Paralaks Nedir? Gökyüzündeki Gezegen, Yıldız, Galaksi Gibi Cisimlerin Uzaklığı Nasıl Ölçülür?

3 Boyutlu Filmler ile Yıldızlara Olan Uzaklığımız Arasında Nasıl Bir Bağlantı Var?

Paralaks Nedir? Gökyüzündeki Gezegen, Yıldız, Galaksi Gibi Cisimlerin Uzaklığı Nasıl Ölçülür? Space
Yazar Jim Lucas Çağrı Mert Bakırcı Editör Çağrı Mert Bakırcı  Mina SuDindar 2. Editör Mina Su Dindar
8 dakika
2,742 Okunma Sayısı
Notlarım
Reklamı Kapat

Gökbilimciler, uzayda bize yakın bulunan cisimlerin uzaklığını hesaplamak için "yıldız paralaksı" ya da "trigonometrik paralaks" olarak adlandırılan yöntemi kullanır. Basitçe söylemek gerekirse bu yöntem, Dünya Güneş etrafında dönerken, bir yıldızın, uzakta bulunan ve daha arkada kalan yıldızlara göre ters yönde olan hareketini ölçer.

Harvard Smithsonian Astrofizik Merkezi'nde astronom olan Mark Reid, paralaks yönteminin astronomide uzaklık hesabı için en iyi yöntem olduğunu söylüyor. Paralaks yöntemi fiziğe değil, yalnızca geometriye dayandığı için, bu yöntemi yıldız uzaklıklarını ölçmede en ideal değerlendirme aracı olarak betimliyor.

Los Angeles'taki Kaliforniya Üniversitesi'nde profesör olan Edward L. Wright'a göre bu metot, Dünya'nın yıldızın yörüngesinde altı ay aralıkla bulunduğu konumların oluşturduğu iki açının ve bu iki konumla beraber yıldızın oluşturduğu üçgenin ölçülmesine dayanıyor.

Paralaks Yöntemi Nasıl Çalışır?

Yöntem şöyle çalışıyor: Elinizi uzatın, sağ gözünüzü kapatın ve başparmağınızı uzaktaki bir cismin üzerine yerleştirin. Şimdi, sağ gözünüzü açıp sol gözünüzü kapatın. Başparmağınız hafifçe yer değiştirmiş gibi görünecektir. Bu küçük yer değiştirme miktarını ölçer ve gözleriniz arasındaki mesafeyi bilirseniz, başparmağınıza olan uzaklığı hesaplayabilirsiniz.

Reklamı Kapat

Bir yıldızın uzaklığını hesaplayabilmek için astronomlar, Dünya ve Güneş arasındaki ortalama uzaklık olan ve yaklaşık 150 milyon kilometreye eşit olan 1 astronomik birimi (AU) baz alırlar. Ayrıca alacakaranlıkta oluşan küçük açıları, derecenin çok küçük bir katı olan ark saniye ile ölçerler.

Eğer bir astronomik birimi bir ark saniyenin tanjantına bölersek, 30.9 trilyon kilometre ya da yaklaşık 3.26 ışık yılı sonucuna ulaşırız. Elde ettiğimiz bu uzaklık birimine paralaks saniyesi ya da parsec (pc) denir. Gelgelelim, en yakın yıldız bile Güneş'imizden 1 parsec uzaktadır. Dolayısıyla, bir yıldıza olan uzaklığı saptamak için gökbilimcilerin yıldızlardaki bu yer değiştirmeleri 1 ark saniyeden daha küçük bir birim kullanarak ölçmesi gerekir ve bu, modern teknolojiden önce imkansızdı.

Trigonometrik Paralaks metodu, Dünya'nın yörüngesindeki iki ayrı bitiş noktasında bakıldığında görünen küçük yer değiştirmeyi ölçerek bir yıldıza ya da başka herhangi bir objeye uzaklığı saptar.
Trigonometrik Paralaks metodu, Dünya'nın yörüngesindeki iki ayrı bitiş noktasında bakıldığında görünen küçük yer değiştirmeyi ölçerek bir yıldıza ya da başka herhangi bir objeye uzaklığı saptar.
Bill Saxton, NRAO/AUI/NSF

Erken Ölçümler

Reid, şöyle anlatıyor:

Paralaks yöntemi kullanıldığı bilinen ilk ölçümün M.Ö. 189'da, Hipparchus adlı Yunan gökbilimcinin Ay'a olan uzaklığı hesaplamak için iki farklı konumdan edindiği Güneş tutulması gözlemlerini kullanmasıyla gerçekleştiği düşünülüyor.

Hipparchus'un kaydına göre o senenin Mart'ının 14'ünde, Çanakkale Boğazı'nda tam Güneş tutulması yaşanırken, aynı anda Mısır'da İskenderiye'nin güneyinde Ay, Güneş'in yalnızca beşte dördünü kaplıyordu. Çanakkale Boğazı ve İskenderiye arası temel mesafe olan 9 derecelik enlemi ya da yaklaşık 965 kilometreyi ve Ay'ın Güneş'e zıt yöndeki açısal yer değiştirmesini (derecenin yaklaşık onda biri kadar) göz önünde bulundurarak, Ay'a olan uzaklığın yaklaşık 563,300 kilometre olduğunu hesapladı. Fakat gerçek sonucun neredeyse yüzde elli fazlasını bulmuştu. Hatası, Ay'ın Dünya'nın hemen yukarısında bulunduğunu farz ederek, Çanakkale Boğazı ve İskenderiye arasındaki açı farkını yanlış hesaplamasıydı.

Evrim Ağacı'ndan Mesaj

1672'de Paris'te bulunan İtalyan astronom Giovanni Cassini ve aynı anda Fransız Guyanası'nda bulunan bir meslektaşı, Jean Richer, Mars üzerinde eşzamanlı gözlemler yaptı. Sonunda Cassini paralaksı hesapladı ve Mars'ın Dünya'ya olan uzaklığını bulmayı başardı. Bu sonuç, Güneş Sistemi'nin boyutlarını tahmin etmede ilk girişimlerdendi.

Bir yıldıza olan uzaklığı paralaks yöntemini kullanarak ölçmeyi başaran ilk kişi olan F. W. Bessel, 1838'de 61 Cygni yıldız sisteminin paralaks açısını 0.28 ark saniye, yani uzaklığı 3.57 pc olarak buldu. Bize en yakın yıldız olan Proxima Centauri, 0.77 ark saniyelik bir paralaks açısına sahip ve bize 1.30 pc uzaklıkta bulunuyor.

Gökbilimciler, gökyüzündeki yıldızlara olan uzaklığı tam olarak hesaplamak için paralaks adı verilen bir yöntem kullanırlar. Astronomlar, hedefleri Dünya'nın yörüngesinde birbirine zıt olarak konumlanan iki farklı noktadan gözlemlemeyi gerektiren bu yöntemi kullanarak, meşhur "Yedi Kız Kardeş" ya da Ülker olarak bilinen yıldız kümesinin uzaklığını tam olarak saptadılar.
Gökbilimciler, gökyüzündeki yıldızlara olan uzaklığı tam olarak hesaplamak için paralaks adı verilen bir yöntem kullanırlar. Astronomlar, hedefleri Dünya'nın yörüngesinde birbirine zıt olarak konumlanan iki farklı noktadan gözlemlemeyi gerektiren bu yöntemi kullanarak, meşhur "Yedi Kız Kardeş" ya da Ülker olarak bilinen yıldız kümesinin uzaklığını tam olarak saptadılar.
Alexandra Angelich, NRAO/AUI/NSF

Kozmik Mesafe

Paralaks, kozmik mesafe merdiveninde önemli bir basamak. Yakınlardaki çok sayıda yıldızın bize olan uzaklığını ölçebilmemiz sayesinde gökbilimciler, yıldızların renkleri ve esas parlaklıkları -diğer bir deyişle standart bir uzaklıktan bakıldığında görünebilecek parlaklıkları- arasında ilişki kurmayı başardı. Bu yıldızlar daha sonra "standart mumlar" haline geldi.

Reid'in söylediğine göre eğer bir yıldız, paralaksının ölçülebilmesi için fazla uzaktaysa, gökbilimciler yıldızın rengini ve spektrumunu bir standart mumunkiyle eşleştirip esas parlaklığı tayin edebiliyor. Burdan elde edilen sonuç da görünen parlaklığıyla kıyaslanırsa, 1/r21/r^2 kuralı uygulanarak, uzaklık ölçümünde iyi bir sonuca varılabiliyor.

Reklamı Kapat

1/r21/r^2 kuralı, bir ışık kaynağının görünen parlaklığının, uzaklığının karesiyle orantılı olduğunu ifade eder. Örneğin, eğer duvara bir metrekarelik bir görüntü yansıtırsanız ve sonra projektörü bulunduğunuz mesafenin iki katı kadar uzağa koyarsanız, yeni görüntünüzün kenarları ikişer metre ve alanı dört metrekare olacaktır. Bu durumda ışık eskisinden dört kat büyük bir alana dağılacaktır ve dolayısıyla parlaklığı da eskisinin dörtte biri kadar olacaktır. Eğer projektörü üç kat uzağa götürürseniz de, ışık dokuz metrekarelik bir alanı kaplayacak ve parlaklık da dokuzda biri kadar olacaktır.

Çalışılan yıldızın bir yıldız kümesine ait olması durumundaysa, kümedeki tüm yıldızların aynı uzaklıkta olduğunu varsayabilir ve bu yıldızları standart mum arşivine ekleyebiliriz.

Kesin Sonuca Ulaşmak İçin Fırlatılan Uydu!

1989'da European Space Agency (ESA), uzaya Hipparchus'tan isim alan Hipparcos adlı ve Dünya'nın yörüngesinde dolaşacak olan bir teleskop fırlattı. Öncelikli amacı, paralaks yöntemini kullanarak 2-4 miliarksaniyelik (mas) veya ark saniyenin binde biri kadar bir hata payıyla yıldızların mesafelerini ölçmekti. İnternet sitelerinde şöyle yazıyorlar:

ESA'nın Hipparcos uydusu 100,000'den fazla yıldızın yerini, bugüne kadar ölçülenlerden 200 kat daha kesin ve hatasız olarak belirledi.

Sonuçlara çevrimiçi olarak aranabilen bir katalogdan erişilebiliyor.

Reklamı Kapat

ESA'nın Hipparcos'u takip eden misyonu, 2013'te Dünya'nın yörüngesine fırlatılan Gaia oldu. ESA bu projeyi şöyle anlatıyor:

Samanyolu Galaksimizin üç boyutlu bir haritasını çıkarmayı hedeflediğimiz, oldukça hırslı ve istekli olduğumuz bir görev. Süreç boyunca galaksimizin bileşimi, formasyonu ve evrimi hakkındaki bilinmezliklerin açığa çıkacağını umuyoruz.

Uydu, şimdiden 1 milyar yıldızın uzaklığını elde etti; bu, neredeyse Samanyolu Galaksisi'ndeki tüm yıldızların yüzde biri kadar. Uydu, aynı zamanda olağanüstü üç boyutlu haritalar hazırladı.

3 Boyutlu Görüntüleme

Paralaksın bir başka uygulamasıysa, üç boyutlu görüntüler üretmek ve görüntülemek. Bunu oluşturmanın yolu, öznenin iki boyutlu görüntülerini hafif farklı iki açıdan yakalamak ve iki gözün bu görüntüyü tekmişçesine görmelerini sağlayacak bir düzeneğe oturtmaktır; tıpkı insan gözünün yaptığı gibi.

Bir stereoskop çok küçük bir açı farkıyla çekilen iki farklı fotoğraf kullanır. Lensler aracılığıyla bakıldığında, fotoğraflar bir 3D görsel oluşturacak şekilde birleşiyor.
Bir stereoskop çok küçük bir açı farkıyla çekilen iki farklı fotoğraf kullanır. Lensler aracılığıyla bakıldığında, fotoğraflar bir 3D görsel oluşturacak şekilde birleşiyor.
prophoto14/Shutterstock

Örneğin 19. yüzyılda popüler bir cihaz olan stereoskop, fotoğrafları üç boyutlu görüntüleyebilmek için paralaks yöntemini kullanır. Bu cihazda yan yana monte edilmiş iki fotoğrafa bir çift lens aracılılığıyla bakılır. Fotoğraflar, gözler arasındaki aralık dikkate alınarak hizalanır; sağdaki resim sağ gözün göreceği aralıkta, soldaki resimse sol gözün göreceği aralıkta konumlandırılır. Özel bir görüntüleyici kanalıyla iki boyutlu fotoğraf çifti birleşerek üç boyutlu bir fotoğraf oluşturur. Günümüzde View-Master olarak adlandırılan üç boyutlu görüntü sağlayan oyuncak gözlük de aynı prensiple çalışır.

Üç boyutlu fotoğraflar üretebilmek ve görüntüleyebilmek için bir başka yöntem olan Anaglyph 3D ise fotoğrafları renkli filtrelerle çeker ve buna göre gruplar. Daha sonra bu görüntülere, genelde bir lensi kırmızı ve diğeri cyan (camgöbeği, mavi-yeşil) olan renkli gözlükler ardından bakılır. Bu efekt, filmler ve basılı resimler için işe yarar, ancak renklerin gerçek değerleri neredeyse tamamen kaybolur.

Bazı filmler 3D efektine, polarize ışık kullanarak ulaşır. İki görüntü dikey eksende veya birbirlerine karşı uygun açılarla konumlandırılarak (genelde X'e benzeyen bir geometride) polarize edilir ve ekrana yansıtılır. İzleyicilerin kullanacağı özel gözlükler, her bir gözün üst üste bindirilmiş görüntülerden doğru olanı seçmesini sağlar ve üç boyutlu görüntüye ulaşılır.

Agora Bilim Pazarı
Yerli Fantastik & Bilimkurgu Seti: Maksatlı Tesadüfler, Uzay Gazinosu, Yeryüzü Müzesi, Aidiyet, Gölgesiz Matiz

Bu seti edinerek elde edeceğiniz kitaplar şunlardır:

  1. Maksatlı Tesadüfler, Samet Atasoy
  2. Uzay Gazinosu, Anıl Nişancalı
  3. Yeryüzü Müzesi, Kolektif
  4. Aidiyet, Hande Şarman
  5. Gölgesiz Matiz, Bülent Ayyıldız

Bu ürün, Evrim Ağacı okurlarına İthaki Yayınları tarafından sunulan bir fırsattır. İsimlerin üzerine tıklayarak Bilimkurgu Kulübü tarafından yazılan kitap incelemelerini ve/veya tanıtımlarını okuyabilirsiniz.

Devamını Göster
₺90.00 ₺133.00
Yerli Fantastik & Bilimkurgu Seti: Maksatlı Tesadüfler, Uzay Gazinosu, Yeryüzü Müzesi, Aidiyet, Gölgesiz Matiz

Günümüzde çoğu 3D televizyon aktif deklanşör denilen teknikle, 240 Hz frekans civarlarında değişen görüntüler sağlar. Televizyonla senkronize olan özel gözlükler, sağ ve sol göz için fazladan kareleri anlık bloklayarak 3D görüntü sağlamış olur.

Oculus Rift ve HTC Vive gibi sanal gerçeklik gözlükleri de farklı açılardan görüntüler yansıtarak paralaks efektinden yararlanır ve kullanıcının üç boyutlu atmosferi tecrübe etmesini sağlar.

Üç boyutlu görüntüleme tıpta ve bilimde de oldukça yaygın bir kullanıma sahip. Örneğin, vücuttaki bölgeleri doğrudan üç boyutlu olarak analizleyen CT taramalarından elde edilen sonuçlar, paralaks efekti kullanılarak görüntülenebiliyor. Böylece sonuçları eğip döndürerek incelemek mümkün oluyor. Ayrıca bilim insanları; molekül, virüs, kristal, ince film tabakaları, nano yapılar gibi mikroskopta görüntülemek için fazla küçük veya optik yüzeye gömülü objeleri incelemek için üç boyutlu şekilleri kullanıyor.

Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 9
  • Bilim Budur! 5
  • Muhteşem! 3
  • İnanılmaz 2
  • Merak Uyandırıcı! 2
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  1. Çeviri Kaynağı: Space.com | Arşiv Bağlantısı
  • R. Nave. Stellar Parallax. (18 Aralık 2020). Alındığı Tarih: 18 Aralık 2020. Alındığı Yer: HyperPhysics Concepts - Georgia State University | Arşiv Bağlantısı
  • NASA. The Parallax Angle -- How Astronomers Use Angular Measurement To Compute Distances In Space. (18 Aralık 2020). Alındığı Tarih: 18 Aralık 2020.
  • MIT. 3D Glasses Anaglyph Red Cyan Stereoscopic Projects. (18 Aralık 2020). Alındığı Tarih: 18 Aralık 2020. Alındığı Yer: Scratch | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 01/08/2021 00:04:27 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9761

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Size Özel
İçerikler
Instagram
Adaptasyon
Primat
Dinozorlar
İnternet
Video
Köpekler
Mers
Sağlık Örgütü
Kimyasal Element
Kadın Sağlığı
Doğal Seçilim
Hayvan
Dağılım
Genel Görelilik
Canlı Cansız
Amerika Birleşik Devletleri
Taksonomi
Çin
İnsan Evrimi
Mikrop
Jinekoloji
Türkiye
Hastalık Kontrolü
Kromozom
Dna
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Sizi Takip Ediyor

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın