Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?

Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü? Teaching Channel
10 dakika
8,947
Tüm Reklamları Kapat

Matematik... Kimilerinin gözünde en zor ve en önemli ders, kimilerinin gözünde ise bilim olduğu dahi tartışmalı olan bir araç. Ancak elbette matematik bunlardan çok daha fazlasıdır. Aksiyomları, teoremleri, ispatları ve bu yazımızda da değineceğimiz konu olan çözülememiş problemleriyle oldukça zengin bir disiplindir matematik. Şimdi gelin, matematiğin çözülememiş problemlerinden birkaçını beraber inceleyelim.

Goldbach Hipotezi

7 Haziran 1742'de Alman matematikçi Christian Goldbach, Leonhard Euler'e yazdığı bir mektupta bu hipotezinden bahsetmiştir. Hipoteze göre 2'den büyük her çift sayı iki asal sayının toplamı şeklinde yazılabilir. Örnek olarak 3+5=83+5=8 işlemini verebiliriz. 3 ile 5 asal sayılardır ve toplamları bir çift sayı olan 8'i vermektedir.

Anlaşılması oldukça kolay olan bu hipotezin kesin bir kanıtı henüz yoktur. Bu hipotezin bilgisayarlı deneylerde 4⋅10184 \cdot 10^{18} sayısına kadar geçerli olduğu gösterilmiş olsa da, tüm çift sayılar için genelleme yapabileceğimiz bir ispatı halen bulunamamıştır.

Tüm Reklamları Kapat

Goldbach varsayımını gösteren bir illüstrasyon
Goldbach varsayımını gösteren bir illüstrasyon
Pinterest

Goldbach varsayımının kanıtlanabilmesi için ya iki asal sayının toplamı biçiminde yazılamayan bir çift sayı bulmamız ya da bütün çift sayılar için Goldbach varsayımının doğru olduğunu gösteren bir ispat geliştirmemiz gerekmektedir.

Riemann Hipotezi

Bu hipotez 1859 yılında Alman matematikçi Georg Friedrich Bernhard Riemann tarafından ortaya atılmıştır. Kısaca bu hipotez, asal sayıların sayı doğrusu üzerindeki dağılımını bulma amacıyla oluşturulmuştur. Riemann, bu dağılımın

ζ=1+1/2s+1/3s+1/4s...\zeta=1+1/2^s+1/3^s+1/4^s...

fonksiyonunun davranışına çok benzediğini fark etmiştir. Formülde ss, karmaşık sayılar kümesinin bir elemanıdır.

Tüm Reklamları Kapat

ζ(s)=0,s≠1\zeta(s)=0, s\ne1

denkleminin tüm çözümleri karmaşık düzlemde bir doğru üzerinde bulunmaktadır. Yani bu, denklemin tüm karmaşık sayı çözümlerinin gerçel kısmının 1/2 olduğu anlamına gelir. Bu iddia 1012 çözüm için sınanmış ve doğru olduğu görülmüştür. Bu nedenle birçok matematikçi bu hipotezin doğru olduğuna inanmaktadır.

Ancak matematikte çok sayıda örnek bulmak o hipotezin doğru olduğunu elbette kanıtlamaz. Aslında bu durum diğer bilim dalları için de geçerlidir ama diğer bilim dalları matematik gibi "ideal olan" ile değil "gerçek olan" ile uğraştığı için, diğer bilimlerde "çok sayıda örnek bulmak", doğru yolda olunduğuna dair güçlü bir işarettir. Ünlü matematikçi David Hilbert'in "matematiğin çözülememiş en önemli problemlerinden biri" olarak nitelendirdiği Riemann hipotezinin henüz genel geçer bir ispatı yapılamamıştır.

Riemann zeta fonksiyonunun 0'a eşit olduğu durumu gösteren fonksiyon grafiği
Riemann zeta fonksiyonunun 0'a eşit olduğu durumu gösteren fonksiyon grafiği
IFL Science

Riemann hipotezinin çözüme kavuşması başka birçok teoremin kanıtlanmasını sağlamanın yanı sıra belirli algoritmaların nispeten daha kısa sürede çalışmasını sağlayacak ve asal sayılar arasındaki boşlukların dağılımını açıklayacaktır.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

İkiz Asal Varsayımı

Kendisinden ve 1'den başka böleni olmayan tam sayılara "asal sayılar" diyoruz. Örneğin; 2, 3, 5, 17, 29 ve 53 asal sayılardır. Asal sayılardan aralarındaki fark 2 olanlarına ise "ikiz asal sayılar" diyoruz. Örneğin 3 ve 5, 5 ve 7, 11 ve 13 ikiz asal sayılardır. İkiz asal sayı kavramını ilk olarak 1846 yılında Fransız matematikçi Alphonse de Polignac ortaya atmıştır. Riemann hipotezinde bahsettiğimiz üzere, asal sayıların dağılımı düzenli değildir ve sayılar büyüdükçe asal sayılar da seyrekleşir. Öklid, asal sayıların sonsuz olduğunu kanıtlamıştı. Peki ikiz asal sayılar da sonsuz mudur? Bu halen yanıtı aranan bir sorudur.

Ardışık asal sayıların oluşturduğu spiraller
3Blue1Brown

Collatz Problemi

Şimdi herhangi bir sayı seçelim. Seçtiğimiz sayı çiftse 2'ye bölelim, tekse 3 ile çarpıp 1 ekleyelim ve elde ettiğimiz sayılara aynı işlemi uygulamaya devam edelim. Yani matematiksel olarak ifade edecek olursak:

F(n)={n2if n%2=03n+1if n%2=1F(n) = \begin{cases}
\frac{n}{2} &\text{if } n\%2=0 \\
3n+1 &\text{if } n\%2=1
\end{cases}

Şaşırtıcı bir şekilde, bunu hangi sayıyla başlatırsanız başlatın hep 4, 2, 1 döngüsüne ulaştığınızı ve o döngüden çıkamayarak sona geldiğinizi fark edeceksiniz. İşte bu problemin ismi, Collatz Problemi.

Bu problemi 1932'de o zamanlar 20 yaşında bir matematik öğrencisi olan Lothar Collatz keşfetti. Collatz, bu işlemi hangi sayıya uygularsa uygulasın en nihayetinde 4, 2, 1 döngüsüne ulaşınca ilk başta yeni bir kural bulmak üzere olduğunu düşündü. Fakat yanılmıştı, bu varsayımıyla alakalı hiçbir kural bulamadı. Günümüzde işlemlerin sonucunda 4, 2, 1 döngüsünü elde edemediğimiz bir sayı henüz bulunamadı. Ancak bunun yerine, sonsuza giden çok büyük bir sayı veya belki de döngüde sıkışıp kalan ve asla 1'e ulaşamayan bir sayı olabileceği düşünülüyor. Ne yazık ki bu düşünceler de henüz kanıtlanmış değil.

Collatz problemini gösteren bir örnek
Collatz problemini gösteren bir örnek
Mathematica & Wolfram Language

196 Sayısı Problemi

"Palindromik sayılar" tersten ve düz olarak yazıldıklarında aynı olan sayılara verilen isimdir. Örneğin 1221 sayısı bir palindromik sayıdır; çünkü sayıyı ters çevirdiğimizde de 1221 sayısını elde ederiz. Matematikte bazı sayılar kullanılarak böyle palindromik sayılar elde edebiliriz. Mesela 54 ile, 54'ün tersi olan 45'i topladığımızda 99 sonucuna ulaşırız; yani bir palindromik sayı buluyoruz. Bu örneğimizde tek adımda palindromik bir sayıya ulaştık ama bu tek adımda bitmek zorunda değildir: Bu sefer de 69 sayısını kullanalım:

Tüm Reklamları Kapat

  • 69+96=16569+96=165, 165 palindromik olmadığı için işleme devam edelim.
  • 165+561=726165+561=726, 726 da palindromik değil bu nedenle işleme devam ediyoruz.
  • 726+627=1353726+627=1353, 1353 de palindromik sayı değil.
  • 1353+3531=48841353+3531=4884 sayısı palindromik olduğu için işlemi burada bitiriyoruz.

196 sayısı, işleme sokulduğu zaman palindromik sayı vermeyen en küçük sayı olarak biliniyor. 196 sayısından başka işleme sokulduğu zaman palindromik sayı vermeyen sayılar da vardır: 295,394,493,592,689,691,788,790,879,887... gibi.

1990 yılında John Walker adında bir programcı, 196 sayısı için bu işlemi 2.415.836 defa tekrarlamış ve milyon basamaklı, palindromik olmayan bir sayı bulmuştur. 2012 yılında ise bu işlem devam ettirildiği takdirde ve palindromik bir sayıya ulaşıldığında bu sayının 600 milyondan fazla basamaktan oluşacağı bulunmuştur.

Mutlu Son Problemi

Paul Erdös tarafından ortaya atılan bu probleme mutlu son problemi denmesinin sebebi, Erdös'ün problemi üzerinde çalışan iki matematikçi Esther Klein ve George Szekeres'in evlenmesidir. Problem ise şu şekilde:

Tüm Reklamları Kapat

Popular Mechanics

Kağıda düz bir çizgi oluşturmayacak şekilde rastgele dağılmış 5 nokta çizelim. Bu noktalardan dördünü kullanarak daima konveks bir dörtgen elde edebiliriz. Yani konveks bir dörtgen oluşturabilmek için kağıda rastgele 5 nokta koymamız yeterlidir. Benzer bir şekilde beşgen oluşturabilmek için en az 9; altıgen oluşturabilmek için en az 17 noktaya ihtiyacımız vardır.

Ancak işler buradan sonra karışmaya başlıyor: Çünkü yedigen oluşturmadan itibaren en az kaç tane noktaya ihtiyacımız olduğunu bilmiyoruz. Belki bir formül sayesinde bunları hesaplayabiliriz. Bazı matematikçiler M\text{M} nokta sayısı ve N \text{N }şeklin kenar sayısı olmak üzere M=1+2N−2M=1+2^{N-2} formülünün yardımcı olabileceğinden şüpheleniyorlar; fakat henüz bu formülün işe yarar olduğu tam anlamıyla kanıtlanmış değil.

Euler'in Mükemmel Küboidi

Şimdi de biraz ortaokul bilgilerimizi hatırlayalım. Pisagor teoreminin a2+b2=c2a^2+b^2=c^2 olduğunu çoğumuz hatırlıyoruzdur. Bu formülü sözel olarak ifade edecek olursak; bir dik üçgende dik kenar uzunluklarının (a \text{a }ve b\text{b}) karelerinin toplamı hipotenüsün (c\text{c}) karesine eşittir. Euler'in mükemmel küboidi de tıpkı Pisagor bağıntısına benzer; ancak Pisagor teoremini 2 boyutlu uzayda kullanıyoruz, Euler'in mükemmel küboidindeyse 3 boyutlu uzay üzerinde çalışmamız gerek. Bu nedenle de elimizde 4 sayı olacak.

Euler'in mükemmel küboidi
Euler'in mükemmel küboidi
Popular Mechanics

Euler'in mükemmel küboidinde aradığımız özellik a\text{a}, b\text{b} ve c\text{c} küboidin kenar uzunlukları olmak üzere a2+b2+c2=g2a^2+b^2+c^2= g^2 eşitliğini sağlayan ve tam sayı olan bir g\text{g} hacim köşegeni ile yüzey köşegenlerinin (yukarıdaki görselde d\text{d}, e\text{e} ve f\text{f} ile gösterilen) tam sayı olmasıdır. Matematikçiler birçok deneme yapmalarına rağmen böyle bir küboid bulabilmiş değiller fakat bununla birlikte böyle bir küboidin olamayacağını da henüz kanıtlayamadılar. Kısacası bu zorlu arayış halen sürmekte.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Önemli Haritalar: Maceracılar ve Hayalperestler İçin (Sarah Sheppard)

Bermuda Şeytan Üçgeni nerededir?
Güney Kutbu’na ilk kimler gitti?
Dünyanın en tehlikeli hayvanı nerede yaşar?
Gezegenimizin derinliklerinde neler oluyor?
Dağlar nasıl oluştu?
Denizlerin en derin noktası nerededir?

Bu kitaptaki haritaları inceleyerek yeryüzünün en esrarengiz yerleri ve en fantastik canlılarıyla tanışacak, kâşiflere ve korsanlara maceralarında eşlik edeceksiniz. Kıtaları, okyanusları, yüksek dağları, derin çukurları, yeraltının gizemlerini, kısacası gezegenimizi keşfedeceksiniz.
İyi yolculuklar!

Bu kampanya, Kolektif Kitap tarafından Evrim Ağacı okurlarına sunulan fırsatlardan birisidir.

Devamını Göster
₺250.00
Önemli Haritalar: Maceracılar ve Hayalperestler İçin (Sarah Sheppard)
  • Dış Sitelerde Paylaş

Euler - Mascheroni Sabiti Rasyonel Bir Sayı Mı?

γ\gamma sembolüyle gösterilen ve 1734 yılında İsviçreli matematikçi Leonhard Euler tarafından bulunan bu sabiti, Euler, 16 basamağına kadar hesaplamıştır. 1790 yılında ise Lorenzo Mascheroni 32 basamağına kadar hesaplayarak sayıyı genişletmeyi başarmıştır:

γ=0.577215664901532860606512090082402431042... \gamma=0.577215664901532860606512090082402431042... 

Euler - Mascheroni sabiti, harmonik serilerle doğal logaritmanın arasındaki farka ya da limite eşittir ve şöyle ifade edilir:

γ=lim⁡n→∞(∑k=1n1k−ln⁡n)\gamma=\lim\limits_{n\rightarrow\infin}(\displaystyle\sum_{k=1}^n \frac{1}{k}-\ln{n})

Bu sabit matematiğin birçok alanında kullanılıyor olsa da sayının rasyonel mi yoksa irrasyonel mi olduğu konusu halen bir muammadır.

Navier - Stokes Denklemleri

Fransız mühendis ve fizikçi Claude Louis Navier ile İrlandalı fizikçi ve matematikçi George Gabriel Stokes'un adını taşıyan denklemler akışkanların hareketini açıklayan birtakım diferansiyel denklemlerdir. Bu denklemler musluğunuzdan akan suyun hareketini ya da uçan bir uçağın kanadının etrafındaki hava akışını tanımlamak için kullanılabilmektedirler.

Ancak bu denklemler daima doğru sonuçlar vermemektedir. Navier - Stokes denklemleri yalnızca belli bir sistemin temsili fiziksel uzunluk ölçeği, akışkanı oluşturan moleküllerin ortalama serbest yolundan çok daha büyükse geçerli oluyor. Matematikçiler bunun neden böyle olduğunu henüz bulabilmiş değiller.

Erdös - Strauss Varsayımı

1948 yılında Paul Erdös ve Ernst Strauss, "n≥2n \ge 2 olmak üzere, 4n=1a+1b+1c\frac{4}{n} = \frac{1}{a} +\frac{1}{b} + \frac{1}{c} eşitliğini sağlayan a\text{a}, b\text{b}, c\text{c} pozitif tamsayılarını bulmak mümkün müdür?" diye bir problem ortaya attılar. Bir başka değişle 4/n4/n kesiri üç pozitif birim kesrin toplamı olarak yazılabilir miydi? Örneğin n=5n=5 olarak işlem yaptığımızda şu iki farklı çözüm yolunu elde ederiz:

45=12+14+120\frac{4}{5} = \frac{1}{2} +\frac{1}{4} + \frac{1}{20}

veya

Tüm Reklamları Kapat

45=12+15+110\frac{4}{5} = \frac{1}{2} +\frac{1}{5} + \frac{1}{10}

Peki bu, tüm pozitif tam sayılar için geçerli midir? Matematikçilerin çoğu buna "evet" cevabını veriyor fakat bu varsayım da matematikte çözülememiş en önemli problemlerden biri olmayı sürdürüyor.

Hodge Varsayımı

Yedi milenyum probleminden biri olan Hodge varsayımı, 1950 yılında William Hodge tarafından ortaya atıldı. Hodge'un teorisi harmonik formları homoloji elemanlarıyla ilişkilendirerek matematiksel analiz ve topoloji arasında bağlantı kurmaya çalışan bir teoridir. Karmaşık alt manifoldların (manifold; geometrik nesneler olarak kabul edilebilen uzaylara verilen isimdir), karmaşık manifoldlar içindeki varoluşu için doğal bir durum önerisi yapmaktadır. Bu teori günümüzde geometri, analiz ve matematiksel fiziğin çeşitli teorilerinin gelişmesi için bir uyaran niteliğindedir.

Hodge varsayımı, bazı geometrik yapı türlerini daha iyi incelemek ve sınıflandırmak için kullanılabilecek cebirsel karşılıklar olduğunu öne sürmektedir. Bu yaklaşım genel olarak matematikçileri ikiye bölmüş durumdadır. Matematikçi André Weil bu varsayıma olası bir karşı örnek olarak 4 katlı bir manifoldu öne sürmüştür ancak Weil'in örneği de tıpkı Hodge varsayımı gibi henüz kanıtlanmamıştır.

Tüm Reklamları Kapat

Birch ve Swinnerton-Dyer Kestirimi

y2=x3+ax+by^2=x^3+ax+b biçiminde denklemlerin grafiğini çizdiğimizde eliptik eğriler elde ederiz. Son yıllarda cebirle ilgilenen matematikçiler belirli bir diophantine denklemi tarafından tanımlanan eliptik eğrileri incelemeye başladılar. Bu eğrilerin kriptografi ve sayılar teorisinde önemli uygulama alanları vardır; bu yüzden bu denklemlere tam sayı veya rasyonel sayı çözümleri bulmak oldukça önemlidir. İşte tam da bu noktada Birch ve Swinnerton-Dyer varsayımı bu denklemlerin çözümlerini anlamada bize yardımcı olmaktadır.

Bu varsayıma göre rasyonel noktalar grubunun büyüklüğü, s=1s=1 noktasına yakın ilişkili bir zeta fonksiyonunun davranışıyla ilişkilidir. Eğer:

  • ζ(1)=0\zeta(1)=0 ise sonsuz sayıda rasyonel nokta (çözüm) vardır. Tersine eğer
  • ζ(1)≠0\zeta(1)\ne0 ise o zaman denklemin sonlu sayıda çözümü var demektir.

Fakat bu varsayım da henüz kanıtlanmış değil.

Sonuç

Başlangıçta günlük hayatta karşılaştığımız problemlerin üstesinden gelmek için kullandığımız matematik insanlık geliştikçe gelişmeye, genişlemeye devam etti. Her ne kadar matematik önümüze çoğu zaman hazır bir şekilde sunulsa da görüldüğü üzere oldukça dinamik bir disiplindir. Cevap aranan bir sürü soruya sahip ve bu sorular cevaplandıkça yeni sorular da oluşacaktır. Sanırım bize düşen de bu soruların peşinden gitmek olacak...

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
57
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 18
  • Mmm... Çok sapyoseksüel! 11
  • İnanılmaz 10
  • Bilim Budur! 9
  • Merak Uyandırıcı! 5
  • Muhteşem! 3
  • Umut Verici! 2
  • İğrenç! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/07/2024 02:59:57 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13088

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Basınç
Hominid
Kimya Tarihi
Mühendislik
Genel Görelilik Teorisi
Uçak
Skeptisizm
Protein
Homeostasis
Argüman
Araç
Teleskop
Yer
Teyit
Deniz
Karanlık Enerji
Araştırmacılar
Anksiyete
Kilometre
Nötron Yıldızı
Cinsel Yönelim
Bağışıklık Sistemi
Özel Görelilik
Uzay Aracı
Parçacık
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. Üzücek, et al. Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?. (30 Ekim 2022). Alındığı Tarih: 21 Temmuz 2024. Alındığı Yer: https://evrimagaci.org/s/13088
Üzücek, M., Bakırcı, Ç. M. (2022, October 30). Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?. Evrim Ağacı. Retrieved July 21, 2024. from https://evrimagaci.org/s/13088
M. Üzücek, et al. “Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 30 Oct. 2022, https://evrimagaci.org/s/13088.
Üzücek, Melike. Bakırcı, Çağrı Mert. “Matematikte Henüz Çözülememiş Problemler Nelerdir? Bu Problemleri Çözmek Mümkün mü?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, October 30, 2022. https://evrimagaci.org/s/13088.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close