Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

İnsan Bebeklerinden İlham Alan Algoritmalar, Robotların Öğrenme Becerilerine Güç Katıyor!

Taklit Yoluyla Öğrenen İnsan Bebekleri, Öğrenebilen Robotlarımız İçin Etkili Bir Model Sunuyor!

5 dakika
1,527
İnsan Bebeklerinden İlham Alan Algoritmalar, Robotların Öğrenme Becerilerine Güç Katıyor!
Tarihi Geçmiş Haber

Bu haber 8 yıl öncesine aittir. Haber güncelliğini yitirmiş olabilir; ancak arşivsel değeri ve bilimsel gelişme/ilerleme anlamındaki önemi dolayısıyla yayında tutulmaktadır. Ayrıca konuyla ilgili gelişmeler yaşandıkça bu içerik de güncellenebilir.

Tüm Reklamları Kapat

Bebekler dünyayı, vücutlarının boşlukta nasıl hareket ettiğini keşfederek, oyuncaklarını tutarak, masadan bir şeyler düşürerek ve yetişkinlerin yaptıklarını izleyip tekrar ederek öğreniyor. Fakat robot bilimciler bir robota bir görevin nasıl yapıldığını öğretmek istediğinde ya bunun için bir kod yazıyorlar ya da robotun vücudu veya kolunu fiziksel olarak hareket ettirerek eylemin nasıl yapıldığını gösteriyorlar.

Şu sıralar Washington Üniversitesi’ndeki (University of Washington, UW) gelişim psikologları ve bilgisayar bilimcilerinin birlikte yürüttüğü çalışma, robotların tıpkı çocuklar gibi, yani keşif aracılığıyla veri toplayarak, bir insanın bir şey yapmasını izleyip o işin nasıl yapılacağını belirleyerek “öğrenebildiğini” gösterdi. UW’da bilgisayar bilimi ve mühendisliği profesörü olan kıdemli yazar Rajesh Rao şunları söyledi:

Bunu, çocukların yaptığı gibi insanlardan bir şeyler öğrenebilen robotlar inşa etme yolundaki ilk adım olarak düşünebilirsiniz. Bilgisayar programlama hakkında hiçbir şey bilmeyen insanların bir robota bir şeyler öğretebilmesini istiyorsanız, bunun yolu yaptırmak istediğiniz işi, örneğin bulaşıkları yıkamayı, kıyafetlerinizi katlamayı veya diğer ev işlerini yapmayı robota göstermekten geçer. Fakat bunu gerçekleştirebilmek için, robotun bu eylemleri anlayabilmesine ve kendi başına yapabilmesine ihtiyacınız var.

UW Öğrenme Enstitüsü & Beyin Bilimleri Laboratuvarı’ndaki (I-LABS) çocuk gelişimi araştırmasını makine öğrenimine olan yaklaşımlarla birleştiren araştırma, PLOS ONE dergisinde bir makalede yayınlandı. Makalede anlatıldığı üzere, UW ekibi robotikteki temel bir sorunu çözmeyi hedefleyen yeni bir olasılık modeli geliştirdi: insanları izleyip taklit ederek yeni beceriler öğrenebilen robotlar yapmak.

Tüm Reklamları Kapat

Görsel 1. UW’daki gelişim psikologları ve bilgisayar bilimcilerinin birlikte yürüttüğü çalışma, robotların da çocukların doğal olarak öğrendikleri şekilde öğrenebilmelerini gerçekleştirmeyi amaçlıyor. Ekip, bebeklerin yetişkinlerin bakışlarını takip etmesi üzerine yapılan bir araştırmayı, bir robota da aynı görevi yapmayı “öğretmek” için kullandı.
Görsel 1. UW’daki gelişim psikologları ve bilgisayar bilimcilerinin birlikte yürüttüğü çalışma, robotların da çocukların doğal olarak öğrendikleri şekilde öğrenebilmelerini gerçekleştirmeyi amaçlıyor. Ekip, bebeklerin yetişkinlerin bakışlarını takip etmesi üzerine yapılan bir araştırmayı, bir robota da aynı görevi yapmayı “öğretmek” için kullandı.
University of Washington

Robot bilimciler, UW psikoloji profesörü ve I-LABS müdür yardımcısı Andrew Meltzoff ile birlikte çalıştı. Meltzoff’un, 18 aylık bebeklerin bir yetişkinin eylemlerinin amacını anlayabildiğini ve aynı amaca ulaşmak için farklı yollar geliştirebildiğini ortaya koyan özgün ve gelecek vadeden bir araştırması bulunuyor.

Bir örnekte bebekler, bir yetişkinin halter şeklindeki bir oyuncağı parçalarına ayırmaya çalıştığını fakat oyuncak sıkıştığı ve yetişkinin elleri uçlardan kaydığı için bu amacı gerçekleştiremediğini gördüler. Bebekler bunu dikkatlice izledi ve sonrasında alternatif yöntemler kullanmaya karar verdiler: Küçük parmaklarıyla oyuncağın iki ucunu kavradılar ve güç vererek çektiler, yani yetişkini taklit ettiler.

Çocuklar kasıt okuma yeteneklerini kısmen özkeşif sayesinde ediniyorlar. Özkeşif, çocukların eylemlerinin varlıkları nasıl etkilediğini ve fizik kanunlarını öğrenmelerine yardımcı olarak nihayetinde başkalarından öğrenebilmelerini ve kasıtlarını yorumlayabilmelerini sağlıyor. Meltzoff, bebeklerin bu kadar hızlı öğrenebilmelerinin nedeninin oyuna düşkünlükleri olduğunu düşünüyor ve şunları söylüyor:

Bebeklerin uğraştığı oyunlar anlamsız gibi görünüyor, fakat bu onların ileride öğrenebilmelerini sağlıyor. Bebeklerin her yenilik için kullandıkları gizli tarif işte bu. Yeni bir oyuncağın nasıl çalıştığını çözmeye çalışırlarken aslında diğer oyuncaklarla oynarken kazandıkları bilgileri kullanıyorlar. Oyun sırasında, eylemlerinin dünyada nasıl değişiklikler oluşturduğunun zihinsel bir modelini öğreniyorlar. Bu modele sahip olduktan sonra artık yeni problemleri çözebilir ve başkalarının niyetlerini tahmin etmeye başlayabilirsiniz.

Rao’nun ekibi bebekler üzerindeki bu araştırmayı, bir robotun kendi eylemlerinin nasıl farklı sonuçlar doğuracağını anlayabilmesini sağlayan makine öğrenimi algoritmaları geliştirmek için kullandı. Ondan sonra robot, öğrenilen bu olasılık modelini bir insanın kendisinden ne istediğini anlamak ve görevi gerçekleştirmek için, hatta bunu yapabileceğinden emin olmadığı durumlarda yardım “istemek” için kullanıyor.

Tüm Reklamları Kapat

Ekip bu robotik modeli iki farklı senaryoda test etti: birincisi, bir robotun, karşısındaki insanın bakışlarını takip etmeyi öğrendiği bir bilgisayar simülasyonu deneyi, ikincisi ise gerçek bir robotun insanları taklit etmeyi öğrenerek oyuncak yiyecekleri bir masa üstünde hareket ettirdiği bir deney.

Görsel 2. Bu robot yeni UW modelini kullanarak masanın üstündeki oyuncak yiyecekleri hareket ettiren bir insanı taklit etti. Robot kendi geometrik düzeninde hangi eylemlerin daha iyi performans gösterdiğini öğrenerek aynı hedefe ulaşmak için farklı yöntemler kullanabiliyordu; bu, robotların taklit yöntemiyle öğrenebilmelerinde kilit bir nokta.
Görsel 2. Bu robot yeni UW modelini kullanarak masanın üstündeki oyuncak yiyecekleri hareket ettiren bir insanı taklit etti. Robot kendi geometrik düzeninde hangi eylemlerin daha iyi performans gösterdiğini öğrenerek aynı hedefe ulaşmak için farklı yöntemler kullanabiliyordu; bu, robotların taklit yöntemiyle öğrenebilmelerinde kilit bir nokta.
University of Washington

Bakış deneyinde robot kendi kafa hareketlerinin bir modelini öğreniyor ve insan kafasının da aynı kurallarla hareket ettiğini varsayıyor. Robot, insan odada bir yere baktığında kafa hareketlerinin başlangıç ve bitiş noktalarını takip ediyor ve bu bilgileri kullanarak insanın nereye baktığını anlamaya çalışıyor. Sonrasında ise insanla aynı yere bakmak için, öğrendiği kafa hareketlerini kullanıyor.

Ekip ayrıca Meltzoff’un testlerinden birini tekrarladı: Görme engelleri ve göz kapatmayla ilgili deneyimi olan bebekler gözü bağlı bir yetişkinin nereye baktığıyla ilgilenmiyorlardı, çünkü onun aslında göremediğini anlıyorlardı. Ekip, gözü bağlı olmanın sonuçlarını robotun “öğrenmesini” sağladığında robot artık aynı yere bakmak için insanın kafa hareketlerini takip etmedi. Meltzoff şunları söyledi:

Bebekler, başkalarının davranışlarını yorumlamak için kendi tecrübelerini kullanıyor; bizim robotumuz da bunu yaptı.

İkinci deneyde ise ekip, robotun bir masa üstündeki farklı eşyaları itmesine veya alıp hareket ettirmesine izin verdi. Sonrasında robot bu modeli, eşyaları hareket ettiren veya her şeyi masadan kaldıran bir insanı taklit etmek için kullandı. İnsanın hareketini her defasında körü körüne taklit etmek yerine robot bazen aynı sonuca ulaşmak için farklı yöntemler kullandı. UW’da bilgisayar bilimi ve mühendisliği yüksek lisans öğrencisi olan başyazar Michael Jae-Yoon Chung konuyla ilgili olarak şunları söyledi:

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Eğer insan bir eşyayı yeni bir konuma iterse, kıskaçlı bir robotun eşyayı kaldırıp o konuma koyması, itmesine kıyasla daha kolay ve güvenilir bir yöntem olabilir. Ama bu, hedefin ne olduğunu bilmeyi gerektiriyor. Bu da makalemizde belirtmeye çalıştığımız üzere, robotik alanında zor bir problem.

İlk deneyler hedef anlamayı ve basit davranışları taklit etmeyi amaçlamış olsa da, ekip ileride böyle bir modelin robotların daha karmaşık görevleri öğrenmesine nasıl yardımcı olabileceğini araştırmayı planlıyor. Meltzoff’un sözleri şöyle:

Bebekler oyun oynayarak ve başkalarını izleyerek öğreniyorlar ve dünyadaki en iyi öğrenciler onlar. Neden robotları bir çocuk kadar zahmetsiz öğrenecek şekilde tasarlamayalım ki?
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
8
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Umut Verici! 2
  • İnanılmaz 2
  • Merak Uyandırıcı! 2
  • Mmm... Çok sapyoseksüel! 1
  • Muhteşem! 0
  • Tebrikler! 0
  • Bilim Budur! 0
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/12/2024 16:08:28 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/4803

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Doğal
Kıl
Kadın Sağlığı
Mitler
Tarih
Uluslararası Uzay İstasyonu
Kuyrukluyıldız
Neandertaller
Cinsel Yönelim
Gen
Entropi
Korona
Hız
Lazer
Bağırsak
Arkeoloji
Şehir Hastanesi
Darwin
Psikiyatri
Diş
Eşeyli Üreme
Virüsler
Üreme
Viroloji
Eğitim
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
J. Langston, et al. İnsan Bebeklerinden İlham Alan Algoritmalar, Robotların Öğrenme Becerilerine Güç Katıyor!. (17 Aralık 2016). Alındığı Tarih: 21 Aralık 2024. Alındığı Yer: https://evrimagaci.org/s/4803
Langston, J., Özel, M., Ölez, Ş. (2016, December 17). İnsan Bebeklerinden İlham Alan Algoritmalar, Robotların Öğrenme Becerilerine Güç Katıyor!. Evrim Ağacı. Retrieved December 21, 2024. from https://evrimagaci.org/s/4803
J. Langston, et al. “İnsan Bebeklerinden İlham Alan Algoritmalar, Robotların Öğrenme Becerilerine Güç Katıyor!.” Edited by Şule Ölez. Translated by Mert Özel, Evrim Ağacı, 17 Dec. 2016, https://evrimagaci.org/s/4803.
Langston, Jennifer. Özel, Mert. Ölez, Şule. “İnsan Bebeklerinden İlham Alan Algoritmalar, Robotların Öğrenme Becerilerine Güç Katıyor!.” Edited by Şule Ölez. Translated by Mert Özel. Evrim Ağacı, December 17, 2016. https://evrimagaci.org/s/4803.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close