Evrim Ağacı
Reklamı Kapat

M.C. Escher’in Matematiksel Sanatı Uzayın Yapısına Işık Tutuyor!

M.C. Escher’in Matematiksel Sanatı Uzayın Yapısına Işık Tutuyor!
Tesselasyon, bir düzlemi etkili bir biçimde birçok küçük parçaya bölme işine denir. Tesselasyonda parçalar birbirine mükemmel bir şekilde uymalı, aralarda boşluk olmamalıdır.
Pixabay
Tavsiye Makale
Reklamı Kapat

Bu yazı, 5imone5 isimli kaynaktan birebir çevrilmiştir. Çevirmen tarafından, metin içerisinde (varsa) açıkça belirtilen kısımlar haricinde, herhangi bir ekleme, çıkarma veya değişiklik yapılmamıştır. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

M.C. Escher hakkında muhteşem olan şey şu ki o, matematiğin ve sanatın mükemmel bir şekilde bir araya gelişini temsil ediyor. Ki bunlar iki ayrı dünyadır. Ama onun çalışmalarında bu iki dünya bir araya gelir.

M.C. Escher’in Matematiksel Sanatı
BBC Four

Hollanda'da 1898 yılında doğan Maurits Cornelis Escher'in matematikte herhangi bir ihtisası yoktu. Profesyonel yaşamına bir grafik sanatçısı olarak başladı, marangozluk ve litografi ile uğraştı. Gençken, İspanya'daki Elhamra'yı ziyareti sırasında Moor seramiklerinin üzerindeki geometrik desen dekorasyonundan etkilendi. Bu Escher için belirleyici bir andı. O andan itibaren hayatının büyük kısmını matematiğin “tesselasyon (mozaik formlar)” alanında denemeler yaparak geçirdi.

Tesselasyon, bir düzlemi bölen düzenli örüntülerle ilgilenir. Yani düzlemi etkili bir biçimde birçok küçük parçaya böler. Ve bu parçalar birbirine mükemmel bir şekilde uymalıdır. Birbirinin üzerine binmemeli ya da arada boşluk kalmamalıdır. Bir düzlemi ya da yüzeyi tekrar eden düzenli birimlere bölmek çok basit bir fikir gibi görünebilir. Ama bu temelde matematik için çok önemlidir çünkü simetri ile ilgilidir.

Escher'in bu basit soyut matematikle yaptığı şey ise olaya insan boyutunu ve hayali boyutu katmasıydı. Küçük hayvanlar, küçük kertenkeleler, ejderimsi yaratıklar, eğlenceli insanımsı goblinler ve bunun gibi şeyler ekledi. Ve bunları mozaiklerine şekil vermek için kullandı.

Escher'in dünyası iki temel döneme bölünebilir. Erken dönem çalışmaları sezgiseldir, matematikçilerle herhangi bir bağlantısı yoktur. Escher’in tesselasyonlara ilgisi vardır sadece, hepsi bu. Matematikçilerle ilişkiye geçtikten sonraysa, eserleri matematiksel olarak daha da derinleşir. Tüm o sofistike yapılar çıkar karşınıza. Uzayın boyutlarıyla, uzayın topolojisiyle ve sonsuzlukla ilgilenir.

Kozmologlar, evrenimizin Escher’vari bir şekle sahip olabileceğini düşünmekteler. Bu yüzden Escher'in çalışmalarından bazıları modern kozmolojinin derinlikli niteliklerini öngörmüş olabilir. Sadece basit çizim araçları kullanarak sonsuza dek giden uzayın yuvarlak, sınırları olmayan ve şaşılır derecede doğru bir temsilini ortaya çıkardı. Yaklaşık 40 yıl sonra matematikçiler, temsilin son milimetresine kadar hatasız olduğunu kabul ettiler.

İmkansız üçgeni yaratan Roger Penrose gibi matematikçilerin çalışmaları Escher’ı heyecanlandırıyordu. Möbius şeridinin olağandışı özelliklerinden de büyülenmişti. Möbiüs şeridi, tek bir yüzü varmış gibi görünen nesneye denmektedir.

Görsel illüzyonların herkese büyüleyici gelmesinin nedeni şu ki illüzyonlar bize dünyayı olduğu gibi algılamadığımızı gösterir. Beynimiz algıladıklarını yorumlar ve gördüğü hakkında varsayımlar çıkarır. Escher'in görsel illüzyonları beynimizin bu kısmına ciddi bir iş çıkartır. Burada neye bakıyorum, ne görüyorum? Escher işte bundan ilham almıştır. Mantığımıza uygun gibi gözüküp bir taraftan da onu rafa kaldıran en ünlü çalışmalarından bazılarını bu şekilde yaratmıştır.

Sonsuzluk, yansıma ve görsel algının doğası kavramları öldüğü 1972 yılına kadar Escher'den çok fazla beslendi. Onun geride bıraktıkları yaşamaya devam etmektedir. Eğer üniversitelerin matematik bölümlerini gezerseniz her yerde Escher'in resimlerini görürsünüz. Hatta ders kitaplarında bile. Çünkü bu eserler matematikçilere gerçekten çok şey söyler.

Bugünün perspektifinden bakan matematikçiler, Escher'in yapmaya çalıştıklarını daha net bir şekilde anlıyorlar. Hatta, yaptığı bazı şeyleri formüle edebiliyorlar. Ve eserlerin ardındaki matematiksel fikirlerin derinine inebiliyorlar. Matematikçiler çalıştıkları konunun güzel olduğunu biliyorlar. Çünkü Escher bize bunun güzel olduğunu gösteriyor.

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

İlginizi Çekebilecek Sorular
Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 1
  • Tebrikler! 1
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  1. Çeviri Kaynağı: 5imone5 | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/09/2020 08:14:02 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8160

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Güncel
Karma
Agora
Instagram
Saç
Vaka
Genetik Mühendisliği
Dinozor
Deprem
Bakteri
Evren
Ara Geçiş Türleri
Türleşme
Müzik
Çocuklar
Doğum
Viroloji
Albert Einstein
Veri
Nasa
Atmosfer
Çiftleşme
Kanser
Aşılar
Viral
Eğilim
Balıklar
Doktor
Organ
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Reklamı Kapat
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Özgürlüğün ne olduğunu bilmeyenler, onu talep edemezler.”
Johann Schubert
Geri Bildirim Gönder