Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Asal Sayı Nedir? Asal Sayılar Neden Bu Kadar Önemli?

Asal Sayı Nedir? Asal Sayılar Neden Bu Kadar Önemli? New Scientist
6 dakika
3,486
  • Matematik
Tüm Reklamları Kapat

Kendisinden ve 1'den başka böleni olmayan doğal sayılara asal sayılar denir (örneğin 3, 97, 751 veya 1009 gibi). Nadir ve eşsiz olan birçok şeyin insanlar için önemli olması gibi, asal sayılar da matematikte ve bilimde büyük öneme sahiptir.

Bir sayının asal sayı olabilmesi için aşağıdaki üç koşulu sağlaması gerekir:

Tüm Reklamları Kapat

  1. Söz konusu sayı, doğal sayılar kümesinin bir elemanı olmalıdır.
  2. Sayı, 1'den büyük olmalıdır.
  3. Kendisinden ve 1'den başka böleni olmamalıdır.

Örneğin; 5, 7, 19 ve 53 sayıları bu üç koşulu da sağladıkları için birer asal sayıdır. Ancak 6, 25, 49 ve 57 gibi sayılar üçüncü koşulu sağlamadıkları için asal sayı değillerdir. Bir sayı eğer asal sayı değilse mutlaka bileşik sayı olmak zorundadır. Adından da anlaşılabileceği gibi bileşik sayılar, çarpanlarına ayrıldıklarında birden fazla şekilde yazılabilirler. Örnek verecek olursak 49 sayısını hem 1×491\times 49 hem de 7×77\times 7 şeklinde yazabiliriz.

Sonsuz tane asal sayı bulunmaktadır. Görece küçük asal sayıları bulmak kolay olsa da basamak sayısı arttıkça asal sayıları tespit etmek zorlaşmaktadır. Şu an bildiğimiz en büyük asal sayı 282.589.933 - 1'dir ve 24.862.048 basamaktan oluşmaktadır.

Tüm Reklamları Kapat

Bunun yanı sıra asal sayıların 1 tanesi hariç hepsi tek sayıdır. Çift olan tek asal sayı 2'dir. Bu durumun sebebi tüm çift sayıların 2'nin bir katı olmak zorunda olmasıdır.

Asal Sayıların Tarihçesi

Asal sayılardan ilk olarak günümüzden yaklaşık 3550 yıl önce, bir Rhind papirüsünde bahsedilmiştir. Öklid, 13 ciltten oluşan ünlü eseri Elementler'de sonsuz sayıda asal sayı olduğunu göstermiştir. Öklid bunun yanı sıra her tam sayının asal sayıların çarpımı şeklinde yazılabileceğini de yine Elementler'de belirtmiştir.

3550 yıl öncesine ait bir Mısır papirüsü olan Rhind papirüsü.
3550 yıl öncesine ait bir Mısır papirüsü olan Rhind papirüsü.
ZME Science

Milattan önce 200 yılında Yunan matematikçi Eratosthenes, Eratosthenes'in eleği olarak bilinen bir yöntemle asal sayıları hesaplayan bir algoritma oluşturdu. Bu algoritma şu şekilde çalışıyor:

Evrim Ağacı'ndan Mesaj

  • 2'den 100'e kadar olan sayıları 10x10'luk bir kareye yerleştirin.
  • 10'a kadar olan asal sayıların kendileri hariç katlarını boyayın:
  • Örneğin 2'nin kendisi hariç 2'nin tüm katlarını boyayın.
  • Sonrasında 3'ün kendisi hariç tüm katlarını boyayın.
  • Sonrasında 5 ve 7 için bu işlemi tekrar edin.
  • Geriye kalan, hiç boyanmamış sayıların hepsi asal sayılar olacaktır: 2, 3, 5,7, 11, 13,17,19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ve 97.
Eratosthenes'in asal sayıları tespit etmede kullandığı yöntem.
ZME Science

Aklın ve bilimin baskılandığı Karanlık Çağ'da asal sayılarla ilgili bir çalışma yapılmamıştır. 17. yüzyıla gelindiğinde ise Fermat, Euler ve Gauss gibi ünlü matematikçiler asal sayıları daha iyi anlamak için çalışmalar yapmıştır.

Pierre de Fermat, daha sonra Leibniz ve Euler tarafından çözülecek olan Fermat'ın Küçük Teoremi'ni ortaya atmıştır. O zamanlar asal sayılarla ilgili ortaya atılan teorilerin birer devrim niteliğinde olduğuna dikkat çekmek gerekir. Günümüzdeyse asal sayıların dağılımıyla alakalı olan Riemann Hipotezi, Clay Matematik Enstitüsü'nün çözülemeyen 1 milyon dolarlık ödüllü problemlerinden birisidir.

Mersenne Asalları

Mersenne asalları, ismini Fransız keşiş Marin Mersenne'den almaktadır. Mersenne asalları (veya kısaca mm), pp bir asal sayı olmak üzere 2p−12^p - 1 şeklinde yazılabilen asal sayılara verilen isimdir. Bir diğer deyişle Mersenne asalları, m=2p−1m=2^p-1 olarak ifade edilebilen asallardır (yani hem mm hem pp birer asal sayıdır). Bu yöntemle elde edilebilen ilk birkaç Mersenne asalı için pp asalı 2, 3, 5, 7, 13, 17, 19, 31, 61 ve 89'dur.

Eskiden bir sayının Mersenne asalı olup olmadığını tespit etmek oldukça zordu. Günümüzdeyse bilgisayarların devreye girmesiyle birlikte hesaplama biraz daha kolaylaşsa da bu iş süper bilgisayarların dahi oldukça zamanını almaktadır. Bu nedenle Mersenne asalları siber güvenlik ve kriptografi alanlarında sıklıkla kullanılmaktadır.

Ağustos 2008'de Kaliforniya Üniversitesi'nde sistem yöneticisi olan Edson Smith, o zamana kadar bilinen en büyük Mersenne asalını bulmuştu. Bulduğu sayı 12.978.189 basamaklıydı. Bu sayı öylesine büyüktür ki, sayıyı yazmak yaklaşık 2.5 ay sürecektir ve kâğıda basılırsa kabaca 48 km uzunluğunda bir kâğıda ihtiyaç duyulacaktır.

Tüm Reklamları Kapat

Mersenne Asalları'nı elde etmek için kullanılabilecek ppasallarının Ekim 2021 itibariyle tam listesi şöyledir: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917 ve 82589933.

Fermat Asalları

Fermat asalları da tıpkı Mersenne asalları gibi özel bir asal sayı türüdür. Fermat; mm, 2n2^n'nin aldığı değere (nn, 0'dan büyük eşit bir sayıdır) eşit olmak üzere her Fm=2m+1F_m = 2^m+1 sayısının asal sayı olduğunu düşünüyordu. Fakat Euler F5=4.294.967.297F_5=4.294.967.297 sayısının 641×6700417641\times 6700417 şeklinde yazılabildiğini göstererek Fermat'nın iddiasını çürütmüştür. Yine de Fermat asallarının ilk beş tanesi yani F0 = 3, F1 = 5, F2 = 17, F3 =257 ve F4=65.537 sayıları asal sayılardır. Bugünse en iyi bilgisayarlarla bile en fazla F11 sayısına ulaşılabilmiştir.

Asal Sayılar Neden Bu Kadar Önemli?

Siber güvenlikten filmlere kadar asal sayılar hayatın birçok alanında kendini göstermektedir. Asal sayıların ciddi olarak önem kazanmaya başladığı zamanlarsa 1970'ler olmuştur. Çünkü bu yıllarda asal sayıların ortak anahtarlı şifreleme algoritmalarının temelinde kullanılabileceğinin farkına varılmıştır.

Yazımızın başında da belirttiğimiz gibi sayı büyüdükçe sayıyı asal çarpanlarına ayırmak zorlaşmaktadır. Bir sayıyı asal çarpanlarına kolayca ayırabilecek bir algoritma bulmak bilgisayar biliminin çözülememiş problemlerinden biridir. Bu nedenle kredi kartı bilgilerinizin çalınmasını önlemek, internette güvenli bir şekilde gezinebilmek için kullanılmaktadır. Bunların yanı sıra asal sayılar, kuantum mekaniğinde ve soyut cebirde de sıklıkla kullanılmaktadır.

Tüm Reklamları Kapat

Fakat belki de asal sayılarla ilgili en ilgi çekici şeylerden birisi, asal sayıları doğada görebilmemizdir. Örneğin Magicicada cinsi ağustos böcekleri yaşamlarının büyük bir çoğunluğunu yerin altında geçirirler. Biyologların gözlemleri sonucu Magicicada cinsi ağustos böceklerinin 7, 13 veya 17 yılda bir yüzeye çıktıkları görülmüştür. Birçok biyolog bunun bir tesadüf olmadığına inanıyor. Çünkü Magicicada cinsi ağustos böcekleri bu şekilde avcılarının yaşam döngüleriyle bir çeşit senkronizasyon oluşturarak avcılarından kaçınmış oluyorlar.

Magicicada cinsi bir canlı.
Magicicada cinsi bir canlı.
New York Post

Popüler Kültürde Asal Sayılar

Elbette asal sayılardan etkilenenler sadece matematikçiler olmamıştır. Matematikçilerin yanı sıra yazarlar, şarkıcılar ve sanatçılar da asal sayılardan etkilenmiştir. Kozmos belgeseliyle hepimizin yakından tanıdığı Carl Sagan, Mesaj (Contact) kitabında uzaylılarla iletişim kurulması için asal sayıların kullanıldığını kurgulamıştır. Bir başka örnek ise yine birçok kişi tarafından izlenen Akıl Oyunları (A Beautiful Mind) filmidir. Nobel Ekonomi Ödüllü matematikçi John Forbes Nash'in hayatını anlatan filmde asal sayılara da değinilmektedir.

Asal Sayılarla İlgili 3 Kısa Bilgi

  1. Ne yazık ki elimizde asal sayıların dağılımını açıklayan bir formül yok. Uzun yıllardır asal sayıların dağılımını anlayabilmek için bir algoritma arıyoruz fakat henüz bulabilmiş değiliz. Bu durum asal sayıları daha da çekici kılıyor.
  2. Teknik olarak "1" asal sayı değildir. Ancak bunun sebebinin ne olduğunu tam olarak bilmiyoruz. Eski Yunanlılar ve Arap matematikçiler "1" sayısını diğer sayılar gibi görmekten ziyade "birim" olarak algılıyorlardı. Bu nedenle 1, asal sayı olarak kabul edilmemiş olabilir. 18 ve 19. yüzyıllarda ise bazı matematikçiler 1'i asal sayı olarak kabul ediyordu. Günümüzdeyse asal sayılarının tanımında birtakım değişiklikler yapmamızı gerektirdiğinden 1'i asal sayı olarak kabul etmemeyi seçiyoruz.
  3. İki sayı asal olmasalar bile, "aralarında asal" olabilirler. İki farklı doğal sayının 1'den başka ortak bölenleri yoksa kendi aralarında asaldırlar. Örneğin; 4 ve 25 sayıları kendi aralarında asaldır çünkü 4 ve 25'in 1'den başka ortak böleni yoktur.
Alıntı Yap
Okundu Olarak İşaretle
34
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 11
  • Merak Uyandırıcı! 8
  • Mmm... Çok sapyoseksüel! 5
  • İnanılmaz 3
  • Muhteşem! 2
  • İğrenç! 1
  • Bilim Budur! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • M. Andrei. What Are Prime Numbers And Why Do They Matter — Yes, Even In Your Day-To-Day Life. (1 Mart 2023). Alındığı Tarih: 17 Nisan 2023. Alındığı Yer: ZME Science | Arşiv Bağlantısı
  • Ashish. Importance Of Prime Numbers In Nature, Popular Culture And The Internet. (8 Temmuz 2022). Alındığı Tarih: 17 Nisan 2023. Alındığı Yer: Science ABC | Arşiv Bağlantısı
  • V. Vaidyanathan. How Do You Find Prime Numbers?. (8 Temmuz 2022). Alındığı Tarih: 17 Nisan 2023. Alındığı Yer: Science ABC | Arşiv Bağlantısı
  • A. Helmenstine. What Is A Prime Number? How To Tell If A Number Is Prime. (30 Haziran 2021). Alındığı Tarih: 17 Nisan 2023. Alındığı Yer: Science Notes | Arşiv Bağlantısı
  • A. Peshin. How Are Prime Numbers Used In Cryptography?. (8 Temmuz 2022). Alındığı Tarih: 17 Nisan 2023. Alındığı Yer: Science ABC | Arşiv Bağlantısı
  • E.J. Hom. What Is A Prime Number?. (21 Mayıs 2013). Alındığı Tarih: 17 Nisan 2023. Alındığı Yer: Live Science | Arşiv Bağlantısı
Sıkça Sorulan Sorular

Kendisinden ve 1'den başka böleni olmayan doğal sayılara asal sayılar denir.

Bir sayının asal sayı olabilmesi için üç koşulu sağlaması gerekir: doğal sayılar kümesinin bir elemanı olmalıdır, 1'den büyük olmalıdır ve kendisinden ve 1'den başka böleni olmamalıdır.

Asal sayıların çift olan tek bir örneği hariç hepsi tek sayıdır. Ayrıca sonsuz tane asal sayı vardır.

Asal sayılardan ilk olarak günümüzden yaklaşık 3550 yıl önce, bir Rhind papirüsünde bahsedilmiştir. Öklid, 13 ciltten oluşan eseri Elementler'de sonsuz sayıda asal sayı olduğunu göstermiştir. M.Ö. 200 yılında Eratosthenes, Eratosthenes'in eleği olarak bilinen yöntemle asal sayıları hesaplayan bir algoritma oluşturdu.

Asal sayılar, matematikte ve bilimde büyük öneme sahiptir. Özellikle kriptografi, veri güvenliği ve algoritmalar gibi alanlarda kullanılmaktadır.

Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 29/05/2023 02:46:52 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/14404

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Saç
Sağlık Personeli
Hafıza
Çekirdek
Mars
Kuyruksuz Maymun
Diyet
Zaman
Mitler
Tardigrad
Öne Çıkan
Olumsuz
Şehir Hastanesi
Hidrotermal Baca
Haber
Entomoloji
Zehirli Mantar
Canlı Cansız
Mit
Yangın
Nörobiyoloji
Koruma
Elektrik
Mutasyon
Evrenin Genişlemesi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Youtube
Umut: Her Şey Çok Güzel Olacak mı?
Umut: Her Şey Çok Güzel Olacak mı?
Ay Kraterindeki Dev Teleskop Ne İşe Yarayacak?
Ay Kraterindeki Dev Teleskop Ne İşe Yarayacak?
Körler ve Sağırlar Rüya Görür mü?
Körler ve Sağırlar Rüya Görür mü?
Acı Yemek Basur Yapar Mı?
Acı Yemek Basur Yapar Mı?
Tatil Ortası Depresyonu: Tatil İnsanları Neden Üzüyor?
Tatil Ortası Depresyonu: Tatil İnsanları Neden Üzüyor?
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
M. Üzücek, et al. Asal Sayı Nedir? Asal Sayılar Neden Bu Kadar Önemli?. (23 Nisan 2023). Alındığı Tarih: 29 Mayıs 2023. Alındığı Yer: https://evrimagaci.org/s/14404
Üzücek, M., Alparslan, E. (2023, April 23). Asal Sayı Nedir? Asal Sayılar Neden Bu Kadar Önemli?. Evrim Ağacı. Retrieved May 29, 2023. from https://evrimagaci.org/s/14404
M. Üzücek, et al. “Asal Sayı Nedir? Asal Sayılar Neden Bu Kadar Önemli?.” Edited by Eda Alparslan. Evrim Ağacı, 23 Apr. 2023, https://evrimagaci.org/s/14404.
Üzücek, Melike. Alparslan, Eda. “Asal Sayı Nedir? Asal Sayılar Neden Bu Kadar Önemli?.” Edited by Eda Alparslan. Evrim Ağacı, April 23, 2023. https://evrimagaci.org/s/14404.
Geri Bildirim Gönder
ve seni takip ediyor
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close