M.C. Escher’in Matematiksel Sanatı Uzayın Yapısına Işık Tutuyor!
M.C. Escher hakkında muhteşem olan şey şu ki o, matematiğin ve sanatın mükemmel bir şekilde bir araya gelişini temsil ediyor. Ki bunlar iki ayrı dünyadır. Ama onun çalışmalarında bu iki dünya bir araya gelir.
Hollanda'da 1898 yılında doğan Maurits Cornelis Escher'in matematikte herhangi bir ihtisası yoktu. Profesyonel yaşamına bir grafik sanatçısı olarak başladı, marangozluk ve litografi ile uğraştı. Gençken, İspanya'daki Elhamra'yı ziyareti sırasında Moor seramiklerinin üzerindeki geometrik desen dekorasyonundan etkilendi. Bu Escher için belirleyici bir andı. O andan itibaren hayatının büyük kısmını matematiğin “tesselasyon (mozaik formlar)” alanında denemeler yaparak geçirdi.
Tesselasyon, bir düzlemi bölen düzenli örüntülerle ilgilenir. Yani düzlemi etkili bir biçimde birçok küçük parçaya böler. Ve bu parçalar birbirine mükemmel bir şekilde uymalıdır. Birbirinin üzerine binmemeli ya da arada boşluk kalmamalıdır. Bir düzlemi ya da yüzeyi tekrar eden düzenli birimlere bölmek çok basit bir fikir gibi görünebilir. Ama bu temelde matematik için çok önemlidir çünkü simetri ile ilgilidir.
Escher'in bu basit soyut matematikle yaptığı şey ise olaya insan boyutunu ve hayali boyutu katmasıydı. Küçük hayvanlar, küçük kertenkeleler, ejderimsi yaratıklar, eğlenceli insanımsı goblinler ve bunun gibi şeyler ekledi. Ve bunları mozaiklerine şekil vermek için kullandı.
Escher'in dünyası iki temel döneme bölünebilir. Erken dönem çalışmaları sezgiseldir, matematikçilerle herhangi bir bağlantısı yoktur. Escher’in tesselasyonlara ilgisi vardır sadece, hepsi bu. Matematikçilerle ilişkiye geçtikten sonraysa, eserleri matematiksel olarak daha da derinleşir. Tüm o sofistike yapılar çıkar karşınıza. Uzayın boyutlarıyla, uzayın topolojisiyle ve sonsuzlukla ilgilenir.
Kozmologlar, evrenimizin Escher’vari bir şekle sahip olabileceğini düşünmekteler. Bu yüzden Escher'in çalışmalarından bazıları modern kozmolojinin derinlikli niteliklerini öngörmüş olabilir. Sadece basit çizim araçları kullanarak sonsuza dek giden uzayın yuvarlak, sınırları olmayan ve şaşılır derecede doğru bir temsilini ortaya çıkardı. Yaklaşık 40 yıl sonra matematikçiler, temsilin son milimetresine kadar hatasız olduğunu kabul ettiler.
İmkansız üçgeni yaratan Roger Penrose gibi matematikçilerin çalışmaları Escher’ı heyecanlandırıyordu. Möbius şeridinin olağandışı özelliklerinden de büyülenmişti. Möbiüs şeridi, tek bir yüzü varmış gibi görünen nesneye denmektedir.
Görsel illüzyonların herkese büyüleyici gelmesinin nedeni şu ki illüzyonlar bize dünyayı olduğu gibi algılamadığımızı gösterir. Beynimiz algıladıklarını yorumlar ve gördüğü hakkında varsayımlar çıkarır. Escher'in görsel illüzyonları beynimizin bu kısmına ciddi bir iş çıkartır. Burada neye bakıyorum, ne görüyorum? Escher işte bundan ilham almıştır. Mantığımıza uygun gibi gözüküp bir taraftan da onu rafa kaldıran en ünlü çalışmalarından bazılarını bu şekilde yaratmıştır.
Sonsuzluk, yansıma ve görsel algının doğası kavramları öldüğü 1972 yılına kadar Escher'den çok fazla beslendi. Onun geride bıraktıkları yaşamaya devam etmektedir. Eğer üniversitelerin matematik bölümlerini gezerseniz her yerde Escher'in resimlerini görürsünüz. Hatta ders kitaplarında bile. Çünkü bu eserler matematikçilere gerçekten çok şey söyler.
Bugünün perspektifinden bakan matematikçiler, Escher'in yapmaya çalıştıklarını daha net bir şekilde anlıyorlar. Hatta, yaptığı bazı şeyleri formüle edebiliyorlar. Ve eserlerin ardındaki matematiksel fikirlerin derinine inebiliyorlar. Matematikçiler çalıştıkları konunun güzel olduğunu biliyorlar. Çünkü Escher bize bunun güzel olduğunu gösteriyor.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 3
- 2
- 1
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- Çeviri Kaynağı: 5imone5 | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 05/11/2024 18:31:48 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8160
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.
This work is an exact translation of the article originally published in 5imone5. Evrim Ağacı is a popular science organization which seeks to increase scientific awareness and knowledge in Turkey, and this translation is a part of those efforts. If you are the author/owner of this article and if you choose it to be taken down, please contact us and we will immediately remove your content. Thank you for your cooperation and understanding.