Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?

Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü? Teaching Channel
10 dakika
3,280
  • Matematik

Matematik... Kimilerinin gözünde en zor ve en önemli ders, kimilerinin gözünde ise bilim olduğu dahi tartışmalı olan bir araç. Ancak elbette matematik bunlardan çok daha fazlasıdır. Aksiyomları, teoremleri, ispatları ve bu yazımızda da değineceğimiz konu olan çözülememiş problemleriyle oldukça zengin bir disiplindir matematik. Şimdi gelin, matematiğin çözülememiş problemlerinden birkaçını beraber inceleyelim.

Goldbach Hipotezi

7 Haziran 1742'de Alman matematikçi Christian Goldbach, Leonhard Euler'e yazdığı bir mektupta bu hipotezinden bahsetmiştir. Hipoteze göre 2'den büyük her çift sayı iki asal sayının toplamı şeklinde yazılabilir. Örnek olarak 3+5=83+5=8 işlemini verebiliriz. 3 ile 5 asal sayılardır ve toplamları bir çift sayı olan 8'i vermektedir.

Tüm Reklamları Kapat

Anlaşılması oldukça kolay olan bu hipotezin kesin bir kanıtı henüz yoktur. Bu hipotezin bilgisayarlı deneylerde 4⋅10184 \cdot 10^{18} sayısına kadar geçerli olduğu gösterilmiş olsa da, tüm çift sayılar için genelleme yapabileceğimiz bir ispatı halen bulunamamıştır.

Goldbach varsayımını gösteren bir illüstrasyon
Goldbach varsayımını gösteren bir illüstrasyon
Pinterest

Goldbach varsayımının kanıtlanabilmesi için ya iki asal sayının toplamı biçiminde yazılamayan bir çift sayı bulmamız ya da bütün çift sayılar için Goldbach varsayımının doğru olduğunu gösteren bir ispat geliştirmemiz gerekmektedir.

Tüm Reklamları Kapat

Riemann Hipotezi

Bu hipotez 1859 yılında Alman matematikçi Georg Friedrich Bernhard Riemann tarafından ortaya atılmıştır. Kısaca bu hipotez, asal sayıların sayı doğrusu üzerindeki dağılımını bulma amacıyla oluşturulmuştur. Riemann, bu dağılımın

ζ=1+1/2s+1/3s+1/4s...\zeta=1+1/2^s+1/3^s+1/4^s...

fonksiyonunun davranışına çok benzediğini fark etmiştir. Formülde ss, karmaşık sayılar kümesinin bir elemanıdır.

Evrim Ağacı'ndan Mesaj

ζ(s)=0,s≠1\zeta(s)=0, s\ne1

denkleminin tüm çözümleri karmaşık düzlemde bir doğru üzerinde bulunmaktadır. Yani bu, denklemin tüm karmaşık sayı çözümlerinin gerçel kısmının 1/2 olduğu anlamına gelir. Bu iddia 1012 çözüm için sınanmış ve doğru olduğu görülmüştür. Bu nedenle birçok matematikçi bu hipotezin doğru olduğuna inanmaktadır.

Ancak matematikte çok sayıda örnek bulmak o hipotezin doğru olduğunu elbette kanıtlamaz. Aslında bu durum diğer bilim dalları için de geçerlidir ama diğer bilim dalları matematik gibi "ideal olan" ile değil "gerçek olan" ile uğraştığı için, diğer bilimlerde "çok sayıda örnek bulmak", doğru yolda olunduğuna dair güçlü bir işarettir. Ünlü matematikçi David Hilbert'in "matematiğin çözülememiş en önemli problemlerinden biri" olarak nitelendirdiği Riemann hipotezinin henüz genel geçer bir ispatı yapılamamıştır.

Riemann zeta fonksiyonunun 0'a eşit olduğu durumu gösteren fonksiyon grafiği
Riemann zeta fonksiyonunun 0'a eşit olduğu durumu gösteren fonksiyon grafiği
IFL Science

Riemann hipotezinin çözüme kavuşması başka birçok teoremin kanıtlanmasını sağlamanın yanı sıra belirli algoritmaların nispeten daha kısa sürede çalışmasını sağlayacak ve asal sayılar arasındaki boşlukların dağılımını açıklayacaktır.

İkiz Asal Varsayımı

Kendisinden ve 1'den başka böleni olmayan tam sayılara "asal sayılar" diyoruz. Örneğin; 2, 3, 5, 17, 29 ve 53 asal sayılardır. Asal sayılardan aralarındaki fark 2 olanlarına ise "ikiz asal sayılar" diyoruz. Örneğin 3 ve 5, 5 ve 7, 11 ve 13 ikiz asal sayılardır. İkiz asal sayı kavramını ilk olarak 1846 yılında Fransız matematikçi Alphonse de Polignac ortaya atmıştır. Riemann hipotezinde bahsettiğimiz üzere, asal sayıların dağılımı düzenli değildir ve sayılar büyüdükçe asal sayılar da seyrekleşir. Öklid, asal sayıların sonsuz olduğunu kanıtlamıştı. Peki ikiz asal sayılar da sonsuz mudur? Bu halen yanıtı aranan bir sorudur.

Tüm Reklamları Kapat

Ardışık asal sayıların oluşturduğu spiraller
3Blue1Brown

Collatz Problemi

Şimdi herhangi bir sayı seçelim. Seçtiğimiz sayı çiftse 2'ye bölelim, tekse 3 ile çarpıp 1 ekleyelim ve elde ettiğimiz sayılara aynı işlemi uygulamaya devam edelim. Yani matematiksel olarak ifade edecek olursak:

F(n)={n2if n%2=03n+1if n%2=1F(n) = \begin{cases}
\frac{n}{2} &\text{if } n\%2=0 \\
3n+1 &\text{if } n\%2=1
\end{cases}

Şaşırtıcı bir şekilde, bunu hangi sayıyla başlatırsanız başlatın hep 4, 2, 1 döngüsüne ulaştığınızı ve o döngüden çıkamayarak sona geldiğinizi fark edeceksiniz. İşte bu problemin ismi, Collatz Problemi.

Bu problemi 1932'de o zamanlar 20 yaşında bir matematik öğrencisi olan Lothar Collatz keşfetti. Collatz, bu işlemi hangi sayıya uygularsa uygulasın en nihayetinde 4, 2, 1 döngüsüne ulaşınca ilk başta yeni bir kural bulmak üzere olduğunu düşündü. Fakat yanılmıştı, bu varsayımıyla alakalı hiçbir kural bulamadı. Günümüzde işlemlerin sonucunda 4, 2, 1 döngüsünü elde edemediğimiz bir sayı henüz bulunamadı. Ancak bunun yerine, sonsuza giden çok büyük bir sayı veya belki de döngüde sıkışıp kalan ve asla 1'e ulaşamayan bir sayı olabileceği düşünülüyor. Ne yazık ki bu düşünceler de henüz kanıtlanmış değil.

Tüm Reklamları Kapat

Collatz problemini gösteren bir örnek
Collatz problemini gösteren bir örnek
Mathematica & Wolfram Language

196 Sayısı Problemi

"Palindromik sayılar" tersten ve düz olarak yazıldıklarında aynı olan sayılara verilen isimdir. Örneğin 1221 sayısı bir palindromik sayıdır; çünkü sayıyı ters çevirdiğimizde de 1221 sayısını elde ederiz. Matematikte bazı sayılar kullanılarak böyle palindromik sayılar elde edebiliriz. Mesela 54 ile, 54'ün tersi olan 45'i topladığımızda 99 sonucuna ulaşırız; yani bir palindromik sayı buluyoruz. Bu örneğimizde tek adımda palindromik bir sayıya ulaştık ama bu tek adımda bitmek zorunda değildir: Bu sefer de 69 sayısını kullanalım:

  • 69+96=16569+96=165, 165 palindromik olmadığı için işleme devam edelim.
  • 165+561=726165+561=726, 726 da palindromik değil bu nedenle işleme devam ediyoruz.
  • 726+627=1353726+627=1353, 1353 de palindromik sayı değil.
  • 1353+3531=48841353+3531=4884 sayısı palindromik olduğu için işlemi burada bitiriyoruz.

196 sayısı, işleme sokulduğu zaman palindromik sayı vermeyen en küçük sayı olarak biliniyor. 196 sayısından başka işleme sokulduğu zaman palindromik sayı vermeyen sayılar da vardır: 295,394,493,592,689,691,788,790,879,887... gibi.

1990 yılında John Walker adında bir programcı, 196 sayısı için bu işlemi 2.415.836 defa tekrarlamış ve milyon basamaklı, palindromik olmayan bir sayı bulmuştur. 2012 yılında ise bu işlem devam ettirildiği takdirde ve palindromik bir sayıya ulaşıldığında bu sayının 600 milyondan fazla basamaktan oluşacağı bulunmuştur.

Mutlu Son Problemi

Paul Erdös tarafından ortaya atılan bu probleme mutlu son problemi denmesinin sebebi, Erdös'ün problemi üzerinde çalışan iki matematikçi Esther Klein ve George Szekeres'in evlenmesidir. Problem ise şu şekilde:

Tüm Reklamları Kapat

Agora Bilim Pazarı
Leonardo da Vinci

Gayrimeşru, eşcinsel, vejetaryen, solak ve dinle arası limoni: Leonardo da Vinci 15 ve 16. yüzyıl için zor bir karakterdi. Ama talep ettiği hoşgörünün karşılığını misliyle verdi.
Dudağı hareket ettiren kasları görmek için kadavraların yüz derilerini yüzdü ve ardından dünyanın en unutulmaz tebessümünü, Mona Lisa’yı yarattı. Işık ışınlarının korneaya çarpışını gözlemledi ve değişken perspektifler kullanarak Son Akşam Yemeği’ni çizdi. Oyunbaz ve saplantılı bir tutkuyla anatomi, fosiller, kuşlar, kalp, uçan makineler, optik, botanik, jeoloji ve silahlar üzerine çığır açıcı çalışmalar yürüten Leonardo, beşeri ile temel bilimler arasındaki çizgiyi aşarak sadece günün Milano ve Floransa’sını büyülemekle kalmadı; onun yolu tüm dünyada yaratıcılık ve yenilikçiliğin yolu oldu.
Steve Jobs ve Einstein biyografilerinin yazarı Walter Isaacson, insanlık dediğimiz büyük ailemizin belki de en sıra dışı ferdinin hayatı üzerinden, dünyaya tutkulu bir hayretle yaklaşmanın yaşamı nasıl zenginleştirebileceğini gösteriyor.

“Muhteşem… Isaacson yine karmaşık, dev bir karakteri ele alarak onu yakınlık kurabileceğimiz birine dönüştürüyor… Baştan sona büyüleyici, ustaca ve tutku dolu.”
KIRKUS REVIEWS

“Isaacson, Leonardo’nun çelişkilerini kullanarak ona insaniyet ve derinlik kazandırıyor.”
NEW YORK TIMES

“Yıllar içinde Leonardo hakkında çok şey okudum fakat onun yaşamı ve çalışmalarının farklı yönlerini tatmin edici şekilde ele alan hiçbir kitapla karşılaşmamıştım… Bu kitap onu tüm insani yönleriyle görmenize ve onun ne kadar özel biri olduğunu anlamımıza, Leonardo hakkında okuduğum diğer tüm kitaplardan daha çok yardımcı oluyor.”
BILL GATES

Devamını Göster
₺128.00
Leonardo da Vinci

Popular Mechanics

Kağıda düz bir çizgi oluşturmayacak şekilde rastgele dağılmış 5 nokta çizelim. Bu noktalardan dördünü kullanarak daima konveks bir dörtgen elde edebiliriz. Yani konveks bir dörtgen oluşturabilmek için kağıda rastgele 5 nokta koymamız yeterlidir. Benzer bir şekilde beşgen oluşturabilmek için en az 9; altıgen oluşturabilmek için en az 17 noktaya ihtiyacımız vardır.

Ancak işler buradan sonra karışmaya başlıyor: Çünkü yedigen oluşturmadan itibaren en az kaç tane noktaya ihtiyacımız olduğunu bilmiyoruz. Belki bir formül sayesinde bunları hesaplayabiliriz. Bazı matematikçiler M\text{M} nokta sayısı ve N \text{N }şeklin kenar sayısı olmak üzere M=1+2N−2M=1+2^{N-2} formülünün yardımcı olabileceğinden şüpheleniyorlar; fakat henüz bu formülün işe yarar olduğu tam anlamıyla kanıtlanmış değil.

Euler'in Mükemmel Küboidi

Şimdi de biraz ortaokul bilgilerimizi hatırlayalım. Pisagor teoreminin a2+b2=c2a^2+b^2=c^2 olduğunu çoğumuz hatırlıyoruzdur. Bu formülü sözel olarak ifade edecek olursak; bir dik üçgende dik kenar uzunluklarının (a \text{a }ve b\text{b}) karelerinin toplamı hipotenüsün (c\text{c}) karesine eşittir. Euler'in mükemmel küboidi de tıpkı Pisagor bağıntısına benzer; ancak Pisagor teoremini 2 boyutlu uzayda kullanıyoruz, Euler'in mükemmel küboidindeyse 3 boyutlu uzay üzerinde çalışmamız gerek. Bu nedenle de elimizde 4 sayı olacak.

Euler'in mükemmel küboidi
Euler'in mükemmel küboidi
Popular Mechanics

Euler'in mükemmel küboidinde aradığımız özellik a\text{a}, b\text{b} ve c\text{c} küboidin kenar uzunlukları olmak üzere a2+b2+c2=g2a^2+b^2+c^2= g^2 eşitliğini sağlayan ve tam sayı olan bir g\text{g} hacim köşegeni ile yüzey köşegenlerinin (yukarıdaki görselde d\text{d}, e\text{e} ve f\text{f} ile gösterilen) tam sayı olmasıdır. Matematikçiler birçok deneme yapmalarına rağmen böyle bir küboid bulabilmiş değiller fakat bununla birlikte böyle bir küboidin olamayacağını da henüz kanıtlayamadılar. Kısacası bu zorlu arayış halen sürmekte.

Euler - Mascheroni Sabiti Rasyonel Bir Sayı Mı?

γ\gamma sembolüyle gösterilen ve 1734 yılında İsviçreli matematikçi Leonhard Euler tarafından bulunan bu sabiti, Euler, 16 basamağına kadar hesaplamıştır. 1790 yılında ise Lorenzo Mascheroni 32 basamağına kadar hesaplayarak sayıyı genişletmeyi başarmıştır:

γ=0.577215664901532860606512090082402431042... \gamma=0.577215664901532860606512090082402431042... 

Euler - Mascheroni sabiti, harmonik serilerle doğal logaritmanın arasındaki farka ya da limite eşittir ve şöyle ifade edilir:

γ=lim⁡n→∞(∑k=1n1k−ln⁡n)\gamma=\lim\limits_{n\rightarrow\infin}(\displaystyle\sum_{k=1}^n \frac{1}{k}-\ln{n})

Bu sabit matematiğin birçok alanında kullanılıyor olsa da sayının rasyonel mi yoksa irrasyonel mi olduğu konusu halen bir muammadır.

Navier - Stokes Denklemleri

Fransız mühendis ve fizikçi Claude Louis Navier ile İrlandalı fizikçi ve matematikçi George Gabriel Stokes'un adını taşıyan denklemler akışkanların hareketini açıklayan birtakım diferansiyel denklemlerdir. Bu denklemler musluğunuzdan akan suyun hareketini ya da uçan bir uçağın kanadının etrafındaki hava akışını tanımlamak için kullanılabilmektedirler.

Tüm Reklamları Kapat

Ancak bu denklemler daima doğru sonuçlar vermemektedir. Navier - Stokes denklemleri yalnızca belli bir sistemin temsili fiziksel uzunluk ölçeği, akışkanı oluşturan moleküllerin ortalama serbest yolundan çok daha büyükse geçerli oluyor. Matematikçiler bunun neden böyle olduğunu henüz bulabilmiş değiller.

Erdös - Strauss Varsayımı

1948 yılında Paul Erdös ve Ernst Strauss, "n≥2n \ge 2 olmak üzere, 4n=1a+1b+1c\frac{4}{n} = \frac{1}{a} +\frac{1}{b} + \frac{1}{c} eşitliğini sağlayan a\text{a}, b\text{b}, c\text{c} pozitif tamsayılarını bulmak mümkün müdür?" diye bir problem ortaya attılar. Bir başka değişle 4/n4/n kesiri üç pozitif birim kesrin toplamı olarak yazılabilir miydi? Örneğin n=5n=5 olarak işlem yaptığımızda şu iki farklı çözüm yolunu elde ederiz:

45=12+14+120\frac{4}{5} = \frac{1}{2} +\frac{1}{4} + \frac{1}{20}

veya

Tüm Reklamları Kapat

45=12+15+110\frac{4}{5} = \frac{1}{2} +\frac{1}{5} + \frac{1}{10}

Peki bu, tüm pozitif tam sayılar için geçerli midir? Matematikçilerin çoğu buna "evet" cevabını veriyor fakat bu varsayım da matematikte çözülememiş en önemli problemlerden biri olmayı sürdürüyor.

Hodge Varsayımı

Yedi milenyum probleminden biri olan Hodge varsayımı, 1950 yılında William Hodge tarafından ortaya atıldı. Hodge'un teorisi harmonik formları homoloji elemanlarıyla ilişkilendirerek matematiksel analiz ve topoloji arasında bağlantı kurmaya çalışan bir teoridir. Karmaşık alt manifoldların (manifold; geometrik nesneler olarak kabul edilebilen uzaylara verilen isimdir), karmaşık manifoldlar içindeki varoluşu için doğal bir durum önerisi yapmaktadır. Bu teori günümüzde geometri, analiz ve matematiksel fiziğin çeşitli teorilerinin gelişmesi için bir uyaran niteliğindedir.

Hodge varsayımı, bazı geometrik yapı türlerini daha iyi incelemek ve sınıflandırmak için kullanılabilecek cebirsel karşılıklar olduğunu öne sürmektedir. Bu yaklaşım genel olarak matematikçileri ikiye bölmüş durumdadır. Matematikçi André Weil bu varsayıma olası bir karşı örnek olarak 4 katlı bir manifoldu öne sürmüştür ancak Weil'in örneği de tıpkı Hodge varsayımı gibi henüz kanıtlanmamıştır.

Tüm Reklamları Kapat

Birch ve Swinnerton-Dyer Kestirimi

y2=x3+ax+by^2=x^3+ax+b biçiminde denklemlerin grafiğini çizdiğimizde eliptik eğriler elde ederiz. Son yıllarda cebirle ilgilenen matematikçiler belirli bir diophantine denklemi tarafından tanımlanan eliptik eğrileri incelemeye başladılar. Bu eğrilerin kriptografi ve sayılar teorisinde önemli uygulama alanları vardır; bu yüzden bu denklemlere tam sayı veya rasyonel sayı çözümleri bulmak oldukça önemlidir. İşte tam da bu noktada Birch ve Swinnerton-Dyer varsayımı bu denklemlerin çözümlerini anlamada bize yardımcı olmaktadır.

Bu varsayıma göre rasyonel noktalar grubunun büyüklüğü, s=1s=1 noktasına yakın ilişkili bir zeta fonksiyonunun davranışıyla ilişkilidir. Eğer:

  • ζ(1)=0\zeta(1)=0 ise sonsuz sayıda rasyonel nokta (çözüm) vardır. Tersine eğer
  • ζ(1)≠0\zeta(1)\ne0 ise o zaman denklemin sonlu sayıda çözümü var demektir.

Fakat bu varsayım da henüz kanıtlanmış değil.

Sonuç

Başlangıçta günlük hayatta karşılaştığımız problemlerin üstesinden gelmek için kullandığımız matematik insanlık geliştikçe gelişmeye, genişlemeye devam etti. Her ne kadar matematik önümüze çoğu zaman hazır bir şekilde sunulsa da görüldüğü üzere oldukça dinamik bir disiplindir. Cevap aranan bir sürü soruya sahip ve bu sorular cevaplandıkça yeni sorular da oluşacaktır. Sanırım bize düşen de bu soruların peşinden gitmek olacak...

Alıntı Yap
Okundu Olarak İşaretle
45
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 13
  • İnanılmaz 8
  • Bilim Budur! 7
  • Mmm... Çok sapyoseksüel! 6
  • Merak Uyandırıcı! 3
  • Muhteşem! 1
  • Umut Verici! 1
  • İğrenç! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 26/03/2023 04:40:00 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13088

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Akış
İçerikler
Sosyal
Gündem
Zehirli Mantar
Mühendislik
Öğrenme
Diş Hekimi
Yayılım
Gözlem
Yeni Koronavirüs
Yılan
Bilinç
Mistisizm
Oyun Teorisi
Kimyasal Bağ
Mikoloji
Coğrafya
Uluslararası Uzay İstasyonu
Fosil
Test
Amerika
Kültür
Kadın Doğum
Matematik
Yüksek
Dalga
Canlılık Ve Cansızlık Arasındaki Farklar
Yüzey
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. Üzücek, et al. Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?. (30 Ekim 2022). Alındığı Tarih: 26 Mart 2023. Alındığı Yer: https://evrimagaci.org/s/13088
Üzücek, M., Bakırcı, Ç. M. (2022, October 30). Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?. Evrim Ağacı. Retrieved March 26, 2023. from https://evrimagaci.org/s/13088
M. Üzücek, et al. “Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 30 Oct. 2022, https://evrimagaci.org/s/13088.
Üzücek, Melike. Bakırcı, Çağrı Mert. “Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, October 30, 2022. https://evrimagaci.org/s/13088.

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Paylaş
Reklamsız Deneyim

Evrim Ağacı'ndaki reklamları, bütçenize uygun bir şekilde, kendi seçtiğiniz bir süre boyunca kapatabilirsiniz. Tek yapmanız gereken, kaç ay boyunca kapatmak istediğinizi aşağıdaki kutuya girip tek seferlik ödemenizi tamamlamak:

10₺/ay
x
ay
= 30
3 Aylık Reklamsız Deneyimi Başlat
Evrim Ağacı'nda ücretsiz üyelik oluşturan ve sitemizi üye girişi yaparak kullanan kullanıcılarımızdaki reklamların %50 daha az olduğunu, Kreosus/Patreon/YouTube destekçilerimizinse sitemizi tamamen reklamsız kullanabildiğini biliyor muydunuz? Size uygun seçeneği aşağıdan seçebilirsiniz:
Evrim Ağacı Destekçilerine Katıl
Zaten Kreosus/Patreon/Youtube Destekçisiyim
Reklamsız Deneyim
Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Moderatöre Bildir

Raporlama sisteminin amacı, platformu uygunsuz biçimde kullananların önüne geçmektir. Lütfen bir içeriği, sadece düşük kaliteli olduğunu veya soruya cevap olmadığını düşündüğünüz raporlamayınız; bu raporlar kabul edilmeyecektir. Bunun yerine daha kaliteli cevapları kendiniz girmeye çalışın veya size sunulan (oylama gibi) diğer araçlar ile daha kaliteli cevaplara teşvik edin. Kalitesiz bulduğunuz içerikleri eleyebileceğiniz, kalitelileri daha ön plana çıkarabileceğiniz yeni araçlar geliştirmekteyiz.

Kural İhlali Seç
Öncül Ekle
Sonuç Ekle
Mantık Hatası Seç
Kural İhlali Seç
Soru Sor
Aşağıdaki "Soru" kutusunu sadece soru sormak için kullanınız. Bu kutuya soru formatında olmayan hiçbir cümle girmeyiniz. Sorunuzla ilgili ek bilgiler vermek isterseniz, "Açıklama" kısmına girebilirsiniz. Soru kısmının soru cümlesi haricindeki kullanımları sorunuzun silinmesine ve UP kaybetmenize neden olabilir.
Görsel Ekle
Kurallar
Platform Kuralları
Bu platform, aklınıza takılan soruları sorabilmeniz ve diğerlerinin sorularını yanıtlayabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Gerçekten soru sorun, imâdan ve yüklü sorulardan kaçının.
Sorularınızın amacı nesnel olarak gerçeği öğrenmek veya fikir almak olmalıdır. Şahsi kanaatinizle ilgili mesaj vermek için kullanmayın; yüklü soru sormayın.
2
Bilim kimliğinizi kullanın.
Evrim Ağacı bir bilim platformudur. Dolayısıyla sorular ve cevaplar, bilimsel perspektifi yansıtmalıdır. Geçerli bilimsel kaynaklarla doğrulanamayan bilgiler veya reklamlar silinebilir.
3
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Sahtebilimi desteklemek yasaktır.
Sahtebilim kategorisi altında konuyla ilgili sorular sorabilirsiniz; ancak bilimsel geçerliliği bulunmayan sahtebilim konularını destekleyen sorular veya cevaplar paylaşmayın.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Soru Ara
Aradığınız soruyu bulamadıysanız buraya tıklayarak sorabilirsiniz.
Alıntı Ekle
Eser Ekle
Kurallar
Platform Kuralları
Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Tavsiye Et
Aşağıdaki kutuya, [ESER ADI] isimli [KİTABI/FİLMİ] neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Kurallar
Platform Kuralları
Bu platform; okuduğunuz kitaplara, izlediğiniz filmlere/belgesellere veya takip ettiğiniz YouTube kanallarına yönelik tavsiylerinizi ve/veya yapıcı eleştirel fikirlerinizi girebilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Önceliğimiz pozitif tavsiyelerdir.
Bu platformu, beğenmediğiniz eserleri yermek için değil, beğendiğiniz eserleri başkalarına tanıtmak için kullanmaya öncelik veriniz. Sadece negatif girdileri olduğu tespit edilenler platformdan geçici veya kalıcı olarak engellenebilirler.
2
Tavsiyenizin içeriği sadece negatif olamaz.
Tavsiye yazdığınız eserleri olabildiğince objektif bir gözlükle anlatmanız beklenmektedir. Dolayısıyla bir eseri beğenmediyseniz bile, tavsiyenizde eserin pozitif taraflarından da bahsetmeniz gerekmektedir.
3
Negatif eleştiriler yapıcı olmak zorundadır.
Eğer tavsiyenizin ana tonu negatif olacaksa, tüm eleştirileriniz yapıcı nitelikte olmak zorundadır. Yapıcı bir tarafı olmayan veya tamamen yıkıcı içerikte olan eleştiriler silinebilir ve yazarlar geçici veya kalıcı olarak engellenebilirler.
4
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Eser Ara
Aradığınız eseri bulamadıysanız buraya tıklayarak ekleyebilirsiniz.
Tür Ekle
Üst Takson Seç
Kurallar
Platform Kuralları
Bu platform, yaşamış ve yaşayan bütün türleri filogenetik olarak sınıflandırdığımız ve tanıttığımız Yaşam Ağacı projemize, henüz girilmemiş taksonları girebilmeniz için geliştirdiğimiz bir platformdur. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Takson adlarını doğru yazdığınızdan emin olun.
Taksonların sadece ilk harfleri büyük yazılmalıdır. Latince tür adlarında, cins adının ilk harfi büyük, diğer bütün harfler küçük olmalıdır (Örn: Canis lupus domesticus). Türkçe adlarda da sadece ilk harf büyük yazılmalıdır (Örn: Evcil köpek).
2
Taksonlar arası bağlantıları doğru girin.
Girdiğiniz taksonun üst taksonunu girmeniz zorunludur. Eğer üst takson yoksa, mümkün olduğunca öncelikle üst taksonları girmeye çalışın; sonrasında daha alt taksonları girin.
3
Birden fazla kaynaktan kontrol edin.
Mümkün olduğunca ezbere iş yapmayın, girdiğiniz taksonların isimlerinin birden fazla kaynaktan kontrol edin. Alternatif (sinonim) takson adlarını girmeyi unutmayın.
4
Tekrara düşmeyin.
Aynı taksonu birden fazla defa girmediğinizden emin olun. Otomatik tamamlama sistemimiz size bu konuda yardımcı olacaktır.
5
Mümkünse, takson tanıtım yazısı (Taksonomi yazısı) girin.
Bu araç sadece taksonları sisteme girmek için geliştirilmiştir. Dolayısıyla taksonlara ait minimal bilgiye yer vermektedir. Evrim Ağacı olarak amacımız, taksonlara dair detaylı girdilerle bu projeyi zenginleştirmektir. Girdiğiniz türü daha kapsamlı tanıtmak için Taksonomi yazısı girin.
Gönder
Tür Gözlemi Ekle
Tür Seç
Fotoğraf Ekle
Kurallar
Platform Kuralları
Bu platform, bizzat gözlediğiniz türlerin fotoğraflarını paylaşabilmeniz için geliştirilmiştir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Net ve anlaşılır görseller yükleyin.
Her zaman bir türü kusursuz netlikte fotoğraflamanız mümkün olmayabilir; ancak buraya yüklediğiniz fotoğraflardaki türlerin özellikle de vücut deseni gibi özelliklerinin rahatlıkla ayırt edilecek kadar net olması gerekmektedir.
2
Özgün olun, telif ihlali yapmayın.
Yüklediğiniz fotoğrafların telif hakları size ait olmalıdır. Başkası tarafından çekilen fotoğrafları yükleyemezsiniz. Wikimedia gibi açık kaynak organizasyonlarda yayınlanan telifsiz fotoğrafları yükleyebilirsiniz.
3
Paylaştığınız fotoğrafların telif hakkını isteyemezsiniz.
Yüklediğiniz fotoğraflar tamamen halka açık bir şekilde, sınırsız ve süresiz kullanım izniyle paylaşılacaktır. Bu fotoğraflar nedeniyle Evrim Ağacı’ndan telif veya ödeme talep etmeniz mümkün olmayacaktır. Kendi fotoğraflarınızı başka yerlerde istediğiniz gibi kullanabilirsiniz.
4
Etik kurallarına uyun.
Yüklediğiniz fotoğrafların uygunsuz olmadığından ve başkalarının haklarını ihlâl etmediğinden emin olun.
5
Takson teşhisini doğru yapın.
Yaptığınız gözlemler, spesifik taksonlarla ilişkilendirilmektedir. Takson teşhisini doğru yapmanız beklenmektedir. Taksonu bilemediğinizde, olabildiğince genel bir taksonla ilişkilendirin; örneğin türü bilmiyorsanız cins ile, cinsi bilmiyorsanız aile ile, aileyi bilmiyorsanız takım ile, vs.
Gönder
Tür Ara
Aradığınız türü bulamadıysanız buraya tıklayarak ekleyebilirsiniz.