Paylaşım Yap
Tüm Reklamları Kapat

Güçlü Kuvvet Nedir? Temel Parçacıkları Birbirine Bağlayarak Daha Büyük Maddeleri İnşa Eden Güçlü Etkileşimler Nelerdir?

Güçlü Kuvvet Nedir? Temel Parçacıkları Birbirine Bağlayarak Daha Büyük Maddeleri İnşa Eden Güçlü Etkileşimler Nelerdir?
11 dakika
10,106
Tüm Reklamları Kapat

Güçlü nükleer kuvvet, doğadaki dört temel kuvvetten biridir; diğer üçü kütleçekimi, elektromanyetizma ve zayıf kuvvettir. Adından da anlaşılacağı gibi, güçlü kuvvet, dörtlünün en güçlü kuvvetidir. Daha büyük parçacıklar oluşturmak için, maddenin temel parçacıklarını birbirine bağlamaktan sorumludur.

Standart Model ve Güçlü Kuvvetin Yeri

Parçacık fiziğinin hüküm süren teorisi, maddenin temel yapı taşlarını ve bunların nasıl etkileşime girdiğini tanımlayan Standart Model'dir. Teori, 1970'lerin başında geliştirildi; Avrupa Nükleer Araştırma Topluluğu CERN'e göre, zamanla ve birçok deneyle, iyi test edilmiş bir fizik teorisi olarak yerini almıştır.

Standart Modele göre, en küçük ve en temel parçacıklardan, yani daha küçük parçalara ayrılamayan yapıtaşlarından birisi kuarktır. Bu parçacıklar, protonları ve nötronları içeren, hadronlar olarak bilinen bir grup büyük parçacıkların yapı taşlarıdır. Bilim insanları kuarktan daha küçük bir şey olduğuna dair herhangi bir belirti görmediler, ancak hala aramaktalar.

Tüm Reklamları Kapat

Güçlü kuvvet ilk olarak atom çekirdeklerinin neden birbirlerinden ayrılmadığını açıklamak için önerildi. Çekirdekte bulunan pozitif yüklü protonlar arasındaki itici elektromanyetik kuvvet nedeniyle çekirdeği bir kuvvet bir arada tutuyor gibi görünüyordu. Daha sonra, güçlü kuvvetin yalnızca çekirdekleri bir arada tutmakla kalmayıp, aynı zamanda hadronları oluşturan kuarkları birbirine bağlamadan da sorumlu olduğu bulundu.

Kuarklar ve Hadronlar

Kuarklar, 1964'te fizikçiler Murray Gell-Mann ve George Zweig tarafından bağımsız olarak teorileştirildi ve parçacıklar ilk olarak 1968'de Stanford Doğrusal Hızlandırıcı Ulusal Laboratuvarı'nda gözlemlendi.

Bilim insanları, kuarkların bu hadron parçacıklarını oluşturduğu yolları ayrıntılı olarak açıkladılar. Duke Üniversitesi tarafından çevrimiçi olarak yayınlanan "The Color Force"da Lena Hansen, şöyle diyor:

İki tür hadron vardır: baryonlar ve mezonlar. Her baryon, üç kuarktan oluşur ve her mezon bir kuark ve bir antikuarktan oluşur.

Burada bir antikuark, zıt elektrik yüküne sahip bir kuarkın antimadde karşılığıdır. Baryonlar, proton ve nötronlardan oluşan bir parçacık sınıfıdır. Mezonlar, büyük parçacık hızlandırıcılarda ve yüksek enerjili kozmik ışınlarla etkileşim halinde üretilen kısa ömürlü parçacıklardır.

Tüm Reklamları Kapat

Kuarklar ve Özellikleri

Mevcut standart modelde, altı kuark "çeşnisi" vardır. Bilinen tüm mezonları ve baryonları (200'ün üzerinde) başarıyla açıklayabilirler. En iyi bilinen baryonlar, her biri yukarı ve aşağı kuarklardan oluşan proton ve nötrondur. Kuarkların yalnızca iki kuark (mezon), üç kuark (baryon) kombinasyonlarında oluştuğu gözlenmiştir. Beş kuarklı (pentakuark) parçacıkların gözlemlendiğine dair yakın zamanda bir iddia vardı, ancak daha fazla deney bunu doğrulamadı.

Kuark Çeşitleri.
Kuark Çeşitleri.

Kuarkların elektrik yükü, kütle, renk yükü ve dönüş gibi çeşitli iç özellikleri vardır. Parçacık fiziğinin Standart Modeli'nde temel kuvvetler (elektromanyetizma, yerçekimi, güçlü etkileşim ve zayıf etkileşim) olarak da bilinen dört temel etkileşimi deneyimleyen tek temel parçacıklar ve ayrıca elektrik yükleri tam sayı olmayan bilinen tek parçacıklardır.

"Çeşni" olarak bilinen altı tür kuark vardır: yukarı, aşağı, tılsım, garip, üst ve alt. Yukarı ve aşağı kuarklar tüm kuarklar arasında en düşük kütlelere sahiptir. Daha ağır kuarklar, bir parçacık bozunması süreciyle hızla yukarı ve aşağı kuarklara dönüşür: daha yüksek bir kütle durumundan daha düşük bir kütle durumuna dönüşüm. Bu nedenle, yukarı ve aşağı kuarklar genellikle kararlıdır ve evrende en yaygın olanıdır, oysa garip, tılsım, alt ve üst kuarklar yalnızca yüksek enerjili çarpışmalarda (kozmik ışınları içerenler ve parçacık hızlandırıcılarda olanlar gibi) üretilebilir. Her kuark çeşidi için, kuarktan yalnızca bazı özelliklerinin (elektrik yükü gibi) eşit büyüklükte ancak zıt işarete sahip olmasıyla farklılık gösteren, antikuark olarak bilinen, karşılık gelen bir karşıt parçacık türü vardır.

Kuarklar spin -1⁄2 parçacıklarıdır, bu da onların spin-istatistik teoremine göre fermiyon olduklarını gösterir. Pauli dışlama ilkesine tabidirler; bu, iki özdeş fermiyonun aynı anda aynı kuantum halini işgal edemeyeceğini belirtir. Bu, herhangi bir sayısı aynı durumda olabilen bozonların (tamsayı spinli parçacıklar) tersidir. Leptonların aksine kuarklar, renk yüküne sahiptir, bu da onların güçlü etkileşime girmelerine neden olur. Farklı kuarklar arasında ortaya çıkan çekim, hadron olarak bilinen kompozit parçacıkların oluşumuna neden olur.

Evrim Ağacı'ndan Mesaj

Hadronlar ve Özellikleri

Güçlü etkileşimle etkileşime giren parçacıklara hadronlar denir. Bu genel sınıflandırma, mezonları ve baryonları içerir, ancak özellikle güçlü kuvvetle etkileşime girmeyen leptonları hariç tutar. Zayıf etkileşim hem hadronlara hem de leptonlara etki eder.

Hadronlar, kuark-antikuark çiftleri (mezonlar) veya üç kuarklar (baryonlar) olarak kuarklardan oluşmuş olarak görülür. Bununla birlikte, görünenden çok daha fazlası var, çünkü oluşturucu kuarklar, renk kuvveti için değişim parçacıkları olan bir gluon bulutu ile çevrilidir.

Baryonlar, standart modelde üç kuarktan oluşan büyük parçacıklardır. Bu parçacık sınıfı, proton ve nötronu içerir. Diğer baryonlar lambda, sigma, xi ve omega parçacıklarıdır. Baryonlar, mezonlardan farklıdır çünkü mezonlar sadece iki kuarktan oluşur. Baryonlar ve mezonlar, güçlü kuvvet tarafından etkileşime giren parçacıklar olan hadronlar olarak bilinen genel sınıfa dahil edilir. Baryonlar fermiyon, mezonlarsa bozondur.

Güçlü Etkileşim Tam Olarak Nedir?

Çekirdeği oluşturan proton ve nötronların kendilerinin kuarklardan oluştuğu ve kuarkların renk kuvveti tarafından bir arada tutulduğu düşünüldüğünden, nükleonlar arasındaki güçlü kuvvet artık bir renk kuvveti olarak düşünülebilir. Standart modelde, bu nedenle, temel değişim parçacığı, kuarklar arasındaki kuvvetlere aracılık eden gluondur. Tek tek gluonlar ve kuarklar proton veya nötron içinde bulunduğundan, bunlara atfedilen kütleler, kuvvetin aralığını tahmin etmek için menzil ilişkisinde kullanılamaz. Bir şeyin bir proton veya nötrondan ortaya çıktığı görüldüğünde, en azından bir kuark-antikuark çifti olması gerekir, bu nedenle en hafif mezon olan pionun, aradaki güçlü kuvvetin maksimum aralığının bir öngörücüsü olarak hizmet etmesi mantıklıdır.

Taslak, nükleonlar arasındaki gluon etkileşiminin alabileceği birçok formdan birini gösterme girişimidir; bu, yukarı anti-çift üretimini ve yok etmeyi içerir ve nükleonlar arasında bir pion köprü oluşturur. g ile gösterilen gluondur. Gluonlar arasında enerji köprüsü oluşturmada pion'lar (Bir tür mezon) görev alabilir ancak unutulmamalıdır ki pion'u oluşturan kuvveti de gluonlar sağlar. Yani aslında aradaki pion köprüsü kompozit bir gluon bağlantısıdır.
Taslak, nükleonlar arasındaki gluon etkileşiminin alabileceği birçok formdan birini gösterme girişimidir; bu, yukarı anti-çift üretimini ve yok etmeyi içerir ve nükleonlar arasında bir pion köprü oluşturur. g ile gösterilen gluondur. Gluonlar arasında enerji köprüsü oluşturmada pion'lar (Bir tür mezon) görev alabilir ancak unutulmamalıdır ki pion'u oluşturan kuvveti de gluonlar sağlar. Yani aslında aradaki pion köprüsü kompozit bir gluon bağlantısıdır.
Güçlü etkileşim diyagramı.

"Renk" Tam Olarak Ne Anlam İfade Ediyor?

Renk yükü, kuantum kromodinamiği (İng: "quantum electrodynamics" veya kısaca "QCD") teorisindeki parçacıkların güçlü etkileşimleriyle ilgili olan kuarkların ve gluonların bir özelliğidir. Kuarkların ve gluonların "renk yükü", rengin günlük anlamı ile tamamen ilgisizdir. Renk terimi ve kırmızı, yeşil ve mavi etiketleri, basitçe ana renklere olan gevşek benzetme nedeniyle popüler hale geldi. Richard Feynman, kafa karıştırıcı ismi seçtikleri için meslektaşlarından "aptal fizikçiler" olarak bahsetmiştir.

Renk, elektromanyetik kuvvet içinde yüklenen güçlü etkileşim analoğudur. "Renk" terimi, kuarkların, görünüşte aynı kuarkların aynı parçacıkta, örneğin protondaki iki "yukarı" kuarkta bulunmasına izin veren bir özelliğini etiketlemek için tanıtıldı. Daha önce belirtmiş olduğumuz gibi, kuarklar fermiyon türleridir ve aynı kuantum sayılarına sahip olamazlar. Nötron ve protonlarda iki tane aynı kuark ("u veya d", diyagramların uud veya udd şeklinde olduğunu hatırlayınız.) bulunması için bir içsel özelliklerinin farklı olması gerekir, bu içsel özellik de "renktir".

Tüm Reklamları Kapat

Güçlü Etkileşimi Sağlayan Gluonlar Tam Olarak Nedir?

Gluonlar, iki yüklü parçacık arasındaki elektromanyetik kuvvetteki fotonların değişimine benzer şekilde kuarklar arasındaki renk kuvveti için değişim parçacıklarıdır. Gluon, 1 spinli kütlesiz bir vektör bozonu olarak kabul edilir. Gluon, bir çekirdekteki protonlar ve nötronlar arasındaki güçlü etkileşimin altında yatan temel değişim partikülü olarak düşünülebilir. Bu kısa menzilli nükleon-nükleon etkileşimi, proton veya nötronun sınırlarının dışına uzanan bir artık renk kuvveti olarak düşünülebilir. Bu güçlü etkileşim, Yukawa tarafından bir piyon alışverişini içerecek şekilde modellendi ve gerçekten de pion aralığı hesaplaması, güçlü kuvvet anlayışımızı geliştirmemize yardımcı oldu.

Kuarklar arasındaki etkileşimi kuran Gluon'un Feynman diyagramı. Burada tasvir edilen etkileşim, kuarkları mezonlara ve baryonlara bağlamaktan; protonları ve nötronları çekirdek oluşturmak için bir arada tutmaktan sorumludur. Bunu da aynı renk yüküne sahip kuarklardan birini değiştirerek yapar çünkü fermiyon olmalarından dolayı aynı kuantum özelliklerine sahip kuarklar bir arada bulunamaz.
Kuarklar arasındaki etkileşimi kuran Gluon'un Feynman diyagramı. Burada tasvir edilen etkileşim, kuarkları mezonlara ve baryonlara bağlamaktan; protonları ve nötronları çekirdek oluşturmak için bir arada tutmaktan sorumludur. Bunu da aynı renk yüküne sahip kuarklardan birini değiştirerek yapar çünkü fermiyon olmalarından dolayı aynı kuantum özelliklerine sahip kuarklar bir arada bulunamaz.
HyperPhysics

Gluonlar, kuarkları mezonlara ve baryonlara bağlamaktan; protonları ve nötronları çekirdek oluşturmak için bir arada tutmaktan sorumludur. Bunu da aynı renk yüküne sahip kuarklardan birini değiştirerek yapar çünkü fermiyon olmalarından dolayı aynı kuantum özelliklerine sahip kuarklar bir arada bulunamaz.

Gluon etkileşimleri genellikle bir Feynman diyagramı ile temsil edilir. Gluonun kuarklar için bir renk değişikliği oluşturduğuna dikkat edin. Aslında gluonların iki renkli olduğu, bir renk birimi taşıdığı ve yukarıdaki şemada önerildiği gibi bir renk önleyici birimi taşıdığı düşünülmektedir. Buradaki gluon değişim resmi mavi kuarkı yeşile çevirir ve bunun tersi de geçerlidir. Kuvvetli kuvvetin menzili, gluonların birbirleriyle ve kuark hapsi bağlamında kuarklarla etkileşime girmesiyle sınırlıdır. Bu özellikler, onları kütlesiz ve sonsuz aralıkta olan fotonlarla karşılaştırır. Foton beraberinde elektrik yükü taşımazken, gluonlar "renk yükünü" taşır.

Tüm Reklamları Kapat

Yaklaşık bir fermi aralığında, gluonlar birbirleriyle etkileşime girebilir ve sanal kuark-antikuark çiftleri üretebilirler. Birbirleriyle etkileşim özelliği, diğer değişim parçacıklarından çok farklıdır ve "yapışkan toplar" olarak adlandırılan gluon koleksiyonları olasılığını yükseltir. Bir hadronun iç durumu, sabit net sayıda kuarktan oluşur, ancak dengede dinamik bir gluon bulutu ve kuark-antikuark çiftleri bulunur.

Bunu sezgisel olarak anlamak zor olabilir. Kuarklar üç tür renk yükü taşır; antikuarklar üç tip anti renk taşırlar. Gluonların hem renk hem de anti renk taşıdığı düşünülebilir. Bu, gluonlarda dokuz olası renk ve anti renk kombinasyonu verir.

Feynman Diyagramları ve Güçlü Etkileşimler

Gluonlar "renk yükünü" taşır ve bu nedenle ortaya çıkan kuark, giren kuarkla aynı renge sahip olmayacaktır. Bu süreç elektromanyetik kuvvetten çok farklıdır çünkü yükler arasındaki kuvvet için değişim parçacığı olarak foton kendi başına yük taşımaz.

Parçacıklar güçlü etkileşim yoluyla bozunabilir ve eğer bir parçacık için böyle bir bozunma yolu mevcutsa, çok hızlı bir şekilde bozulur, yaklaşık 10-23 saniyede. Bir örnek, Δ0→p++π−\Delta^0 \to p^+ + \pi^- bozunmasıdır. Delta baryon Δ0'ın nötron ile aynı kuark yapısına sahip olduğuna, ancak kütlesinin çok daha büyük olduğuna dikkat edin. Bu bozunumun enerjisel olarak elverişli olması için kütlesi yeterlidir.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Neandertal - Soydaşlarımızda Hayat, Sevgi, Ölüm ve Sanat

Keşfedildikleri günden bu yana insan türünün en kötü şöhretli üyeleri sayılan Neandertaller, artık geçmişin önyargılarından arınmış, bilimsel teknolojilerin desteğiyle şekillenen yepyeni bir bakış açısıyla tekrar inceleniyor. Fakat tüm bu araştırmalara rağmen hikâyelerinin tamamını öğrenebiliyor muyuz? İngiliz araştırmacı, arkeolog ve yazar Rebecca Wragg Sykes işte bu hikâyeyi enine boyuna anlatabilmek için yola çıkıyor; Neandertallerin, üstlerindeki yırtık pırtık post parçalarıyla bizden çok çorak buzlu arazilerde yaşayan kuyruksuz maymunlara benzetildiği eski imajını rafa kaldırıyor ve türlü koşullara sahip geniş Avrasya coğrafyasında yüz binlerce yıl boyunca hayatta kalmayı başaran, büyük iklim değişikliklerine göğüs geren bu insanların, aslında her açıdan ne kadar güçlü olduğunu gözler önüne seriyor.

Neandertal: Soydaşlarımızda Hayat, Sevgi, Ölüm ve Sanat bu yakın akrabalarımızın nerede, nasıl yaşadığından neler yediğine, neler giyip nasıl süslendiğinden ölülerine nasıl davrandığına ve cinsel partnerlerini nasıl seçip bebeklerini nasıl büyüttüğüne dek çok geniş bir inceleme alnında, Neandertal kültürüne yepyeni bir pencere aralıyor. Sykes hem konunun uzmanları hem de Neandertalleri merak eden amatör okurların keyifle okuyabileceği bilgi dolu bu kitabında, öncü Paleolitik araştırmaların ve teorilerin ortaya koyduğu bulguları temel alarak Neandertaller hakkında yazılan en kapsamlı araştırmayı sunuyor.

‘‘Neandertaller hakkında yepyeni bir hikâye… İnsanlığa ilgi duyan herkes için önemli bir okuma.’’
Yuval Noah Harari, The New York Times

Devamını Göster
₺300.00
Neandertal - Soydaşlarımızda Hayat, Sevgi, Ölüm ve Sanat
  • Dış Sitelerde Paylaş

Güçlü etkileşimler aracılı Delta bozunumu.
Güçlü etkileşimler aracılı Delta bozunumu.
HyperPhysics

Rezidüel Güçlü Etkileşim

Üç kuark bir proton veya nötronda birbirine bağlandığında, gluonlar tarafından üretilen güçlü kuvvet çoğunlukla nötralize edilir çünkü neredeyse tamamı kuarkları birbirine bağlamak için kullanılır. Sonuç olarak, kuvvet çoğunlukla parçacık içinde sınırlıdır. Bununla birlikte, proton veya nötronun dışında hareket eden, kuvvetin çok küçük bir kısmı vardır. Kuvvetin bu kısmı protonlar ve nötronlar veya "nükleonlar" arasında işleyebilir. Constantinos G. Vayenas ve arkadaşlarına göre. Souentie'nin "Gravity, Special Relativity and the Strong Force" adlı kitabında, nükleonlar arasındaki kuvvetin, protonlardaki kuarkları birbirine bağlayan daha güçlü ve daha temel bir kuvvetin sonucu veya yan etkisi olduğu ortaya çıktı. Bu "yan etki", "rezidüel güçlü etkileşim" veya "nükleer kuvvet" olarak adlandırılır ve nükleonları birbirinden ayıran pozitif yüklü protonlar arasındaki itici elektromanyetik kuvvete rağmen atom çekirdeklerini bir arada tutan şeydir.

Güçlü kuvvetin aksine, artık kuvvetli kuvvet kısa mesafelerde hızla düşer ve yalnızca çekirdek içindeki bitişik parçacıklar arasında önemlidir. Ancak itici elektromanyetik kuvvet daha yavaş düşer, bu nedenle tüm çekirdek boyunca etki eder. Bu nedenle, ağır çekirdeklerde, özellikle atom numarası 82'den (kurşun) büyük olanlarda, bir parçacığın üzerindeki nükleer kuvvet neredeyse sabit kalırken, o parçacık üzerindeki toplam elektromanyetik kuvvet, atom numarasıyla nihayetinde çekirdeği itebilecek noktaya kadar artar. Lawrence-Berkeley Ulusal Laboratuvarı'nın ABC's of Nuclear Science Web sayfasında belirtildiği gibi, "Fisyon, güçlü çekici nükleer kuvvet ile itici elektrostatik kuvvet arasında bir savaş olarak görülebilir." "Fisyon reaksiyonlarında, elektrostatik itme kazanır."

Reid potansiyelinden (1968) hesaplanan mesafenin bir fonksiyonu olarak iki nükleon arasındaki kuvvet (10.000 N birim cinsinden). Nötron ve protonun spinleri eşlenmiştir ve bunlar S açısal momentum durumundadır. Çekici (negatif) kuvvet, yaklaşık 25.000 N'lik bir kuvvetle yaklaşık 1 fm'lik bir mesafede maksimum durumdadır. 0.8 fm'lik bir mesafeden çok daha yakın olan parçacıklar büyük bir itici (pozitif) kuvveet maruz kalırlar. 1 fm'den daha büyük bir mesafe ile ayrılan parçacıklar hala çekilir (Yukawa potansiyeli), ancak kuvvet, mesafenin üstel bir fonksiyonu olarak düşer.
Reid potansiyelinden (1968) hesaplanan mesafenin bir fonksiyonu olarak iki nükleon arasındaki kuvvet (10.000 N birim cinsinden). Nötron ve protonun spinleri eşlenmiştir ve bunlar S açısal momentum durumundadır. Çekici (negatif) kuvvet, yaklaşık 25.000 N'lik bir kuvvetle yaklaşık 1 fm'lik bir mesafede maksimum durumdadır. 0.8 fm'lik bir mesafeden çok daha yakın olan parçacıklar büyük bir itici (pozitif) kuvveet maruz kalırlar. 1 fm'den daha büyük bir mesafe ile ayrılan parçacıklar hala çekilir (Yukawa potansiyeli), ancak kuvvet, mesafenin üstel bir fonksiyonu olarak düşer.
Wikipedia

Rezidüel güçlü etkileşim bağını kırarak açığa çıkan enerji, radyoaktivite dediğimiz şeyi üreten yüksek hızlı parçacıklar ve gama ışınları şeklini alır. Yakındaki çekirdeklerin çürümesinden kaynaklanan parçacıklarla çarpışmalar bu süreci hızlandırarak "nükleer zincir reaksiyonuna" neden olabilir. Uranyum-235 ve plütonyum-239 gibi ağır çekirdeklerin fisyonundan gelen enerji, nükleer reaktörlere ve atom bombalarına güç veren şeydir.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
40
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 12
  • Mmm... Çok sapyoseksüel! 8
  • Bilim Budur! 7
  • İnanılmaz 3
  • Grrr... *@$# 3
  • Umut Verici! 1
  • Merak Uyandırıcı! 1
  • İğrenç! 1
  • Muhteşem! 0
  • Güldürdü 0
  • Üzücü! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • J. Lucas. What Is The Strong Force?. (6 Aralık 2020). Alındığı Tarih: 6 Aralık 2020. Alındığı Yer: | Arşiv Bağlantısı
  • R. Nave. Hyperphysics. (6 Aralık 2020). Alındığı Tarih: 6 Aralık 2020. Alındığı Yer: | Arşiv Bağlantısı
  • S. Weinberg. (2003). The Discovery Of Subatomic Particles. ISBN: 9780521823517. Yayınevi: Cambridge University Press.
  • R. Penrose. (2007). The Road To Reality: A Complete Guide To The Laws Of The Universe. ISBN: 9780679776314. Yayınevi: Vintage.
  • CERN. The Standart Model. (6 Aralık 2020). Alındığı Tarih: 6 Aralık 2020. Alındığı Yer: | Arşiv Bağlantısı
  • D. J. Griffiths. (1987). Introduction To Elementary Particles. ISBN: 9780471603863. Yayınevi: Wiley-Vch.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 19/04/2024 15:41:41 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9679

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Mikoloji
Primatlar
Fare
Tahmin
Canlılık Ve Cansızlık Arasındaki Farklar
Etimoloji
Ekosistem
Çekirdek
Alkol
Embriyo
Veri
Algı
Afrika
İletişim
Bitkiler
Işık Yılı
Diş Sorunları
Kurbağa
Ayak
Bilişsel
Gen
Mucize
Beyin
Karbon
Seçilim
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Kafana takılan neler var?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
G. K. Polat, et al. Güçlü Kuvvet Nedir? Temel Parçacıkları Birbirine Bağlayarak Daha Büyük Maddeleri İnşa Eden Güçlü Etkileşimler Nelerdir?. (7 Aralık 2020). Alındığı Tarih: 19 Nisan 2024. Alındığı Yer: https://evrimagaci.org/s/9679
Polat, G. K., Bakırcı, Ç. M. (2020, December 07). Güçlü Kuvvet Nedir? Temel Parçacıkları Birbirine Bağlayarak Daha Büyük Maddeleri İnşa Eden Güçlü Etkileşimler Nelerdir?. Evrim Ağacı. Retrieved April 19, 2024. from https://evrimagaci.org/s/9679
G. K. Polat, et al. “Güçlü Kuvvet Nedir? Temel Parçacıkları Birbirine Bağlayarak Daha Büyük Maddeleri İnşa Eden Güçlü Etkileşimler Nelerdir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 07 Dec. 2020, https://evrimagaci.org/s/9679.
Polat, Gencay Kaan. Bakırcı, Çağrı Mert. “Güçlü Kuvvet Nedir? Temel Parçacıkları Birbirine Bağlayarak Daha Büyük Maddeleri İnşa Eden Güçlü Etkileşimler Nelerdir?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, December 07, 2020. https://evrimagaci.org/s/9679.
ve seni takip ediyor

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close