Paylaşım Yap
Tüm Reklamları Kapat

Yıldızlararası (Interstellar) Filminin Bilimsel Arka Planı ve Kuramsal Analizi

25 dakika
97,055
Yıldızlararası (Interstellar) Filminin Bilimsel Arka Planı ve Kuramsal Analizi Wallpaper Stock
Evrim Ağacı Akademi: Bilimde Sanat, Sanatta Bilim Yazı Dizisi

Bu yazı, Bilimde Sanat, Sanatta Bilim yazı dizisinin 1 . yazısıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Evrim Ağacı olarak Yıldızlararası (Interstellar) isimli filmin bilimsel bir analizini buradaki yazımızda sunmuştuk. Ancak ülkemizin en önde gelen fizikçilerinden olan Doç. Dr. Kerem Cankoçak tarafından daha da teknik bir analiz kaleme alındı ve buradaki blogunda yayınlandı. Kerem hocamızın bu makalesinde, filmde yer alan çok sayıda fizik ve astrofizik kuramına detaylıca yer veriliyor ve tarihi arka planıyla birlikte ele alınıyor. Dolayısıyla bu analiz, sadece bir "film analizi" olmaktan öte, modern bilimin bir kısmının harika bir özeti görevi görüyor! Biz de, Evrim Ağacı olarak sevgili Kerem hocamız böyle bir analiz hazırlamışken, birçok konuyu öğrenip irdeleyebileceğiniz bu harika makaleyi okurlarımızla paylaşmak istedik. 

Umarız faydalı olur, iyi okumalar.

Giriş

Kasım 2014'te vizyona giren Yıldızlararası (Interstellar) filmi, izleyeciler tarafından büyük beğeni aldı. Ayrıca filmin gerek içeriği, gerekse görsel yapısı, bilime yaptığı katkılarıyla da ses getirdi. Bu yazıda filmin kurgusuna pek dokunmadan, filmin bilimsel arka planına göz atmaya çalışacağız.

Tüm Reklamları Kapat

Filmin bilim danışmanı (ve aynı zamanda yapımcılarından olan) Kip Thorne ünlü bir fizikçi. Filmle aynı tarihte piyasaya bir kitap çıkardı: The Science Of Interstellar (Yıldızlararası’nın Bilimi). Alfa Bilim dizisinden basıma hazırlanan bu kitapta filmdeki hemen her bir sahne anlatılmış ve açıklanmış. Yerimiz dar olduğundan kitaptaki önemli yerleri aktaracağımız bu yazıda, mümkün olduğunca filmi anlamamız için gereken fizik alt yapısı verilmeye çalışılacak. Bu yazıdaki görsellerin bir kısmı, ikisi de Alfa Bilim dizisinden çıkmış olan Stephen Hawking’in Zamanın Kısa Tarihi ve John Gribbin’in Çoklu Evrenler kitaplarından, diğerleriyse Kip Thorne’un kitabından alınmıştır.

Öncelikle Kip Thorne’dan söz edelim biraz. Amerikan Bilimler Akademisi, Ulusal Bilimler Akademisi, Rus Bilimler Akademisi, Amerikan Felsefe Derneği gibi en önde gelen bilim ve felsefe gruplarına üyeliği bulunan Prof. Thorne’un aldığı birçok ödülden birisi de 2009 yılında aldığı Albert Einstein Madalyası'dır. Prof. Thorne kütleçekim ve astrofizik konularında çalışmış ve California Teknoloji Enstitüsünde 2009 yılına kadar Feynman Teorik Fizik Profesörlüğü ünvanını taşımıştır. Genel Görelilik Teorisi üzerine yazdığı yüzlerce makale ve kitapla dünyanın önde gelen araştırmacılarından biri olmuştur.

Kip Thorne’un danışmanlığında kurgulanan film baştan sona bilimsel kuramlara dayanmakta. Fantezi öğeleri yok filmde. Ancak bu bilimsel kuramların hepsi aynı türden değil. Kip Thorne, Yıldızlararası’nın Bilimi kitabında bilimsel kuramları üçe ayırıyor: İlki, kanıtlanmış bilimsel gerçekler (görelilik kuramı, kuantum kuramı vb. ). İkincisi ise henüz kanıtlanmasa bile kanıtlanacağına kesin gözüyle bakılanlar (Örneğin henüz Mars’a insan gönderemediysek de yakın bir zamanda göndereceğimiz kesin). Üçüncü tür bilimsel kuramlarsa, diğer bilimsel kuramlarla çelişmeyen ancak henüz kanıtlanmamış kuramlar (sicim kuramları, 5 veya 11 boyutlu uzayzaman vb. ). Bu kuramların doğrulanacağına dair bir kanıt yok elimizde. Ancak diğer kuramlarla uyum içinde olduklarından bunlara fantezi veya hayal ürünü olarak bakamayız. Belki ilerde yanlışlanacaklar ve yerlerini başka kuramlara bırakacaklar ama şu anda bunları kullanarak evrene ilişkin bazı olguları açıklamaya çalışmakta bir sakınca yok. Sonuçta bu bir film, eğlenceli ve ufuk açıcı olması gerekiyor.

Filmin önemli bir kısmı bu üçüncü türden henüz kanıtlanmamış bilimsel kuramlara dayanıyor. Bunları anlatmadan önce, günümüz fiziğinin temellerini oluşturan kanıtlanmış kuramlara hızlıca bir göz atmamız gerekiyor.

Tüm Reklamları Kapat

1) Filmde Yer Alan, Kanıtlanmış Bilimsel Kuramlar

Görelilik

Einstein’ın 1905’te ortaya koyduğu özel görelilik kuramının temel postülası, fizik yasalarının serbest hareket eden tüm gözlemciler için hızları ne olursa olsun aynı olması gerektiğidir. Aslında Newton’ın hareket yasalarında da yer olan bu fikir Einstein tarafından Maxwell’in kuramını ve ışık hızını da kapsayacak şekilde genişletildi. Buna göre tüm gözlemciler ne hızla hareket ederlerse etsinler ışık hızını aynı ölçmelidirler. Bu basit fikir, kütle ile enerjinin denkliği (E=mc2) gibi çığır açıcı sonuçlara yol açmıştır. Işık hızının yüzde 90’ıyla yol alan cisim durgun kütlesinin iki katına ulaşır. Cisim asla ışık hızına ulaşamaz, çünkü ulaştığında kütlesinin de sonsuz olması gerekir. Göreliliğin bir diğer önemli sonucu da uzay ve zaman hakkında tamamen yeni bir yaklaşım getirmiş olmasıdır. Eşzamanlılık diye bir kavram yoktur artık. Görelilik kuramı mutlak zaman fikrine son vermektedir. Her gözlemci kendi ölçümüne sahiptir ve farklı gözlemcilerin taşıdığı özdeş saatler aynı sonucu vermek zorunda değildir. Örneğin aynı yaştaki ikizlerden biri bir uzay gemisine binip ışık hızına yakın bir hızda başka bir gezegene gitse, dünyadaki ikizinden daha genç olarak geri gelir. Bütün bunlar deneylerle kanıtlanmış bilimsel gerçeklerdir.

Uzayda bir kaynaktan belirli bir zamanda yayılan ışık sinyali zaman geçtikçe, boyutu ve konumu kaynağın hızından bağımsız olarak bir ışık küresi biçimindedir. Işık dalgası zaman geçtikçe büyüyen bir çember şeklinde genişler. Bu durumu biri uzay (x-ekseni) diğeri zaman (y-ekseni) olmak üzere iki boyutlu bir grafikte gösterirsek, sıfır noktasında (kaynakta) birleşen ve yukarıya doğru genişleyen bir üçgen elde ederiz. 4-boyutta çizemeyeceğimiz için uzay boyutunu ikiye indirip 3-boyutta çizersek bir koni elde ederiz (Şekil 1).

Şekil 1: Koninin üst kısmına olayın gelecekteki ışık konisi adı verilir. Aynı şekilde, ışık sinyalinin şimdiki zamana ulaşmayı başardığı olayların kümesine de geçmişteki ışık konisi denir.
Şekil 1: Koninin üst kısmına olayın gelecekteki ışık konisi adı verilir. Aynı şekilde, ışık sinyalinin şimdiki zamana ulaşmayı başardığı olayların kümesine de geçmişteki ışık konisi denir.

Evrendeki tüm olayları üç sınıfa ayırabiliriz. Şimdiki zamanda bir O olayı olmuş olsun; ışık hızında veya ışık hızının altında bir hızla hareket eden etkiler yoluyla elde edilebilen olaylar, şimdiki zamanın geleceğinde yer alır. Şimdiki zaman sadece gelecekteki olayları etkileyebilir çünkü hiçbir şey ışıktan daha hızlı hareket edemez.

Benzer biçimde geçmişteki etkiler de ışık hızında veya ışık hızının altında hareket ederek şimdiki olaya ulaşması mümkün olan tüm olayların kümesi olarak tanımlanabilir. Şimdiki zamanın geleceği veya geçmişinde yer almayan olaylarsa, O noktasının dışında bir yerde yer alan olaylardır. Bu tür olaylarda olan biten şeyler, ne O’da olanları etkiler ne de O’da olanlardan etkilenir. Örneğin güneşin birden ortadan kalksaydı, bu şimdiki zamanda dünyada olanları etkilemezdi, çünkü güneşin ışığı veya kütleçekim etkisinin dünyaya erişmesi 8 dakika alır. Aslında evrene baktığımızda onu geçmişteki haliyle görüyoruz. 

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Buraya kadar anlattıklarımız Özel Görelilik kuramının konularıydı. Öte yandan 1915’te Einstein göreliliği kütleçekime de uygulayarak çok daha genel bir kuram elde etti: Genel Görelilik Kuramı. Einstein kütleçekimin diğer kuvvetler gibi bir kuvvet olmadığını, uzayzaman bükülmesinin sonucu olduğunu gösterdi. Gezegenlerin güneş etrafında dönmelerinin nedeni, uzayzamanın içerisindeki kütle ve enerjinin dağılımı nedeniyle bükülmüş olmasıdır. Bu olayı anlamak için jeodezik kavramını incelemeliyiz. Düz uzayda iki nokta arasındaki en kısa yol düz bir çizgidir. Ama kürenin yüzeyi gibi eğri bir uzayda jeodezik en kısa yoldur. Dünyanın yüzeyini düşünürsek, bir geminin okyanusta yol alırken izleyeceği en kısa yol (jeodezik) bir çemberdir (Şekil 2).

Şekil 2: Aynı şekilde ışık da uzayzamanda en kısa yolu izler. Dolayısıyla bükülmüş uzayda ışık eğri bir çizgi izleyerek hareket eder. Işık kütleçekim alanları tarafından bükülür.
Şekil 2: Aynı şekilde ışık da uzayzamanda en kısa yolu izler. Dolayısıyla bükülmüş uzayda ışık eğri bir çizgi izleyerek hareket eder. Işık kütleçekim alanları tarafından bükülür.

Einstein’ın bu öngörüsü 1919 yılındaki güneş tutulması sırasında Eddington tarafından sınanmış ve doğrulanmıştır (Şekil 3).

Şekil 3: Genel görelilik kuramı ayrıca zamanın kütleçekime göre faklı aktığını da ortaya koyar. Tıpkı birbirine göre farklı hızlarda hareket eden sistemlerde zamanın farklı akması gibi, farklı kütleçekim etkilerine maruz kalan sistemlerde de zaman farklı akar. Örneğin zamanın dünya gibi kütleli bir cismin yakınında daha yavaş akar. Dünyaya uzak bir insan için, olayların gerçekleşmesi için yakındakinden daha uzun zaman gerekir. Kullandığımız konum ölçme sistemleri (GPS’ler), dünya yüzeyinden değişik yüksekliklerdeki saatlerin hızlarındaki farklılık, ve uydulardan gelen sinyaller temelinde işleyen çok hassas navigasyon sistemleriyle çalışmaktadır. Aksi takdirde hesap edilen konum birkaç kilometre yanlış çıkar.
Şekil 3: Genel görelilik kuramı ayrıca zamanın kütleçekime göre faklı aktığını da ortaya koyar. Tıpkı birbirine göre farklı hızlarda hareket eden sistemlerde zamanın farklı akması gibi, farklı kütleçekim etkilerine maruz kalan sistemlerde de zaman farklı akar. Örneğin zamanın dünya gibi kütleli bir cismin yakınında daha yavaş akar. Dünyaya uzak bir insan için, olayların gerçekleşmesi için yakındakinden daha uzun zaman gerekir. Kullandığımız konum ölçme sistemleri (GPS’ler), dünya yüzeyinden değişik yüksekliklerdeki saatlerin hızlarındaki farklılık, ve uydulardan gelen sinyaller temelinde işleyen çok hassas navigasyon sistemleriyle çalışmaktadır. Aksi takdirde hesap edilen konum birkaç kilometre yanlış çıkar.

Filmde bu nokta çok önem kazanıyor. Uzay yolculuğundaki mürettebat, çok büyük kütleli bir kara deliğin (Gargantua) yakınında bulunan bir gezegene iniş yaptıklarında, tıpkı uzay gemisiyle ışık hızına yakın bir hızda seyrediyorlarmış gibi zaman yavaşlamasına maruz kalıyorlar. Ancak filmin senaryosu gereği gereken dakikada 7 yıllık zaman farkını yaratmak için Kip Thorne Gargantua’yı neredeyse ışık hızında döndürmek zorunda kalıyor. Bu çok eğlenceli ayrıntıyı Yıldızlararasının Bilimi’nde okuyabilirsiniz.

Kuantum

1900-1930 yılları arası dünyayı algılayışımızı kökten değiştirecek üç kuram ortaya çıktı: özel görelilik (1905), genel görelilik (1915) ve kuantum mekaniği (1900-1926). Kuantum fiziği, cep telefonlarından DNA’ya her şeyin nasıl çalıştığını açıklayabilse de, gerçekte neden böyle olduğunun cevabını veremiyor. Buradaki temel gizem, bir elektronun iki delikten aynı anda geçmesi (diğer bir deyişle Schrödinger’in kedisi) paradoksu. Hangi delikten geçtiğine baktığınızda, elektronlar ekranda girişim deseni oluşturmaz, belli bir duruma ‘çökerler’. Kopenhag yorumuna göre elektron gibi kuantum varlıklarının siz onlara bakmıyorken ne yaptıklarını sormak anlamsızdır. Bu yoruma göre, uzaydaki bir noktada, örneğin iki delikten birinde, gerçek gözlemden bağımsız olarak, elektronun nesnel varlığına verilebilecek herhangi bir anlam yoktur. Elektron sadece biz onu gözlemlediğimizde varlığa kavuşur gibi görünür (Şekil 4).

Şekil 4: Basit bir çift yarık düzeneği. Eğer gözlemci hangi elektronun nereden geçtiğini gözlemezse girişim deseni oluşur (üstteki durum); ama hangi elektronun nereden geçtiğini gözlerse girişim deseni oluşmaz (alttaki durum).
Şekil 4: Basit bir çift yarık düzeneği. Eğer gözlemci hangi elektronun nereden geçtiğini gözlemezse girişim deseni oluşur (üstteki durum); ama hangi elektronun nereden geçtiğini gözlerse girişim deseni oluşmaz (alttaki durum).

Çevremizde gördüğümüz her şey, hava, su, ateş ve toprak bir metrenin on milyarda biri büyüklüğündeki atomlardan; atomlar kendilerinden on bin kat küçük çekirdek ile bir milyar kat küçük elektronlardan; çekirdek ise kendinden on kat daha küçük nötron ve protonlardan oluşmaktadır. Atom çekirdeğindeki proton ve nötronlar ise temel parçacık olan kuarklardan meydana gelmektedir. Böylesi küçük varlıkların (mikrokozmos) davranışlarının günlük hayatta (makrokozmos) gözlemlediğimiz cisimlerden farklı olduğunu varsayıyoruz. Çok küçük boyutlarda geçerli olan kuantum mekaniği yasalarına göre, atomaltı parçacıkların konumları ne kadar yüksek hassasiyetle ölçülürse, hızları o kadar az hassasiyetle bilinebilir (Heisenberg belirsizlik ilkesi); hem dalga hem parçacık özellikleri gösterirler; devinim sırasında belli bir yörünge izlemezler; verilen bir durumdan diğerine geçerken gözlenemeyen ara durumlar geçirirler. Özetle, mikrokozmosa uyguladığımız doğa yasalarıyla, makrokozmosu değerlendirirken ortaya attığımız doğa yasaları arasında ontolojik bir kopuş sözkonusu. Çünkü beynimiz makrokozmosta evrimleşti. Çevremizdeki olaylara tepki vermeye yönelik olarak evrimleşen zihnimiz, atom altı dünyasındaki günlük hayatta alışkın olmadığımız olguları yorumlamakta yetersiz kalıyor.

Evrenimiz aslında temelinde kuantize olmuş durumda. Evrendeki her şey (biz dahil) az ya da çok, rastgele dalgalanmakta. Küçük nesnelerdeki dalgalanmaları hassas aletlerle tespit edebiliyoruz. Ama büyük cisimlerde dalgalanma çok çok az olduğundan tespiti mümkün değil. Ancak sözkonusu kütleçekim olduğunda ve kara delik ya da Büyük patlama gibi tekillikler söz konusu olduğunda kuantum dalgalanmaları temel rol oynamakta.

Tüm Reklamları Kapat

Şekil 5: Şekilde, farklı enerji seviyelerindeki atomlardaki elektron olasılıkları görülmekte.
Şekil 5: Şekilde, farklı enerji seviyelerindeki atomlardaki elektron olasılıkları görülmekte.

Günlük hayatta yukarıda bahsettiğimiz etkileri gözlemleyemememizin nedeni, deneyimlediğimiz hızların ve kütleçekim alanlarının çok zayıf, boyutların ise çok büyük olmasıdır.

Karadelikler

Ama karadelikler için durum değişir. Kara deliklerde hem kütleçekim çok büyüktür ve karadelik tekilliklerinde kuantum mekaniğinin önemli etkileri olsa gerektir. Bu yüzden nasıl klasik fizik atomların sonsuz bir yoğunluk derecesinde çökmesi gerektiğini varsayarak kendi çöküşünü öngörüyorsa, klasik genel görelilik de karadeliklerdeki sonsuz yoğunlukta noktalar öngörerek bir anlamda kendi kendini çökertir. Bu nedenle fizikte yeni bir kurama, genel görelilikle kuantumu birleştiren bir kurama ihtiyaç vardır. Böyle bir kuramın sahip olması gereken bir dizi özelliği biliyoruz. Ama önce kara deliklerin özelliklerine göz atalım.

Aslında kara delik fikri genel görelilikten çok daha eskidir. İngiliz fizikçi John Michell 1783 yılında, yeterli ölçüde yoğun ve kütleli bir yıldızın ışığın kaçamayacağı yeğinlikte bir kütleçekim alanına sahip olacağını öngörmüştü.

Tüm Reklamları Kapat

Bugün bu tür cisimlere kara delik diyoruz, çünkü bu cisimlerden hiç bir şey kaçamaz. Şüphesiz o yıllarda ışığın kütleçekimden nasıl etkilendiğine dair bir fikir yoktu. Ama 1915'te Einstein'ın genel göreliliği ortaya koymasından bu yana kütleçekimin ışığı nasıl etkilediğine ilişkin tutarlı bir kuramımız var.

Bir kara deliğin nasıl oluştuğunu anlayabilmek için öncelikle bir yıldızın yaşam döngüsüne bakmamız gerekir. Bir yıldız, kütleçekim kuvveti nedeniyle çok büyük miktarda hidrojenin kendi üzerine doğru çökmeye başladığında biçimlenir ve atomlar birbirleriyle daha sık ve daha yüksek hızlarda çarpışmaya başlayarak yıldız ısınır. Sonunda öyle sıcak bir hale gelir ki, hidrojen atomları çarpıştıklarında artık birbirlerinden sekmez, bunun yerine helyumu oluşturacak şekilde kaynaşırlar. Füzyon adı verilen bu tepkimede serbest kalan ısı, yıldızın parlamasını sağlar. Bu ısı, gazın basıncını kütleçekim etkisini dengelemeye yeterli olana dek arttırır ve gazın büzüşmesi durur. Tıpkı bir balonu üfleyerek şişirmeye başladığımızda, balonu genişletmeye çalışan içerideki havanın basıncı ile balonu küçültmeye çalışan lastikteki gerilim arasındaki denge gibi, yıldız da bir süre sonra genişlemesini durdurur. Ancak en sonunda yıldız hidrojenini tüketir ve soğumaya, dolayısıyla da büzüşmeye başlar. Bir yıldızın kütlesi Chandrasekhar sınırından azsa, büzüşme durur ve beyaz cüceye dönüşür. Öte yandan Chandrasekhar sınırının üzerinde bir kütleye sahip olan yıldızlar, yakıtlarının sonuna geldiklerinde kara deliğe dönüşebilirler.

Güneş'in kütlesinin 5-10 katı kadar kütlesi olan bir yıldız düşünün. Birkaç milyar yıllık yaşam süresi boyunca hidrojeni helyuma dönüştüren yıldızın merkezinde üretile ısı yıldızı kendi kütleçekimine karşı desteklemeye yeterli basınç yaratacaktır. Ancak yıldız nükleer yakıtını bitirdiğinde, dışa doğru basıncı koruyacak hiçbir şey olmayacak ve yıldız kendi kütleçekimi nedeniyle çökmeye başlayacak, büzüldükçe yüzeydeki kütleçekim alanı güçlenecek ve kaçıp kurtulma hızı artacaktır. Yıldızın yarıçapı otuz kilometrenin altına inene kadar kaçıp kurtulma hızı saniyede 300.000 kilometreye, ışığın hızına kadar artmış olacaktır ve sonra yıldızdan yayılan herhangi bir ışık sonsuzluğa kaçamayacak, kütleçekim alanı tarafından çekilecektir. Böylelikle yıldız kara deliğe dönüşmüş olur. Kara deliğin sınırına olay ufku denir ki, yaklaşık on Güneş kütlesi kadar kütlesi olan bir yıldız için bu sınır yaklaşık otuz kilometredir (Şekil 6).

Şekil 6
Şekil 6

Roger Penrose ve Stephen Hawking'in çalışmaları, genel görelilik uyarınca bir kara deliğin içerisinde sonsuz bir yoğunluğa ve uzayzaman bükülmesine sahip bir tekilliğin olmak zorunda olduğunu gösterdi. Bu Büyük Patlamadaki duruma benzer tekillikte bilimsel yasaların ve bizim geleceği öngörme becerimiz geçersizleşir. Ancak kara deliğin dışında kalan bir gözlemciye tekillikten ne ışık ne de başka bir sinyal ulaşabildiğinden bu durumdan etkilenmez. Kara deliğin dışında kalan gözlemciler tekillikte oluşan öngörülebilirlik kırılmasının sonuçlarından korunmaktadırlar. Olay ufku, kara deliği çevrelemiş tek yönlü bir filtre gibidir. Cisimler, olay ufkundan geçerek kara deliğe düşebilir, ama hiçbir şey kara delikten çıkıp olay ufkundan geçerek dışarı çıkamaz.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Pictures From Italy (Charles Dickens)

Pictures from Italy is a travelogue by Charles Dickens, written in 1846. The book reveals the concerns of its author as he presents, according to Kate Flint, the country “like a chaotic magic-lantern show, fascinated both by the spectacle it offers, and by himself as spectator”.

In 1844, Dickens took a respite from writing novels and for several months traveled through France and Italy with his family. They visited the most famous sights: Genoa, Rome, Naples (with Vesuvius still smouldering), Florence and Venice. In his travelogue the author portrays a nation of great contrasts: grandiose buildings and urban desolation, and everyday life beside ancient monuments. But it is his encounters with Italy’s colorful street life that capture the imagination. Dickens is particularly drawn to the costumes, cross-dressing, and sheer exuberance of the Roman carnival. From the book we learn that Dickens was an early riser and walker, and that he enjoyed touring the major attractions on foot.

Warning: Unlike most of the books in our store, this book is in English.
Uyarı: Agora Bilim Pazarı’ndaki diğer birçok kitabın aksine, bu kitap İngilizcedir.

Devamını Göster
₺170.00
Pictures From Italy (Charles Dickens)
  • Dış Sitelerde Paylaş

Kara delikler doğrudan gözlemlenemezler ama çevresindeki yıldızları içine çekerken oluşturdukları görüntüler saptanabilir. Kütleçekimsel mercek etkisi adı verilen bu durum da filmde isabetli bir şekilde veriliyor. Einstein'ın Görelilik kuramının ortaya koyduğu kara delik yapısının, gerçeğe en yakın gösterimi bu filmde yapılmış. Hatta bu film için hazırlanan görseller yeni bir bilimsel keşfe bile yol açmış.

II) Filmde Yer Alan, Kanıtlanmamış Bilimsel Spekülasyonlar

Sicim Kuramları ve Zaman Yolculuğu

İşte filmin ana teması da aslında kara deliğin içinde neler olup bittiğini bilmememize dayanmakta. Kara deliklere ilişkin alternatif fizik modelleri vardır. Bu modellerden bazıları kuantum kuramıyla kütleçekimi birleştiren kuantum kütleçekim kuramlarıdır ki, en popülerleri arasında sicim kuramları yer alır.

Sicim kuramına göre madde, titreşen sicim benzeri nesnelerden ve uzay da ekstra gizli boyutlardan oluşur; bilinen her parçacık aslında salınan küçük bir sicimdir ve sicimler farklı şekillerde salınarak farklı parçacıkları meydana getirirler. Ufak sicimlerin yanı sıra kozmik sicimlere benzeyen çok büyük sicimlerin de olması olasıdır. Bu kuram doğada gözlenen sayısız temel parçacığı tek bir nicelikle, sicimle açıklayabildiği için güzel bir kuramdır. Sicimler kesin, kuantize olmuş hareketlere sahip olarak titreşir ve dönerler; böylece her yeni kuantize durum kütle, yük ve spin gibi bir dizi fiziksel özellik ortaya çıkartır. Fotonları ya da gravitonları tanımlayan sicimlerin ufak parçaları yaklaşık olarak bir protonun çapının bir trilyonda birinden daha küçüktür ve o nedenle de günümüz teknolojileriyle saptanamazlar. Sicim kuramı kütleçekimi de açıklayabildiği için çok başarılı bir kuramdır ama henüz spekülasyon düzeyindedir, kanıtlanamamıştır. Yine de sicim kuramı, sonsuzlukları barındırmayan bir kuantum kütleçekim kuramını otomatik olarak kapsar. Sicimin iki parçası çarpıştığında, birleştiğinde ve parçalara ayrıldığında meydana gelen olayların hesapları sonlu değerler verir. Hiçbir tekillik ya da sonsuzluk yoktur.

Başlangıcı 1968'e dayanan sicim kuramının modern versiyonu Edward Witten'ın fikirlerine dayanır ve bu bize yeni bir kuantum kütleçekim kuramı sunar. Sicim kuramının bu versiyonunda sıradan üç boyutlu evren, deneyimlenemeyecek dördüncü bir boyut boyunca uzanan ince bir boşluk sayesinde birbirlerinden ayrılır. Atomlar ve ışık, içinde yaşadığımız uzayın yüksekliği, genişliği ve derinliği boyunca hareket edebilir ama ekstra boyutta hareket etmeleri sicim kuramı yasalarınca yasaklanmıştır. Diğer evren de ekstra boyutta hareketleri yasaklanmış kendine has madde ve ışığa sahiptir ve bu iki evren birbirleriyle kütleçekim sayesinde etkileşebilirler. İşte filmde de Cooper'ın geçmişiyle haberleşebilmesi bu sayede gerçekleşir.

Modern sicim kuramlarında (ya da M-kuramlarında) uzayzamanın alışıldık dört boyut yerine, on bir boyuta ihtiyaç vardır. Böylece ek uzayzaman boyutlarının varlığı bize bilimkurgusal bir malzeme sunar ve bu sayede genel göreliliğin normal sınırlaması olan ışıktan hızlı ve zamanda geriye doğru seyahat edilememesinin üstesinden gelinir. Zaman yolculuğunun ana fikri, bu fazladan boyutlardan geçen bir kestirme yoldan gitmektir. Bu durumu şöyle kafamızda canlandırabiliriz. İçerisinde yaşadığımız uzayın sadece iki boyutlu ve simit (torus) yüzeyi gibi olduğunu düşünün (Şekil 7). Simitin iç tarafındaysanız ve diğer taraftaki bir noktaya gitmek istiyorsanız, simitin iç kısmını dolaşarak gitmeniz gerekir. Oysa üçüncü boyutta yolculuk edebiliyor olsanız, doğrudan karşıya geçerdiniz.

Şekil 7
Şekil 7

Yıldızlararası filminin bilim danışmanı Kip Thorne'un bilimkurguya kazandırdığı solucan deliği fikri de buna benzer. 1984'te Carl Sagan'a Mesaj romanı için verdiği solucan deliği fikri o günden bu yana bilimkurgunun vazgeçilmez unsuru haline gelmiştir. Gerek diğer bilimkurgu romanlarında ve filmlerinde gerekse Yıldızlararası'nda ışıktan hızlı seyahat için solucan deliği kullanılır. Bir solucan deliği, yukarıdaki simit örneğinde olduğu gibi, uzayzaman düzleminin bir noktasını tamamen ayrı bir bölgedeki bir diğer noktasına doğrudan bağlayan geçittir. Basitçe bir kağıdı elinize alıp, iki kenarını birbirine değecek şekilde katladığınızda, birbirine değen uçlar arasında seyahat edebilmeniz şeklinde görselleştirilebilir (Şekil 8). Şekilde görüldüğü gibi, normal de 25 ışık yılı mesafedeki Vega'ya gitmemiz için bir solucan deliği kullanırsak neredeyse Vega'ya anında ulaşırız.

Şekil 8
Şekil 8

Elbette, bizi böyle bir yolculuğa çıkartabilecek bir makine inşa etmek oldukça zordur ve bunu sağlayacak teknoloji bugün var olan her şeyden çok daha farklı olacaktır.

Witten'ın M-teorisi titreşen sicimler yerine, titreşen zarları koyar. Bir nokta bir 0-zar'dır, bir çizgi (veya sicim) bir 1-zar'dır, bir tabaka bir 2-zar'dır, ve görsellemesi zor olsa da, daha yüksek boyutlarda özdeş yapılar bulunmaktadır: 3-zar, 4-zar, vs. İşte bu kuram evrenin başlangıcı sorununa da bir açıklama getirir. Ovrut, Steinhardt ve Turok bu kuramı evrenin başlangıç soruna bir çözüm olarak kullandılar ve Büyük Patlamanın birbirine çarpan zar evrenler ile başlamış olabileceğini önerdiler. Buna göre, sonsuz sayıda evren-zarlar birbirleriyle çarpıştıklarında (Şekil 9) bizim Büyük Patlama dediğimiz şey gerçekleşir ve içinde yaşadığımız evren genişlemeye başlar. Öte yandan başka yerlerde, başka boyutlarda da sonsuz sayıda Büyük Patlamalar gerçekleşmekte ve sonsuz sayıda başka evrenler de ortaya çıkmakta.

Şekil 9
Şekil 9

Bütün bu bilgilerin ışığında filmin en zor anlaşılan kısmına gelebiliriz. Kara deliğin içinde ne var? Nasıl oluyor da filmin kahramanı başka bir boyuta (ve zamana) geçebiliyor ve bizim yaşadığımız boyutu (ve zamanı) etkileyebiliyor? Şüphesiz işin bu kısmı spekülatif bilime giriyor. Ancak bunun bilimsel bir spekülasyon olduğunu ve her ne kadar kanıtlanmasa da diğer bütün kanıtlanmış bilimsel kuramlarla uyum içinde olduğunu hatırlatalım. Uzayzamanın bükülebildiğini yukardaki paragraflarda anlatmıştık. Bu konuda kimsenin bir şüphesi yok. Ancak bu bükülme iki şekilde gerçekleşebilir. 1-) İçinde yaşadığımız 4-boyutlu uzayzamandan başka bir boyut yok ve bükülme uzayzamanın kendisinin bükülmesidir. Büyük Patlamadan bu yana genişleyen evren de, bütün uzayzamanın genişlemesi şeklinde gerçekleşiyor. Tıpkı bir balon gibi ama balondan başka bir şey yok. Klasik cevap bu ve bu cevap yakın zamana kadar bütün fizikçilerin ortak görüşüydü. 2-) Ancak bir açıklama daha var ki, özellikle 1980'lerden sonra kuantum kütleçekim kuramlarının çeşitlenmesiyle birlikte, sicim kuramları, M-kuramı gibi popüler kuramlar tarafından benimsenmekte. O da şu: içinde yaşadığımız uzayzaman, yığın [bulk] adı verilen bir beşinci boyut (diğer tüm boyutları 5. boyut gibi düşünelim) içinde bükülmekte. Dolayısıyla bu açıklamaya göre, "evrenimiz neyin içinde genişliyor?" sorusuna verilecek yanıt:, "yığının içinde ya da 5. boyutun içinde genişliyor" olacaktır. Bu yeni kuramlara göre bizim içinde yaşadığımız evren bu yığının için de bir zardır [brane] (Şekil 10).

Şekil 10: 4-boyutlu uzayzamanımızı 2-boyutta canlandırmaya çalışırsak elde edeceğimiz resim şekildeki gibi bir zar [brane] olacaktır. Yığın [bulk] ise buna dik bir 5. boyuttur. Şekildeki "dışarı-içeri" ["out-back"] yönü, zardan yığına olan yöndür.
Şekil 10: 4-boyutlu uzayzamanımızı 2-boyutta canlandırmaya çalışırsak elde edeceğimiz resim şekildeki gibi bir zar [brane] olacaktır. Yığın [bulk] ise buna dik bir 5. boyuttur. Şekildeki "dışarı-içeri" ["out-back"] yönü, zardan yığına olan yöndür.

Ayrıca bu kuramlara göre, kütleçekimi hariç diğer bütün kuvvetler (elektromanyetizma, zayıf ve yeğin nükleer kuvvetler) bizim zarımız içine hapsolmuş durumdalar. Sadece kütleçekim boyutlararası geçiş yapabilmekte.

Tüm Reklamları Kapat

Yıldızlararası filmi, yığının [bulk] var olduğu varsayımına göre kurgulanmış. Öte yandan eğer yığın varsa o zaman kurama göre mutlaka "bükülmüş" olmalıdır. Teknik olarak söylersek, eğer yığın (5. boyut) bükülmüş olmasaydı, kütleçekim ters kare yasasına değil ters-küp yasasına göre davranırdı. Diğer bir ifadeyle, güneşle gezegenler arasındaki kütleçekim kuvveti mesafenin küpüyle ters orantılı olurdu ve bu durumda gezegenler güneşin etrafında dolanmak yerine uzaya dağılıp giderlerdi.

Şimdi 2-boyutta gösterdiğimiz 4 uzayzaman boyutlu zarımızdaki boyutları 1-boyuta indirelim (Kuzey-Güney) ve ortadaki kalın çizgiyle ifade edelim (Şekil 11).


Şekil 11
Şekil 11

Şekil 11'in ortasındaki mavi diskte küçük bir parçacığın kütleçekim alanı betimlenmekte. Kırmızı çizgiler kuvvet çizgilerinin "dışarı-içeri" [out-back] yönünde yığına sızmasını gösteriyor. Mavi diskin içinden yayılan kütleçekim kuvvet çizgileri, diskin dışına çıktıklarında Kuzey-Güney [North-south] yönüne paralel olurlar ve "dışarı-içeri" yününe gitmezler. Böylelikle Newton'ın ters kare yasası da tekrar sağlanmış olur.

Tüm Reklamları Kapat

Kuantum kütleçekimi anlamaya çalışan fizikçiler, ekstra boyutların mikroskobik boyutlarda olduklarını ve kendi üzerlerine katlandıklarını düşünürler. Bu da kütleçekimin çok hızlı yayılmasını engeller. Ancak Yıldızlararası filminde bir spekülatif adım daha atılmış ve bu boyutlardan en az birinin kendi üzerine katlanmadığı varsayılmış. Bunun nedeni de filmin kahramanına yer açmak. Cooper filmin sonunda teserakt adı verilen 4-boyutlu bir küpün içine düşüyor.

1999 yılında Lisa Randall ve Raman Sundrum kütleçekimin yığının içine yayılmasını önleyen bir yol buldular. Randall'ın Warped Passage [Bükülmüş Geçitler] kitabında (Alfa Bilim dizisinden basıma hazırlanmakta) anlatılan teknik detaylara değinmeden, buna Anti-deSitter bükülmesi adı verildiğini söyleyelim. Özetle belirtirsek, Anti-deSitter bükülmesi kuantum dalgalanmalarından kaynaklanmakta.

Şimdi, mikroskopik bir tesearkta yaşayan iki mikrobu gözümüzde canlandıralım. Bunlar birbirlerinden 1 km mesafede olsunlar ve dik açılarla kendi zarları terk edip yığının [5. boyut] içine girsinler (Şekil 12).

Şekil 12
Şekil 12

Bu mikroplar 1 mm yol aldıklarında, Anti-deSitter (AdS) bükülmesi nedeniyle aralarındaki mesafe 10 kat küçülür, 100 m'ye iner ve yol almaya devam ettiklerinde aralarında mesafe de küçülür. Bu küçülme nedeniyle de, zarımızın dışındaki 5. boyutta kütleçekimin yayılacağı fazla bir yer kalmaz.

Tüm Reklamları Kapat

Bu nedenle, aslında Cooper'ın teserakta gezinebileceği pek yer yoktur. Ama Kip Thorne bu problemi kendi zarımızı AdS bükülmesinin içinde bir sandviç gibi tasarlayarak çözer. Sandviçin içinde ortadaki bizimki olmak üzere üç zar vardır ve sandviçin dışında yığın bükülmüş değildir. Dolayısıyla sandviçin dışında her türlü bilimkurgusal senaryoya izin verecek bir alan kalır. Sandviçin kalınlığının 3 santimetre olması bütün gözlemlenir evreni kapsaması için yeterlidir!

Şekil 13
Şekil 13

Cooper'ın içinde gezindiği 4 boyutlu küp [teserakt] hakkındaki teknik detayları Kip Thorne'un kitabında okuyabilirsiniz. Burada kütleçekim dalgalanmaları önemli bir yer tutmakta. Filmde de kütleçekim anomalileri olarak karşımıza çıkıyorlar.

Aslında kütleçekim anomalileri çok eski bir kavram. Newton kuramına uymayan Merkür'deki anomali Einstein kuramıyla halledilmişti. Daha modern bir anomali kara madde kavramını kattı bilim dünyasına. Henüz kara maddenin ne olduğu çözülebilmiş değil. 1998'de çok daha çığır açıcı bir anomali evrenin hızlanarak genişlediğini göstererek kara enerji ismini aldı. Kara enerjinin de ne olduğunu bilmiyoruz. Filmdeki anomalilerse zaten varlığını bildiğimiz gelgitsel kütleçekimdeki açıklanamayan farklılıklar. NASA'daki profesör bunlara 5. boyuttakilerin yol açtığından şüpheleniyor. 5. boyuttaki yığın alanının böylesine gelgitsel kütleçekim anomalilerine yol açması mümkün.

Tekillik

Kuantum dalgalanmalarını bir kenara bırakırsak, Einstein'ın çok iyi anlaşılmış görelilik yasalarını elde ederiz. Bu yasalar uzayzamanın örneğin bir kara delik etrafında nasıl büküldüğünü betimler. Ancak kuantum dalgalanmalarını işin içine katmadan doğru bir kuantum kütleçekim kuramı elde etmek de mümkün değildir. Çünkü Einstein yasaları Büyük Patlamanın başlangıcı ya da kara deliğin içi gibi yerlerde çalışmaz. Tekillik, uzayın ve zamanın bükülmesinin sınırsız olduğu yerdir.

Tüm Reklamları Kapat

Şekil 14: Kuantum Köpüğü
Şekil 14: Kuantum Köpüğü

Tekillik, Einstein yasalarıyla kuantum kuramının birleştiği yerdir. İşte o nedenle kara deliğin içinde neler olup bittiğini anlamak, kuantum kütleçekim kuramını kurtaracak olan bir bilgidir. Filmde de bu bilgiye erişmek için kahramanlarımız kara deliğin içine dalmaktalar.

1990'lardan bu yana fizikçiler kara delikler hakkında daha çok şey bildiklerini düşünüyorlar. Her ne kadar bu kuramlar doğrudan deneylerle veya gözlemlerle kanıtlanmamış olsa da, diğer kuramlar ve gözlemlerle uyum içindeler. Eskiden sadece BKL tipi tekillikler bilinirdi. Belinsky, Khalatnikov, ve Lifshitz isimli Rus fizikçilerin adını verdiği BKL tipi tekillikler yüksek düzeyde kaotiktir. Böyle bir kara deliğin içine girmeniz tavsiye edilmez. Eğer kazara böyle bir kara deliğin içine düşerseniz atomlarınıza ayrılırsınız. Rus fizikçiler kara deliğe düşen birinin kaderini öngörebiliyorlar ancak tek bir konuyu bilemiyorlar: atomların kaderi. Ne onlar ne de başka hiç kimse günümüzde kara deliğe düşüp de parçalanan bir cismin atomlarının ne olacağını öngöremiyor.

Şekil 15
Şekil 15

1991 yılında Eric Poisson ve Werner Israel, Einstein denklemleri üzerine çalışırken ikinci tipte bir tekillik keşfettiler. Bu tekillik kara delik yaşlandıkça büyüyordu. Nedeniyse, kara deliğin içinde zamanın olağanüstü yaşlanmasıydı. Eğer Gargantua gibi kara deliğin içine düşerseniz, sizinle birlikte gaz, toz, ışık vb gibi birçok başka şey de girer. Bütün bunların kara deliğe girmesi, dışarıdan bakan bir gözlemci için milyarlarca yıl alır. Ama kara deliğin içindeki biri için bir saniyeden kısa bir süredir bu. Dolayısıyla böyle bir kara deliğin içine girerseniz, bütün bu maddelerin ışık hızına yakın bir hızla, ince bir tabaka halinde üzerinize doğru düştüğünü görürsünüz. Bu tabaka uzayzamanı bozan yoğun gelgitsel kütleçekim kuvvetleri yaratır. Gelgit kuvvetleri sonsuza kadar büyürken tekillik oluştururlar. Sonuçta "içeri doğru tekillik" meydana gelir (Şekil 16).

Şekil 16
Şekil 16

Gelgit kuvvetleri bir yandan çekip bir yandan sıkıştırdığından, tekilliğe ulaştığınızda net kuvvet sonsuz değil sonlu olur ve hayatta kalma şansınız olabilir (Şekil 17).

Tüm Reklamları Kapat

Şekil 17
Şekil 17

2012'de Donald Marolf ve Amos Ori üçüncü tipte bir tekillik keşfettiler. Sizden önce kara deliğe düzen gaz, toz, ışık, kütleçekim dalgaları vb gibi şeylerin yarattığı "dışarı doğru tekillik" adı verilen bu tekillik de kara delik yaşlandıkça büyür. Bunların küçük bir bölümü kara deliğin içindeki uzay ve zaman bükülmeleri sonucu size doğru yansır. Bu yansıma, zaman yavaşlaması yüzünden bir şok cephesi gibi sıkıştırılmıştır Yine gelgit kuvvetleri oluşturur ve sonsuzluğa doğru büyüyerek tekillik oluştururlar. Ama bu defa söz konusu olan "dışarı doğru tekillik"tir. Bu tür bir tekillik içinde de sağ kalma şansınız vardır (Şekil 18).

Şekil 18
Şekil 18

Sonuç olarak, filmin kahramanı yarattığı "dışarı doğru tekillik" tipindeki bir tekillik içine düşerek dört boyutlu küp olan teserakta girer ve kütleçekim anomalileri yaratarak geçmişe haber gönderir. Bütün bunlar fantezi değil, şu anki bilimsel bilgilerimizle olası senaryolar. Ama şüphesiz kanıtlanmış bilgiler değil bunlar. 

Filmden zevk almanız dileğiyle.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Bilimde Sanat, Sanatta Bilim Yazı Dizisi

Bu yazı, Bilimde Sanat, Sanatta Bilim yazı dizisinin 1 . yazısıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
140
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 33
  • İnanılmaz 14
  • Muhteşem! 11
  • Bilim Budur! 9
  • Merak Uyandırıcı! 7
  • Mmm... Çok sapyoseksüel! 5
  • Umut Verici! 3
  • Korkutucu! 2
  • Güldürdü 1
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/11/2024 14:38:42 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/168

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Eşey
Genler
Evrim Ağacı Duyurusu
Yeşil
Asteroid
Beslenme Bilimi
Kalıtım
Sendrom
Kanser
Dağılım
Ağrı
Nöronlar
Deniz
Sars
Ara Tür
Renk
Embriyo
Tür
Periyodik Tablo
Hukuk
Ortak Ata
Carl Sagan
Evrimsel Tarih
Hayatta Kalma
Kanser Tedavisi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
P. D. K. Cankoçak, et al. Yıldızlararası (Interstellar) Filminin Bilimsel Arka Planı ve Kuramsal Analizi. (17 Kasım 2014). Alındığı Tarih: 21 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/168
Cankoçak, P. D. K., Bakırcı, Ç. M. (2014, November 17). Yıldızlararası (Interstellar) Filminin Bilimsel Arka Planı ve Kuramsal Analizi. Evrim Ağacı. Retrieved November 21, 2024. from https://evrimagaci.org/s/168
P. D. K. Cankoçak, et al. “Yıldızlararası (Interstellar) Filminin Bilimsel Arka Planı ve Kuramsal Analizi.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 17 Nov. 2014, https://evrimagaci.org/s/168.
Cankoçak, Prof. Dr. Kerem. Bakırcı, Çağrı Mert. “Yıldızlararası (Interstellar) Filminin Bilimsel Arka Planı ve Kuramsal Analizi.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, November 17, 2014. https://evrimagaci.org/s/168.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close