamı Kapat

Peki bu problemin çözümü var mı? Varsa, bu ve buna benzer problemlerin genel bir çözümü var mı? Birlikte bakalım.

Problemin Çözümü

Elbette amatör veya profesyonel matematikçiler bu soruyla pek çok kez uğraştılar ve bunun sonucunda birden fazla çözüm bulmayı başardılar. Bu birden fazla çözüm belki normal geliyor olabilir; ancak sorunun birden fazla cevabı olduğunu hesaba katarsak, hem çözümler farklı hem sonuçlar farklı çıkabiliyor. Biz bu çözümleri size işin denklem ve üst düzey hesaplama kısmından bahsetmeden anlatmaya çalışacağız.

Çözüm 1

Problemi ilk okuduğunuzda kalem kağıt çıkarıp haftanın günlerine ve kişilere harfler vererek (ya da numaralandırarak) işe koyulmuşsunuzdur. Kesinlikle tam olarak biz de böyle yapmaya çalışacağız.

Bir hafta boyunca üçerli gruplar halinde yürümeleri gerekiyorsa bir günde toplam grubun 5 olacağı aşikardır. Ve kişilerin isimlerinin A, B, C, D, E, F, G, H, I, J, K, L, M, N ve O olduğunu düşünelim. Bu sorunu çözmek için biraz lise düzeyinde matematiğe ihtiyaç duyuyoruz. Birkaç kişinin yan yana gelerek oluşturduğu dizilimler olsaydı rahatlıkla bulabilirdik ancak 15 öğrenci olunca iş biraz zorlaşıyor.

Evrim Ağacı'ndan Mesaj

Şimdi, 15 kişinin bir günde yan yana sıralanması için 15!15! seçenek vardır. Bu sayı oldukça yüksek olmasına rağmen bunun bir hafta süreceğini hesaba katarsak (15!)7(15!)^7 olarak buluruz. Bu, çok çok büyük bir sayıdır; o yüzden bazı koşullar getirebiliriz. Koşullardan ilki, pazar gününü sabitlemek olacaktır.

Pazar günü sabitlenmiş olan gösterim
Pazar günü sabitlenmiş olan gösterim

Elbette bu bize biraz yardımcı oldu; ancak hâlâ (15!)6(15!)^6 seçenek var. Biraz daha zihnimizi yorarsak başka kısıtlamalar getirebiliriz. Şöyle ki; diğer günler ilk 3 grubun ilk üyelerini sabit tutabiliriz:

Diğer altı gün ilk üç grubun ilk üyeleri sabittir. (A, B, C)
Diğer altı gün ilk üç grubun ilk üyeleri sabittir. (A, B, C)

Bu durum sonucunda kişi sayısının seçilme durumunu 12'ye indirmiş oluyoruz böylelikle yeni olası yollar (12!)6(12!)^6 'dır. Evet, hâlâ yeterince büyük bir sayı ile karşı karşıyayız; bu öyle büyük bir sayı ki, evrenin yaşının yaklaşık 28 trilyon katıdır!

Peki, daha fazlasını yapmamız gerekiyor. Bunun için belirli kısıtlamalara devam ediyoruz; ancak bu kısıtlamaları anlatabilmek için tablonun tamamını doldurmalıyız. Doldurma işlemi, elbette şu anda anlattığımız yöntemin sonucunda oluşarak yapılmıştır, dolayısıyla bunu aslında baştan bilmeniz mümkün değildir:

Reklamı Kapat

Yeşil ve kırmızı renkli harflerin gösterimi
Yeşil ve kırmızı renkli harflerin gösterimi

Tablonun tamamını gördüğümüzde karşımıza çıkan 3 yeni kuralı şöyle derleyebiliriz:

  • En soldaki sütundan aşağı inildiğinde değerler artar (yeşil renkli harfler).
  • İlk sıranın ortasındaki harf her gün artar (kırmızı renkli harfler).
Hesaplamalar sonucu oluşan tablo
Hesaplamalar sonucu oluşan tablo
  • Her satırda soldan sağa değerler artar. Yeşil harfler sarı harflerden daha düşük sarı harfler mavi harflerden daha düşük diyebiliriz. İlk satır hariç, çünkü ilk satırda sarı harf renklendirmesi yapmadık; halihazırda kırmızı oldukları için, onları şu şekilde sıralayabiliriz: Yeşil harfler kırmızı harflerden, kırmızı harfler mavi harflerden daha düşüktür.

Bu kısıtlamalar elbette işimizi kolaylaştırmış oldu; ancak tamamıyla bizim yapabileceğimiz bir tablo oluşturmak çok güç olduğu için, sadece bu kısıtlamalardan yararlanarak basit bir bilgisayarda yalnızca birkaç saniye süren, farklı konumlarda harflerin (yani kişilerin) 200 milyondan az deneme içeren bir geri izleme çözümü bulabiliriz. İşte bu kısıtlamalardan yararlanarak, bilgisayar yardımıyla geri izleme çözümlerinden bir tanesi, yukarıdaki tablodur.

Problemi ilginç kılan şeylerden bir tanesi tek bir çözümünün olmayışı demiştik, şimdi başka bir çözüme göz atalım.

Çözüm 2

15 kişiyi, sayılar yardımıyla isimlendirelim. 1, 2, 3, 4, ... ,15 gibi. Şimdi iç içe iki çemberi anımsatan numaralar ve ortak bir merkezlerinin olduğunu düşünelim. Bu numaralar iç içe geçmiş çember üzerindeki noktalara belirli şartlar yardımıyla yerleştirilecektir.

Reklamı Kapat

İç içe geçmiş çember şeklinde olan sayılar
İç içe geçmiş çember şeklinde olan sayılar
  • Dış çemberde bulunan 7 nokta, saat yönünün tersi (yeşil ok) şekilde sıralanmış olsun ve bu noktalara 1'den 7'ye kadar en üst noktadan yeşil ok yönünde sıralanmış olsun.
  • İç çemberdeki 7 nokta ise devam eden 7 tane sayıyı (8, 9, ..., 14) yine yeşil ok yönünde sıralanmış olsun.
  • Son olarak çemberin merkezi son sayı olan 15 olsun.
Pazar günü oluşacak durum
Pazar günü oluşacak durum

Bu veriler sonucunda, soruya cevap olabilmesi için herhangi üç noktanın (üç kişinin yan yana olması) birleşmesi gerekiyor. Bu birleşmeyi öyle yapmamız gerekiyor ki hiçbiri birbiriyle çakışmasın. Şuna dikkat ediniz: Çakışmadan kastımız, kırmızı çizgilerin üst üste gelmesi değildir; başka günlerde aynı bağlanmanın olmasıdır. Mesela şekilde pazar günü olarak 1, 2 ve 4 numaralı kişiler dizilmiş, başka gün tekrardan bu dizilimin gerçekleşmemiş olmasıdır.

Bu bağlama şeklini elde edebiliriz ama elbette bunu da bilgisayar yardımıyla elde etmiş oluyoruz ancak bu yöntem sadece bir günlüktür. Bu şeklin tamamını yeşil ok yönünde birer adım ilerletirsek haftanın diğer günlerini de elde etmiş oluruz.

7 gün boyunca oluşacak olası durumlar
Stack Exchange

7 gün boyunca hepsinin birlikte oluşturacağı şekil ise şöyledir.

Toplam günlerin oluşturduğu şekil
Toplam günlerin oluşturduğu şekil
Prof. Dr. Reinhard Laue

Ve aynı problemin Çözüm 1'deki sonucu ile şu anda çözdüğümüz sonuç farklı olmasına rağmen, doğru olmuş oluyor. Bu durumu tablo halinde gösterelim.

Geometrik çözümün tablo gösterimi
Geometrik çözümün tablo gösterimi

Burada gördükleriniz, bu problemin bugüne kadar geliştirilmiş 7 cevabından sadece ikisidir. Hatta buna benzer başka problemler de vardır; ancak matematikçilerin aklına takılan soru, elbette bu soruların neden genel bir çözümünün olmayışıdır.

Görüldüğü üzere, üstünden 170 yıl geçmesine rağmen bu ve buna benzer problemlerin sabit bir çözümünün olmadığı görülüyor. Belki de bu problemleri popüler tutan şey, tek bir çözümünün ve tek bir cevabının olmamasıdır.

Agora Bilim Pazarı
Renkli Biyokimya Atlası
  • Boyut: 13,5*19,5
  • Sayfa Sayısı: 495
  • Basım: 3
  • ISBN No: 9786053555414
Devamını Göster
₺110.00 ₺113.50
Renkli Biyokimya Atlası

Yazımızı, bir dörtlük ile sonlandırmak istiyoruz. Bu dörtlük, Lady's and Gentleman's Diary dergisine bu problemi ele alan bir kadın (veya derginin adına ithafen, bir "hanımefendi") tarafından yazılmıştır:

Büyük şöhretli mürebbiye,

Kasabanın yakınlarında gezen,

On beş genç hanım vardı,

Yeşil çayırlar boyunca.

Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 3
  • Tebrikler! 3
  • Merak Uyandırıcı! 3
  • Mmm... Çok sapyoseksüel! 2
  • Bilim Budur! 1
  • İnanılmaz 1
  • Umut Verici! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • I. Italia. (2012). The Rise Of Literary Journalism In The Eighteenth Century: Anxious Employment. ISBN: 9780415651516. Yayınevi: Routledge.
  • E. W. Weisstein. Kirkman's Schoolgirl Problem. (28 Kasım 2020). Alındığı Tarih: 28 Kasım 2020. Alındığı Yer: Wolfram Alpha | Arşiv Bağlantısı
  • R. Laue. (, 2020). The Schoolgirl Problem of Reverend Kirkman (1806-1895).
  • A. Hui. An Introduction To Kirkman’s Schoolgirl Problem. (28 Kasım 2020). Alındığı Tarih: 28 Kasım 2020. Alındığı Yer: Hong Kong University | Arşiv Bağlantısı
  • String. Is There A Memorable Solution To Kirkman's School Girl Problem?. (24 Mart 2015). Alındığı Tarih: 28 Kasım 2020. Alındığı Yer: Stack Exchange | Arşiv Bağlantısı
  • E. Klarreich. Answer To A 150-Year-Old Math Conundrum Brings More Mystery. (20 Haziran 2015). Alındığı Tarih: 28 Kasım 2020. Alındığı Yer: Wired | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 31/07/2021 05:58:41 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9612

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Size Özel
İçerikler
Instagram
Türkiye
Kanser
Çocuk
Mikrop
Sinirbilim
Ölümden Sonra Yaşam
Antropoloji
Makine
Dünya Dışı Yaşam
Evrimsel Süreç
Şempanzeler
Deizm
Fare
Sinir
Ara Geçiş Türleri
Beslenme Biçimi
Sahtebilim
Sağlık Bilimleri
Editör Seçkisi
Mistik
Ortak Ata
Toprak
Enerji
Asteroid
Onkoloji
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Sizi Takip Ediyor

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın