Gece Modu

Bu yazı, ScienceAlert isimli kaynaktan birebir çevrilmiştir. Çevirmen tarafından, metin içerisinde (varsa) açıkça belirtilen kısımlar haricinde, herhangi bir ekleme, çıkarma veya değişiklik yapılmamıştır. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Bu yazı, Oyun Kuramı yazı dizisinin 10. yazısıdır. Dizinin ilk yazısına gitmek için buraya, dizideki tüm yazıları görmek için buraya tıklayınız. Yazı dizileri, EA Akademi'nin bir parçasıdır.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

Oyun kuramı, grupların karmaşık problemleri nasıl çözdüğünü inceleyen bir matematik koludur. Schrödinger denklemi, kuantum mekaniğinin, yani Evren'deki en küçük taneciklere odaklanmış fizik alanının temel denklemidir. Birinin diğeriyle ilgisi olduğunu düşünmek için hiçbir sebep yoktur.

Fakat Fransalı fizikçilerden oluşan bir ekibe göre, oyun kuramında bulunan çok sayıdaki problemi, kuantum mekaniği diline çevirmek mümkün. Yeni bir makalede, bu fizikçiler elektronların ve balıkların tamamen aynı matematik kurallarına uyduğunu gösterdiler.

Schrödinger, popüler kültürde esrarengiz kedisiyle ünlüdür, fakat fizikçiler için, maddenin temel bileşenleri üzerinde deneyler yapmaya çalıştığınız zaman meydana gelen tuhaf şeyleri tam olarak açıklayan bir denklemi yazan ilk kişi olmasıyla ünlüdür. Schrödinger, elektronları veya atomları ya da Evren'in diğer en küçük parçalarından herhangi birini, tam olarak orada olmasını tahmin ettiğiniz zamanda ve tam olarak olmasını tahmin ettiğiniz yerde olacak bilardo topları gibi düşünüp açıklayamayacağınızı fark etmiştir. 

Bunun yerine, parçacıkların uzaya dağılmış olan konumları olduğunu ve zamanın herhangi bir noktasında, onların olacağını düşündüğünüz yerde yalnızca belirsiz bir görünme olasılığına sahip olduklarını varsaymak zorundasınız. Eğer belirli konumlarla değil, dağılma olasılıkları ile çalışıyorsanız, 20’nci yüzyılın başında fizikçilerin kafasını karıştırmış olan bir grup deneyin sonucunu tam olarak tahmin edebilirsiniz.

Schrödinger denklemi, bu olasılıkların zamanda nasıl değiştiği ile uzaydaki değişim şekilleri arasında bulunan ilişkiyi anlatıyor. Konumlar yerine olasılıklar ile çalışmak tuhaf olabilir, fakat işe yarıyor. Üstelik fizikçiler bunun başarısını inkâr etmiyor.

Oyun kuramının bunların herhangi biriyle ilişkisi yok gibi görünüyor. Genel olarak bu kuram, bir grup bireyin, amaçladıkları herhangi bir hedefe yaklaşmak için nasıl karar verdiklerine bakıyor. Bu, trafikte (umarız) beraber hareket eden insanlar veya bir masa oyununda yaptıkları gibi birbirlerine karşı hareket eden insanlar anlamına gelebilir.

Bu çalışmanın incelediği orta-alan oyun kuramında, diğer bireylerin tümünün ortalamada ne yapıyor olduğunu çözümlüyorsunuz; bu sebeple kuramın bu dalını trafikteki insanlara uygulamak kolay olabilir, fakat bir Monopoly oyununa uygulamak çok daha zor olacaktır.

Fransa'daki Laboratoire de Physique Théorique Orsay'dan Igor Swiecicki'nin önderlik ettiği fizikçilerin kullandığı örnek, bağımsız olarak yiyecek ararken, aynı zamanda birbirine yakın durmak isteyen bir balık sürüsüydü.

Balıklar genelde tek bir grup halinde hareket ederler, fakat grubun içindeki birkaç birey de rastgele etrafta dolanır. Bir balık arada sırada, herkesten uzakta olan bir yiyecek parçası görebilir, onu kapmak için yiyeceğe doğru tek başına yüzebilir ve sonra güvende kalmak amacıyla sürüsüne geri yüzer.

Bu, balıkların bir dağılıma sahip olduğunu gösteriyor; grup içinde yoğun olan balıklar gruptan uzaklaştıkça daha seyrek halde bulunurlar. Diğer bir deyişle, eğer uzayda belirli bir nokta seçerseniz, balık olan bir yeri seçme olasılığınız olduğu gibi balık olmayan bir yeri seçme olasılığınız da vardır. Balık sürüsü sizin bulunduğunuz noktanın yanından geçtikçe, orada bir balık bulma olasılığı artar. Balık sürüsü bulunduğunuz noktadan ileriye gidince olasılık azalır.

Bir balık bulma olasılığı, daha önce hiç yazılmamış denklemlerle ifade edilebilecek birkaç karmaşık yönde evrimleşmiş olabilir. Fakat öyle değil. Bir balığı bulma olasılığı tamamen bir elektronu bulma olasılığı gibi değişiyor. Swiecicki ve ekibinin bildirdiğine göre balık, Schrödinger denklemine uyuyor.

Gelecek birkaç yıl içinde oyun kuramının bu yeni bağlantıdan faydalanmasıyla hızla ilerlediğini görebiliriz. Fizikçiler neredeyse bir yüzyıl boyunca Schrödinger denklemini eğip büküyordu ve en karmaşık sorunları çözmek için bile onu kullanmakta cidden iyi hale geldiler. Fakat orta-alan oyun kuramının sadece 10 yıl kadar bir geçmişi var, yani bu alan cevapları henüz verilemeyen sorularla dolu. 

Şimdi bu açık problemlerin büyük bir kısmı, kuantum mekaniği çerçevesine çevrilebilir durumda olabilir. Kavranabilir olan her kuantum mekaniği problemini çözmeye ne kadar emek harcandığı göz önüne alındığında, bu yeni problemlerin, fizikçilerin daha önce görmüş olduğu bir şeye epey benzeyecek olma şansı çok fazla.

Bu İçerik Size Ne Hissettirdi?
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Kaynaklar ve İleri Okuma

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 14/10/2019 05:29:01 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/4388

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Soru Sorun!

İnsan Bebeklerinin Ahlaki Davranışları ve Ahlakın Kökenleri: Hayvan Davranışları ve Oyun Teorisi Açısından Değerlendirme

Oyun Kuramı

Öğrenmeye Devam Edin!
Evrim Ağacı %100 okur destekli bir bilim platformudur. Maddi destekte bulunarak Türkiye'de modern bilimin gelişmesine güç katmak ister misiniz?
Destek Ol
Gizle
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Hatalı bir argümanın tedavisi daha iyi bir argüman geliştirmektir; düşünceleri bastırmak değil.”
Carl Sagan
Geri Bildirim Gönder