Paylaşım Yap
Tüm Reklamları Kapat

3 Kulübe Problemi ve Çizge Kuramı: 6 Noktayı Birbirine Eşleştirmek Ne Kadar Zor Olabilir?

3 Kulübe Problemi ve Çizge Kuramı: 6 Noktayı Birbirine Eşleştirmek Ne Kadar Zor Olabilir? Stack Exchange
3 kulübe problemi
6 dakika
19,035
Tüm Reklamları Kapat

Bir belediye başkanı olduğunuzu hayal edin. 3 kulübeye elektrik, su ve doğal gaz bağlatmak için, bünyenizde çalışan mühendise inşa edeceği boruların, kağıda bir planını çizmesini istediniz. Kural çok basit: Elektrik, elektrik merkezinden gelecek. Su, su merkezinden gelecek. Doğal gaz, doğal gaz merkezinden gelecek. Ve bu hatların hiçbiri, birbiriyle kesişemez. Tıpkı ana görseldeki gibi...

Aradan günler geçer ve mühendis odanıza gelip çizimi bir türlü yapamadığını söyler. Görselden fark edebileceğiniz gibi, mavi hizmet (diyelim ki su), 2. kulübeye bağlanamamıştır. Böylesine basit bir çizimi bile yapamadığı için mühendisin bir beceriksiz olduğunu düşünüp onu kovdunuz, daha sonra bir de siz uğraşmaya karar verdiniz.

Burada yazıyı okumayı durdurup bu projeyi kağıtta denemenizi istiyoruz. Eğer çizebildiyseniz yazıyı okumanıza gerek yok; derhal bir makale yazmanız gerekiyor! Ama muhtemelen başaramayacaksınız, çünkü çizge kuramı bu planı, bir kağıtta asla çizemeyeceğinizi söylüyor. İyi ama... Çizge kuramı da ne?

Tüm Reklamları Kapat

Çizge Kuramı Nedir?

Çizge kuramı, 18. yüzyılın ilk yarısında Leonhard Euler tarafından Königsberg köprüleri problemini çözmek için geliştirilen bir kuramdır. Königsberg köprüleri probleminden biraz bahsedelim.

Königsberg, Prusya (büyük oranda şimdiki Almanya) kentlerinden biridir. Günümüzde, Rusya topraklarında olan Kaliningrad şehrinin eski adıdır. O yıllarda şehir kuş bakışı olarak aşağıdaki resim gibi görünüyordu. Günümüzde bu köprülerin ikisi, 2. Dünya Savaşı sırasında yıkılmıştır.

Königsberg
Königsberg
medium

Bu şehirdeki köprülerle ilgili matematikçiler arasında o zamanlarda şöyle bir problem dönüyordu;

Her bir köprüden bir kere geçmek koşuluyla şehirde tam bir tur atmak mümkün mü?

Leonhard Euler, bu soruyu çok şık bir yöntemle çözmeyi başardı ve ömrü boyunca birçok kez yaptığı gibi matematiğin tarihini değiştirdi. Euler, ortaya yeni bir kuram attı ki, bu kuram sonradan topoloji isimli bilimin doğuşuna sebep olmuştur. Euler, köprülerin noktalarını birer nokta; köprüleri ise birer çizgi olarak düşünmüştür.

Tüm Reklamları Kapat

Königsberg köprülerinin çizge ile gösterimi
Königsberg köprülerinin çizge ile gösterimi
ResearchGate

Yukarıdaki şekilde, sağdaki görsel gibi düşününce, problem daha basite indirgendi. Çözüm, artık Euler'in apaçık karşısındaydı: Şehri dolaşmak isteyen kişi, üzerine gittiği her noktadan ayrılmak zorundaydı. Bu da her noktanın çift sayıda çizgiye sahip olması gerektiği gerçeğini önümüze sermekteydi. Euler, her bir noktanın çift sayıda çizgiye sahip olmadığı için, Königsberg şehrini her köprüden bir kez geçerek dolaşma fikrinin imkansız olduğunu kanıtlamıştır.

Bu çözüm yöntemi daha sonrasında çeşitli problemlerin çözümünde kullanılmıştır. Bu yöntem, günümüzde çizge kuramı adını almıştır ve artık çok sayıda akademik makaleye sahip, başlı başına bir matematik alanıdır.

Biraz bu kuramdan bahsetmek gerekirse: Bu kuramda çizge üzerinde işlem yapılır. Çizge denilen matematiksel yapı, bir kenar EE ve bir köşe VV kümesinden yapıdan oluşur. Gösterimi ise G=(V,E)G=(V,E) ile yapılır. Bu yapı, bilgisayar bilimlerinde veri saklama sahasında da sıkça karşımıza çıkmaktadır.

Bundan yüzyıllar önce bir şehri öyle istediğimiz gibi gezemeyeceğimizi söyleyip hayallerimizi suya düşüren bu kuram, günümüzden yaklaşık 100 yıl önce başka bir hayalimizi daha suya düşürdü. Ama bu konuyu incelemeden önce, kuram hakkında biraz daha bilgi edinelim.

Evrim Ağacı'ndan Mesaj

Euler bu kuramı sadece geliştirmekle kalmayıp ayrıca birçok katkıda bulunmuştur, bunlardan belki de en önemlisi Euler karakteristiğidir.

Euler Karakteristiği

Çizgeleri, aslında lisede uğraştığımız geometrik şekillerin genelleştirilmiş formu olarak düşünebiliriz. Herhangi bir çizgenin Euler karakteristiği, bağlantılı çizgeler için (her köşe bir kenarla başka bir köşeye bağlı) çizgeler için χ=V−E+F\chi= V-E+F formülü ile hesaplanır. Burada VV köşe sayısı, EE kenar sayısı, FF de yüz sayısıdır.

Örneğin bir karenin 4 köşesi, 4 kenarı ve 2 yüzü vardır (yukarı ve aşağı). Dolayısıyla Euler karakteristiği 2'dir.

Aslında kare için sonucun 2 olması bir tesadüf değildir. Kanıtını kaynaklarımızdan görebileceğiniz kanıtsava göre bir düzlemde yer alan bütün çizgelerin Euler karakteristiği 2'dir. Bu kanıtsavın çok ilginç uygulamaları vardır. Örnek olarak aşağıdaki şekildeki gibi bir futbol topunun kaç beşgene sahip olduğunu hesaplayalım.

Futbol Topu
Futbol Topu
vectorstock

Dikkat edilirse topu bir yerinden kesip açarsak düzlem üzerinde bir bölge oluştururuz, yani Euler karakteristiği 2 olmak zorundadır. Bir beşgene karşılık, 5 tane altıgen tekabül etmektedir. Beşgenlerin sayısına BB, altıgenlerin sayısına AA dersek, beşgenlerin köşe sayısı 5B5B altıgenlerin köşe sayısı 6A6A olacaktır. Ancak dikkat edilmesi gerekir ki, bir köşeyi iki altıgen ve bir beşgen yani üç tane şekil ortak kullanıyor, yani toplam köşe sayısı V=6A+5B3V=\dfrac{6A+5B}{3} olacaktır. Kenar sayısı da aynı argüman sayesinde E=6A+5B2E=\dfrac{6A+5B}{2} olarak hesaplanır, yüz sayısının da F=A+BF=A+B olduğu açıktır.

Euler karakteristiği denkleminde yerine yazarsak B=12B=12 olarak bulunur. Bir beşgene karşı beş altıgen olduğundan, fakat bu altıgenlerin üçü diğer bir beşgenle ortak kullanıldığı gerçeğinden, A=20A=20 olarak bulunur.

Tüm Reklamları Kapat

Euler karakteristiğinin ilginç kullanım alanlarından başka bir tanesi ile yani ana problemimizle baş başa kalmanın zamanı artık geldi.

Üç Kulübe Problemi

Okuyucu yukarıda bahsedilen bu problemi bir kağıtta çözmeyi deneyip başarılı olamadığını varsayıyoruz. Sorun, her defasında son kenarın her defasında başka bir kenarla kesişmesi ile alakalıdır. Doğal gaz, elektrik veya su borularından herhangi ikisinin kesişmemesi gerekiyor, problemi imkansız kılan da bu zaten. Peki neden imkansız?

Euler'in yaptığı gibi problemi basitleştirme yoluna gidelim. Kulübeler ile elektrik, su ve doğal gaz kaynaklarını birer köşe olarak düşünelim. Borular da kenar olarak... Kulübeleri yukarıya kaynakları aşağıya nokta olarak bir kağıda çizelim. Elimizde 6 köşe ve 9 kenar olması gerektiği açıktır. O halde bu çizgenin düzlemde çizilebilmesi için Euler karakteristiğinden yüz sayısının 5 olması gerekmektedir.

Tüm Reklamları Kapat

Çizmeye kalkınca, her bir yüzün 4 kenar arasında kalması gerektiğini görürüz. Ayrıca her kenar iki bölge arasında kalması gerektiğinden 4F≤2E4F ≤ 2E olması gerekir, bu da bize F=5F=5 eşitliğinin yanlış olduğunu söyler dolayısıyla bu çizgenin düzlemde çizilemeyeceği sonucuna varırız.

Elbette ki boruların kesişmemesi koşulunu kaldırırsak, problem çözülebilir olacaktır. Hatta bu çizgenin özel bir ismi de vardır: K3,3K_{3,3} çizgesi.

K 3,3 çizgesi
K 3,3 çizgesi
Wikimedia

Sonuç olarak görebiliyoruz ki, başta mühendisi atma kararımız hatalıymış. Zaten hikayenin geriye kalan kısmında mühendisimiz kapıyı kırarcasına bir heyecanla içeriye giriyor ve problemi evindeki fincan üzerinde çizince çözdüğünü gösteriyor. Bu çözüm için 3Blue1Brown kanalının aşağıdaki videosunu öneririz.

Ayrıca bu videoda görebileceğiniz gibi, fincan üzerinde çözüm mümkündür, çünkü fincan düzlemsel değildir. Bir diğer deyişle, yukarıdaki imkansız çözümün fincan üzerinde çözülebilir olması, fincanın düzlemsel olmadığı kanıtlamaktadır. Başka bir çözüm ise torus üzerindedir:

3 kulübe probleminin torus üzerindeki çözümü
3 kulübe probleminin torus üzerindeki çözümü
Science4All
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
45
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 43
  • Mmm... Çok sapyoseksüel! 22
  • Muhteşem! 13
  • Bilim Budur! 12
  • İnanılmaz 12
  • Merak Uyandırıcı! 9
  • Güldürdü 3
  • Üzücü! 3
  • Grrr... *@$# 3
  • Korkutucu! 3
  • Umut Verici! 1
  • İğrenç! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 19/06/2024 15:45:53 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8738

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Metabolizma
Evrim Ağacı Duyurusu
Çiftleşme
Evrim Tarihi
Uzun
Toprak
Olumsuz
Dinozor
Kartal
Tahmin
Video
Botanik
Diş Sorunları
Sayı
Savaş
Primat
Nöroloji
Allah
Nüfus
Bilim Tarihi
Zeka
Makroevrim
Demir
Avcı
Tohum
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Kafana takılan neler var?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. Taşdemir, et al. 3 Kulübe Problemi ve Çizge Kuramı: 6 Noktayı Birbirine Eşleştirmek Ne Kadar Zor Olabilir?. (21 Mayıs 2020). Alındığı Tarih: 19 Haziran 2024. Alındığı Yer: https://evrimagaci.org/s/8738
Taşdemir, M., Bakırcı, Ç. M. (2020, May 21). 3 Kulübe Problemi ve Çizge Kuramı: 6 Noktayı Birbirine Eşleştirmek Ne Kadar Zor Olabilir?. Evrim Ağacı. Retrieved June 19, 2024. from https://evrimagaci.org/s/8738
M. Taşdemir, et al. “3 Kulübe Problemi ve Çizge Kuramı: 6 Noktayı Birbirine Eşleştirmek Ne Kadar Zor Olabilir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 21 May. 2020, https://evrimagaci.org/s/8738.
Taşdemir, Mert. Bakırcı, Çağrı Mert. “3 Kulübe Problemi ve Çizge Kuramı: 6 Noktayı Birbirine Eşleştirmek Ne Kadar Zor Olabilir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, May 21, 2020. https://evrimagaci.org/s/8738.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close