Korelasyon ve Nedensellik: İki Değişken Arası İlişki (Korelasyon), Nedensellik Anlamına Gelmez!
Anlamsız Korelasyonlar: Havuza Düşerek Boğulma İhtimaliniz, Nicholas Cage'in Rol Aldığı Film Sayısı ile İlişkili Olabilir mi?

Gerçek anlamda bilimsel tartışmalara giren veya akademik araştırmalar yürüten kişilerin mutlaka ama mutlaka karşılaştıkları, daha önemlisi karşılaşmak zorunda oldukları bir cümledir: Korelasyon, (her zaman) nedensellik belirtmez!
Bir diğer deyişle, iki değişken arasında doğrusal bir ilişki olması (biri düzenli artarken veya azalırken, diğerinin de düzenli olarak artması veya azalması), ikinci değişkende gördüğümüz değişimin sebebinin birinci değişkenin değişimi olduğu anlamına gelmez.
Yine karmaşık oldu... Bir örnek vererek, biraz daha basitleştirelim: Diyelim ki, Kuzey Anadolu illerinde balıkçılık faaliyetleri 2010-2016 yılları arasında %100 oranında artmış olsun. Yine diyelim ki, aynı tarih aralığında (2010-2016 arasında) Çin Halk Cumhuriyeti sınırlarındaki hava kirliliği miktarı da %100 oranında artmış olsun. Bu durumda, Türkiye'deki balıkçılık faaliyetlerindeki artışın, Çin Halk Cumhuriyeti'ndeki hava kalitesinin kötüleşmesinin nedeni olduğunu söyleyebilir miyiz?
Hayır, elbette ki sadece bu verilere bakarak söyleyemeyiz. Evet, ikisi arasında bir ilişki bulunmaktadır. Ancak bu doğrusal ilişki, arada bir nedensellik (neden-sonuç ilişkisi) olduğu anlamına gelmez! Çin'deki hava kalitesinin kötüleşmesinin nedeni, Çin'in gelişmesine bağlı olarak ülkede faaliyet gösteren fabrika sayısının artması olabilir. Ve muhtemelen öyledir de... Ancak unutmayın, bu nedensellik ilişkisi ispatlanmadan, nedenin bu fabrikalar olduğunu bile iddia edemeyiz!
Benzer şekilde, Evren içerisindeki olay, olgu ve süreçlere yönelik yeterince veri toplarsanız, tamamen alakasız olay, olgu ve süreçler arasında ilişkiler tespit etmeniz kaçınılmaz olacaktır. En tepedeki örneği ele alalım: Nicholas Cage'in rol aldığı filmlerin sayısı ile, havuza düşerek boğulan insan sayısı arasında bir ilişki var gibi gözükmektedir. Her iki değişken de bir arada artmakta ve bir arada azalmaktadır. Bu durum, insanların havuzda boğulmasının nedeninin Nicholas Cage'in filmlerde rol alması olduğunu iddia etmemiz için yeterli midir? Elbette hayır!
Bu tür ilişkilere anlamsız ilişki (İng: "spurious correlation") adı verilmektedir. Bir unsurun bir sonucun nedeni olabilmesi için, o unsur ile o sonuç arasında takip edilebilir bir etkileşim olmalıdır. Nicholas Cage'in rol aldığı film sayısı (veya filmlerin kendisi), havuz kenarında zaman geçirmeyi teşvik edici bir doğada olsaydı, belki havuzda boğulmaların nedeni (veya nedenlerinden biri) olabilirdi. Ancak eğer ki böyle bir etkileşim tespit edilemezse, iki değişken arasındaki ilişki tamamen tesadüf eseri oluşmuştur denebilir; dolayısıyla bu ikili arasındaki ilişki, "anlamsız" bir korelasyondur. Çok daha fazla sayıda anlamsız korelasyonu, Tyler Vigen'in "Anlamsız Korelasyonlar" sitesinde bulabilirsiniz.
/evrimagaci.org%2Fpublic%2Fcontent_media%2F81e1f137a2dba8dc73c5366f0538c97c.png)
Tabii ki iki değişken arasında doğrudan bir ilişki olmasına rağmen, söz konusu ilişki herhangi bir anlam ifade etmiyor da olabilir. Benzer şekilde, aradaki ilişki ters de kurulmuş olabilir; bu nedenle de bir anlamsız ilişki doğuyor olabilir. Yukarıdaki doğum günü örneği, bunu güzel bir şekilde göstermektedir.
Daha uzun yaşayanların, daha fazla sayıda doğum günü kutlaması son derece anlamlıdır; sonuçta "doğum günü" dediğimiz kavram, yalnızca yaş alma ile mümkün olmaktadır. Dolayısıyla daha uzun yaşamanın nedeni doğum günü kutlamalarının sayısının artması değildir; tam tersine, doğum günü sayısının artma nedeni daha uzun yaşamaktır; eğer daha uzun yaşamasaydınız, kutladığınız doğum günü sayısı da artamazdı. Yani burada gördüğümüz hatalı neden-sonuç ilişkisi kurmaktır.
Bilim Neden Bu Kadar Güçlü?
Şimdi bilimin neden bu kadar güçlü olduğunu anlıyorsunuzdur diye umuyoruz. Bilimin işi korelasyonları bulmak değildir; nedenselliği ortaya çıkarmaktır. Hiçbir bilimsel amacınız olmaksızın da veriler toplayabilir ve iki veri arasında ilişki kurabilirsiniz; ancak bunun bilimsel ilerlemeye pek bir katkısı olmayacaktır. Önemli olan, o ilişkiler arasından nedensel olanları tespit etmek ve bunlar üzerinden hipotezler geliştirip, bunları sınayıp, teoriler inşa ederek gerçeğin doğasına yönelik açıklamalar geliştirebilmektir (ve bunu yaparken eski teorileri de sınamak ve gözden geçirmektir). Bilim, budur!
Bu, kuşkusuz ki aralarında zamansal bir ilişki olan iki değişkenin birbiriyle öyle veya böyle ilişkili olduğunu söylemekten çok daha fazlasıdır; çok daha fazla çaba ve emek gerektirir. Günlük yaşantınızda, A olayının B olayından önce yaşanmış olmasını, A olayının B'nin nedeni olduğunu düşünmeniz için yeterli olabilir. Buna mantıkta post hoc ergo propter hoc mantık hatası adını vermekteyiz. Meali: "X, Y'den sonra oldu, dolayısıyla X'in nedeni Y'dir" mantık hatası... Aralarında zaman ilişkisi olan olayların, aynı zamanda nedensellik ilişkisi de olduğunu varsayma hatası...
/evrimagaci.org%2Fpublic%2Fcontent_media%2Fcf91deccb8149b0ecc2be877c4f7e917.jpg)
İlişkinin Hiç mi Anlamı Yok?
Peki iki değişken arasındaki ilişkinin tespiti tamamen işlevsiz ve anlamsız mıdır? Elbette hayır. Öyle ki, bazı istatistikçiler ve bilim insanları, yazımızın başında kullandığımız ve her bilim insanının karşılaştığını söylediğimiz cümleye aşırı katı olması dolayısıyla karşı çıkarlar. Şu tür cümleleri tercih ederler:
Korelasyon, nedensellik belirtmez; ancak korelasyon, bir nedensellik aramak için iyi bir sebeptir!
Bir diğer deyişle, korelasyonlar bizler için başlangıç noktalarıdır. Kontrollü deneyler yaparak (yani diğer değişkenleri olabildiğince sabit tutup, sadece 1 değişkenin deney veya sistem üzerindeki etkisine bakarak) nedenselliği gösterebiliriz. Dahası, farklı açılardan, farklı derecelerde, tekrar tekrar ispatlanan korelasyonlar, olaylar arasındaki nedensellik ilişkisine daha da fazla güven duymamızı sağlayabilir.
Unutmayın! Eğer "gerçek" dediğimiz şey %100 ile temsil edilirse, bilim belki hiçbir zaman %100'e erişemeyecek. Belki %90 ve üzerinde kalacaktır. Ancak bu, hayal kırıcı bir durum değildir! Zira bilimden hemen sonra gelen diğer bilgi türlerinin gerçeğe ulaşma başarısı, bilimin başarısına nazaran önemsenmeyecek kadar azdır. Dolayısıyla bilim, insanlığın gerçeğe ulaşmak konusunda yaptığı en büyük sıçramalardan birisidir. Sahip olduğumuz hemen her şeyin nedeni bilim ve onun uzantılarıdır. Bu bile, bilime rahatlıkla güvenebileceğimizi ispatlamaktadır.
Ya da ispatlamakta mıdır?
Bu durumda korelasyon, nedensellik göstermekte midir?
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 58
- 31
- 16
- 15
- 4
- 4
- 1
- 1
- 0
- 0
- 0
- 0
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 02/12/2023 01:01:58 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/4277
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.